

SYSTEM LEVEL MODELLING AND PERFORMANCE ESTIMATION

EXPLORATION OF A DIGITAL AUDIO PLATFORM

ANDERS SEJER TRANBERG-HANSEN AND JAN MADSEN

DTU Informatics Department of Informatics and Mathematical Modeling

OUTLINE MOTIVATION

DTU Informatics Department of Informatics and Mathematical Modeling

MOTIVATION

- Increased design complexity is leading to sub-optimal implementations due to time-to-market constraints of systems.
- Difficult to get feedback to the consequences of a design choice before the system is realized – implying that in the early design phases experience of designers are a key element.
- Efficiency goals dominate leading to systems with less flexibility due to insufficient exploration of the design space.

PRESENTATION OUTLINE

- Overview of the Framework.
- Service Models.
 - -Architecture Modelling
- Case-study: A Mobile Audio Processing Platform.
- Conclusion and Future Work.

THE FRAMEWORK

A COMPOSITIONAL MODELLING FRAMEWORK FOR PERFORMANCE ESTIMATION

OBJECTIVES

- A framework for quantitative performance estimation for use in all design phases.
- The framework is a tool which can be used for exploration of the design space.
- Must be able to capture both applications and the platform onto which the application is executed.

OVERVIEW

BASICS SERVICE MODELS

SERVICE MODEL

- The behaviour of a component is modelled by the availability of a set of services.
- A Service Model is composed of:
 - 1. One or more **Service Model Interfaces**
 - 2. One Service Model Implementation

SERVICE

SERVICE MODEL

- A Service Model defines:
 - 1. The services offered.
 - 2. The implementation of the behaviour of the services.
 - 3. The resource requirements of the services.
 - 4. The inter-connection possibilities of the model.
 - 5. The latency of the services.

SERVICE MODEL COMPOSITION

SERVICE MODEL COMPOSITION

THE FRAMEWORK

APPLICATION MODEL

APPLICATION MODEL

THE FRAMEWORK

PLATFORM MODEL

PLATFORM MODEL

MODEL-OF-COMPUTATION

- Hierarchical Coloured Petri Nets.
 - Hierarchical.
 - Parallel activities.
 - Resource requirements and access to shared resources.
 - Data flow.
- Modified Execution Semantics.
- Quasi-static scheduling
- •Two types of tokens only.

DTU

HCPN BASED SERVICE MODEL

THE FRAMEWORK SYSTEM MODEL

SYSTEM MODEL

SYSTEM MODEL

CASE-STUDY

A MOBILE AUDIO PROCESSING PLATFORM

DTU

Bang & Olufsen ICEpower

.

MOBILE AUDIO PROCESSING

APPLICATION MODEL

PLATFORMS

- Available processing elements:
 - Dedicated hardware implementations (HW)
 - Application Specific Instruction-set Processor (SVF)
 - Digital Signal Processor optimized for Audio (DSP)

NAME	DESCRIPTION	RELATIVE AREA
HW (REFERENCE)	Dedicated hardware, ICEpower impl.	1
SVFx1	1 SVF ASIP.	0.6
SVFx2	2 SVF ASIP's.	1.2
SVFx3	3 SVF ASIP's.	1.8
SVFx4	4 SVF ASIP's.	2.4
DSP	1 Audio DSP.	4

UTILIZATION OF PLATFORMS

SIMULATION SPEED

ACCURACY

	MIXED LATENCY	COMPILED	RTL
Α	84,034	102,034	102,034
В	123,041	129,384	129,384
С	33,011	33,011	33,011
D	153,051	168,056	168,056
TOTAL	393,137	429,143	429,143

OUTLOOK CONCLUSION & FUTURE WORK

CONCLUSION

- Early performance estimation.
- Flexible construction of models.
- High-level of reusability, using component libraries.
- Support for multiple levels of abstraction to co-exists within a model.
- Excellent refinement possibilities of models.
- High level models to cycle accurate instruction set simulators.

FUTURE WORK

- SystemC / TLM 2.0 integration investigation.
- Better tool support.
 - Specification of models.
 - Specification of applications.
 - "Service Request Compiler"
- •In depth case studies larger and more complex models.
- Investigation of formal analysis possibilities using traditional HCPN methods.