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Embedded Applications trends
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e They need more computing power 1 TOPS Digital TV
H264
~  OMPEG2
3G+ OpenOfficeorg e
100 SDR— -
4 O
3GPP-LTE
L T
WIMEiI\X OpenGL 2.0
O O
UMTS
10 — 3
EDGE OpSnGLl,l
O
GPRS  Mobile
multimedia
1 GOPS HD&UCEO

GSM
O
Iti i
0.1 Teleconﬁlu imedia
.//

3




Task management in MPSOC architectures for Embedded
applications

e Applications are more ‘-
and more dynamic _ 3.8 ms
= Dynamic control flow
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= Data-dependent processing : | / Iabeingalgorithm

ime (ms)

o System becomes less | 1.3 ms
and less predictible
= Variability Pomom o wowm e m e w o m s v e m w w n
= Defects
= Aging

e Dynamic Load balancing is needed to improve processor
utilization rate
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Task management implementation issues

o Software management of tasks is 205
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e Benefits of hardware acceleration || -- ||
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Hardware support for task management
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SCMP: a new architecture for dynamic applications

e New execution and programming model
= Simplify the task parallelism management
= Optimize the PE occupancy (load balancing)
= Asymmetric architecture with a global control
= Fast preemption and migration of tasks

= Explicit separated execution between control and computation
= Low control overhead (HW accelerator)

= Specific memory management
= Physically distributed and logically shared
= Write exclusive accesses
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Power Management strategies in SCMP

Use all hardware support

Idle modes
Variable Voltage/frequency
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Adapt power management strategies to application needs
Real Time
Best effort in dataflow applications




Idle mode management

- Low Power State Parameters :

e PS = State Power Consumption. IcRMorks) || TEM

e ETR = Transition energy consumption oc e
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In real Time Systems

Idle mode management

Label1

Characterize offline (using WCET) the variation of the
parallelism rate of each application
Detect online these variations and deduce the Idle periods

Activate the ideal low power mode (modified LEA) and predict
the corresponding awakening time
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Energy / State 3
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In dataflow mode
Switch to idle mode as soon as data buffer reaches a critically
low filling rate threshold

Awake whenever data buffer has been filled enough




Voltage and frequency scaling

e In real time applications

= Take benefits of slack times
= Limit the amount of Voltage/frequency modification
= Accumulate slacks until being able to activate DVFS for a long period of time

= Assign the slack to the next task on the same processor (% resource dependency)
to avoid wasting slack time when reaching joining points in applications
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e In dataflow applications

= Adapt production and consumption rates to avoid stalls when pipeline is
unbalanced
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SCMP proptotype

e Complete FPGA prototype
= 75 MHz prototypes on FCM4 boards from Scaleo Chip (StratixIII based)

= Including OSoC and additionnal power management accelerators
= For real time DPM and DVFS management

= 4 Processing Elements
= Based on sparc processors
= With Data Prefetch Engines + standard cache memories

= Multibanked memory system
= With HW sunnort for dvnamic allocation
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Application domain specific systems

e Functional Heterogeneity

= How to support the load balancing in this context ?
= Data access modes are IP specific
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From multi- to many-cores

e A many-core fabric
» Homogeneous or Heterogeneous resources
= Not clustered by application

e The fabric dynamic management allows to support:
= Faults (remanant or transient, aging...)

= Complex applications not fully predictable at compile time
» Load balancing
= Power Management

e Possible approaches for complexity

management 5
= Globally static locally dynamic
management:
= Dynamic application deployment, 5

* no migration between clusters

= Globally dynamic management
* Dynamic application deployment,
= possible inter-cluster migration
Or

= Dynamic task deployment

(at task creation)




From multi- to many-cores

e Advanced process variability

= From a design based on the worst case to a design based on the average case
with online adaptation
= For each processor, the frequency is evaluated and corrected online
= Implies a GALS functioning model

= DVFS modes support tends to be generalized in complex systems

= Need a low footprint HW support for voltage and frequency adaptation (from DC-DC >
VDD Hoping)

= High performance heterogeneity

= Need to reconsider performance homogeneity hypothesis in the large scheduling
literature

= Tighter coupling of Power management policies with the allocation phase:
* With the Load balancing policies
* With the system monitoring

* with the thermal management policies

» Effect of the temperature on the static power consumption - overall power
consumption

 Effect of the (frequency, voltage) operating point on the temperature
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Conclusion

The transition from multi-core to many core systems is not
straightforward as far as the dynamic system management is
concerned :

= HW acceleration of control primitives can lead to high controllability
= At the lower hierarchy level for witch it can be well dimensioned

Power management policies targeting many-core systems must take
into account the process variability

= Reactive and proactive policies can be considered

Many core system dynamic power management is more tightly
coupled to the Task allocation phase

= With or without Load balancing techniques

The effect of temperature on the power consumption and vice versa is
not well estimated for 32nm and beyond ...

= Benefits of coupling the Thermal and power management techniques,




