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•  Application and architectural trends 

•  The SCMP architecture 

•  Former LIST’s power management solutions  

•  New challenges 
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Embedded Applications trends  

•  Embedded systems must support various applications  
•  They need more computing power  
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Task management in MPSOC architectures for Embedded 
applications 

•  Applications are more 
and more dynamic 
  Dynamic control flow 
  Data-dependent processing 

•  System becomes less 
and less predictible 
  Variability  
  Defects 
  Aging 

•  Dynamic Load balancing is needed to improve processor 
utilization rate 
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•  Software management of tasks is 
however not for free 
  Low reactivity 
  Low transistor and silicon efficiency 
  Overhead hardly predictable 

because of its dependencies 
regarding workload 

•  Benefits of hardware acceleration 
  Overlapping between control and 

computation activities 
  Determinism 
  Reactivity 
  Low cost 

Task management implementation issues 

The Scheduler and the time tick processing overheads in MicroC/OS-II on a PowerPC,  
A Configurable Scheduler for Real-Time Systems – ERSA03 
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Hardware support for task management 

•  Full Hardware solution 
  For asymmetric approaches 

  May need several 100kgate but 
support very aggressive real time 
scheduling approaches 

•  HW accelerated SW solution 
  For SMP systems 

  Less than 100kgate  
  Not so smart but allows secured 

sharing of system information and 
centralized signalization schemes 

•  Mixed approach  
  For multi-purpose asymmetric approaches 
  Based on a small RISC processor with optimized coprocessor interface  
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SCMP: a new architecture for dynamic applications 

•  New execution and programming model 
  Simplify the task parallelism management 
  Optimize the PE occupancy (load balancing) 
  Asymmetric architecture with a global control 
  Fast preemption and migration of tasks 
  Explicit separated execution between control and computation 

  Low control overhead (HW accelerator) 

  Specific memory management 
  Physically distributed and logically shared 
  Write exclusive accesses 
  Data and instruction virtualization 

CPU 
Operating System (real-time) 

SCMP 

System Bus 

           Interconnection Resource 

PE 
mem 
instr 
mem  
data 

PE 
mem 
instr 
mem 
data 

mem 

controlle
r I/O

 

I/O 

mem mem mem 

PE 
mem 
instr 
mem 
data 

mem mem mem 
instr instr instr instr instr 

Memory 
Configu-
ration and 
Manage-
ment Unit 

GA GA GA GA 

controlle
r I/O

 

GA 

I/O 

OSoC : HW Controller 

"  7 



Power Management strategies in SCMP 

•  Use all hardware support 
  Idle modes 
  Variable Voltage/frequency 

•  Adapt power management strategies to application needs  
  Real Time 
  Best effort in dataflow applications 

Choice  of the ideal low 
power mode  TIDLE 

si 

di 

ai 

Time 

Power 

PSMi 

Sleep Wake up 

Choice of the ideal slow down 
factor  TIDLE 

di 

ai 

Time 

Power 

IDLE 

Speed up Slow down 

ai : arrival time 

si : WCET 

di : deadline 

si 

di 

ai 

Time 

Power 

IDLE 

"  8 



–  Low Power State Parameters : 

•  PS  = State Power Consumption. 

•  ETR = Transition energy consumption  

•  TTR = Transition latency 

•  TBE = Break-Event Time: minimum time to 
spend in state S so that the transition 
become interesting. 
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Idle mode management 



Idle mode management 

•  In real Time Systems 
  Characterize offline (using WCET) the variation of the 

parallelism rate of each application 
  Detect online these variations and deduce the Idle periods 
  Activate the ideal low power mode (modified LEA) and predict 

the corresponding awakening time 

•  In dataflow mode 
  Switch to idle mode as soon as data buffer reaches a critically 

low filling rate threshold  
  Awake whenever data buffer has been filled enough 

"  10 



Voltage and frequency scaling 

•  In real time applications 
  Take benefits of slack times 

  Limit the amount of Voltage/frequency modification 
  Accumulate slacks until being able to activate DVFS for a long period of time 

  Assign the slack to the next task on the same processor (% resource dependency) 
to avoid wasting slack time when reaching joining points in applications  

•  In dataflow applications 
  Adapt production and consumption rates to avoid stalls when pipeline is 

unbalanced 
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SCMP proptotype 

•  Complete FPGA prototype 
  75 MHz prototypes on FCM4 boards from Scaleo Chip (StratixIII based) 
  Including OSoC and additionnal power management accelerators 

  For real time DPM and DVFS management 

  4 Processing Elements 
  Based on sparc processors  
  With Data Prefetch Engines + standard cache memories 

  Multibanked memory system 
  With HW support for dynamic allocation 
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Application domain specific systems 

•  Functional Heterogeneity 
  How to support the load balancing in this context ? 

  Data access modes are IP specific 
  Binaries are IP specific 
  Performance predictions are IP specific 
  … 

  How to manage the power in  
this context ? 

  Very simple and drastic (ON-OFF) 
  Selective clock and power gating  
at application sub-system level  
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•  A many-core fabric  
  Homogeneous or Heterogeneous resources 
  Not clustered by application 

•  The fabric dynamic management allows to support: 
  Faults (remanant or transient, aging…) 
  Complex applications not fully predictable at compile time 

  Load balancing 
  Power Management 

•  Possible approaches for complexity  
management  

  Globally static locally dynamic  
management: 

  Dynamic application deployment,  
  no migration between clusters 

  Globally dynamic management 
  Dynamic application deployment,  
  possible inter-cluster migration 
Or 
  Dynamic task deployment  
(at task creation) 
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From multi- to many-cores 
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•  Advanced process variability 
  From a design based on the worst case to a design based on the average case 

with online adaptation 
  For each processor, the frequency is evaluated and corrected online 

  Implies a GALS functioning model  
  DVFS modes support tends to be generalized in complex systems 
  Need a low footprint HW support for voltage and frequency adaptation (from DC-DC  

VDD Hoping) 

  High performance heterogeneity 
  Need to reconsider performance homogeneity hypothesis in the large scheduling 

literature 
  Tighter coupling of Power management policies with the allocation phase: 

 With the Load balancing policies 
 With the system monitoring  
 with the thermal management policies 

•  Effect of the temperature on the static power consumption  overall power 
consumption 

•  Effect of the (frequency, voltage) operating point on the temperature 
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From multi- to many-cores 



•  The transition from multi-core to many core systems is not 
straightforward as far as the dynamic system management is 
concerned : 
  HW acceleration of control primitives can lead to high controllability 

  At the lower hierarchy level for witch it can be well dimensioned 

•  Power management policies targeting many-core systems must take 
into account the process variability 
  Reactive and proactive policies can be considered 

•  Many core system dynamic power management is more tightly 
coupled to the Task allocation phase 
  With or without Load balancing techniques 

•  The effect of temperature on the power consumption and vice versa is 
not well estimated for 32nm and beyond … 
  Benefits of coupling the Thermal and power management techniques…  
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Conclusion 


