

A Virtual Platform Environment for Exploring Power, Thermal and Reliability Management Control Strategies in High-performance Multicores

Andrea Bartolini⁺,

Matteo Cacciari⁺, Andrea Tilli⁺, Matthias Gries[‡], Luca Benini⁺

University of Bologna, DEIS[†] Italy Intel Labs[‡] Germany Microprocessor Lab

a.bartolini, matteo.cacciari, andrea.tilli, luca.benini@unibo.it, matthias.gries@intel.com

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

IL PRESENTE MATERIALE È RISERVATO AL PERSONALE DELL'UNIVERSITÀ DI BOLOGNA E NON PUÒ ESSERE UTILIZZATO AI TERMINI DI LEGGE DA ALTRE PERSONE O PER FINI NON ISTITUZIONALI

Outline

- Introduction
- Simulation Strategy
- Virtual Platform
- Platform Characterization
- Case Study
- Conclusion

ST STORUG

Today and Future Multicores

Tecnology scaling High performace requirements

software

Spatial and temporal workload variation

Resource Management solution:

on-line tuning of system performance and temperature through closed-loop control management policies

Leakage current

Hot spots, thermal gradients and cycles

Reliability lost, Aging

Management Loop: Holistic view

Evaluation Strategies

Simulators *key features* :

- must accurately simulate the entire system evolution (real workload, program flow, data coherency conflicts, complex memory latency)
 - to avoid unrealistic simulation artifacts
 - to allow evaluation of control solution that fits in the system
- must emulate the same performance knobs and introspective sensors of real HW
- must **co-simulate** the **physical effects** we want the controller to be developed for
 - Power model, Thermal model, Reliability model
- allows high-level control strategies co-simulation
 - acting on virtual performance knobs / reacting on virtual introspective sensors

Simulator Strategy

Trace driven Simulator [1]:

- Not suitable for full system simulation (How to simulate O.S.?)
- looses information on cross-dependencies
 - → How to account data, memory contention?
 - \rightarrow resulting in degraded simulation accuracy
- Close loop Simulator:
- Cycle accurate simulators [2] :
 - High modeling accuracy
 - support well-established power and temperature co-simulation based on analytical models and system micro-architectural knowledge
 - Low simulation speed
 - Not suitable for full-system simulation
- Functional and instruction set simulators:
 - allow full system simulation
 - less internal precision \rightarrow no micro-architectural analytical model
 - less detailed input data
 - introduces the challenge of having accurate power and temperature physical models

[1] P Chaparro et al. Understanding the thermal implications of multi-core architectures. 2007 [2] Benini L. et al. MPARM: Exploring the multi-processor SoC design space with SystemC 2005

Control strategy

Co Co Workload Sat

Mult

Temper

Workload

Multicore

Simulator

Power Model

Temperature Model

re Model

Executio

'e

Contributions

Novel Virtual Platform - Goals:

- Allows fast but physical accurate multicores simulator
 - Based on a full-system multicore high-level functional simulator (Virtutech Simics [1])
 - Integrates Power and Thermal model derived by real HW characterization
- Enables *fast control-algorithms prototyping*, *design* and *testing*:
 - Allowing co-simulation of multicores SoCs with high-level description of control-algorithms (Mathworks Matlab/Simulink [2])

Challenges:

- Identification, from experiments on a real general-purpose multicore platform, of accurate, but component-oriented, power and thermal models
- Interfacing physical model with functional simulator engine
- Development of a co-simulation bridge between the multicores simulator and Mathworks Matlab/Simulink.

[1] http://www.virtutech.com/ [2] http://www.mathworks.com/

Simics by Virtutech:

- full system functional simulator
- models the entire system: peripherals, BIOS, network interfaces, cores, memories
- allows booting full OS, such as Linux SMP
- supports different target CPU (arm, sparc, x86)
- x86 model:
 - in-order
 - all instruction are retired in 1 cycle
 - does not account for memory latency

[1] Martin Milo M. K. et al. Multifacet's general execution-driven multiprocessor simulator (GEMS) toolset 2005

Memory timing model

- RUBY GEMS (University of Wisconsin)[1]
 - Public cycle-accurate memory timing model
 - Different target memory architectures
 - fully integrated with Virtutech Simics
 - written in C++
 - we use it as skeleton to apply our addons (as C++ object)

Performance koobte(19 VIFS) unterdule:

- Nereated to Speice range post of the post of the
- WREBUICE work of the support it would be a support it
 - edpress to a to have. ianter applylicative digits enfeme oppress to to have.
- · We add the evul Db/ FiSomostulections upport it clock cycles and stall cycles expired,
 - ensumestiliastations. DRAM to have a constant clock frequency
 - L1 latency scale with Simics processor clock frequency

Power model module:

- At run-time estimate the power consumption of the target architecture
- Core model $P_T = P_D(f, CPI) + P_S(T, VDD)$
- P_D experimentally calibrated analytical power model
- Cache and memory power access cost estimated with CACTI [1]

[1] Thoziyoor Shyamkumar et al. A comprehensive memory modeling tool and its application to the design and analysis of future memory hierarchies. 2008

Modeling Real Platform – Power

 $P_{D} = k_{A} \cdot V_{DD}^{2} \cdot f_{CK} + k_{B} + (k_{C} + k_{D} \cdot f_{CK}) \cdot CPI^{k_{E}}$

• We relate the static power with the operating point by using an analytical model

Temperature model module:

- we integrate our virtual platform with a thermal simulator [1]
- Input: power dissipated by the main functional units composing the target platform
- Output: Provides the temperature distribution along the simulated multicore die area as output

[1] Paci G. et al. Exploring "temperature-aware" design in low-power MPSoCs

Thermal Model

Modeling Real Platform– Thermal

- Thermal Model Calibration :
 - Derived from Intel® Core™ 2 Duo layout
 - · We calibrate the model parameter to simulate real HW transient
 - High accuracy (error < 1%) and same transient behavior

Virtual Platform Performance

- Target:
 - 4 core Pentium® 4
 - 2GB RAM
 - 32 KB private L1 cache
 - 4 MB shared L2 cache
 - Linux OS

- Host:
 - Intel® Core™ 2 Duo
 - 2.4 Ghz
 - 2GB RAM

Mathworks Matlab interface:

- New module named Controller in RUBY
- Initialization: starts the Mathworks Matlab engine concurrent process,
- Every N cycle wake-up:
 - send the current performance monitor output to the Mathworks Simulink model
 - execute one step of the controller Mathworks Simulink model
 - propagate the Mathworks Simulink controller decision to the DVFS module

Case Study

Case Study

Conclusion

- We have presented a novel virtual platform for efficiently designing, evaluating and testing power, thermal and reliability closed-loop resource management solutions
- We create a modular high-level simulation platform for multicore systems
- Models for power dissipation and thermal dynamics, compatible with highlevel instruction set emulation, derived from real hardware characterization
- We enhance the performance controller design and the simulation capability by allowing a Mathworks Matlab/Simulink description of the controller to execute natively as a new component of the virtual platform
- The controller directly drives the performance knobs of the emulated system
- This brings to an new controller development cycle that helps the developer in converging to an optimum "in the field" performance control solution

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA