
Roadmap on Control of Real-Time
Computing Systems

Control for Embedded Systems Cluster

EU/IST FP6 Artist2 NoE

Contents

1. Executive Overview on Control of Real-Time Computing

Systems . 3

1.1 Motivation and Objectives . 3

1.2 Background . 3

1.3 Feedback scheduling . 4

1.4 Important issues . 5

1.5 Control of queues . 8

2. Current Industrial Practice and Needs 9

3. Control of Servers . 10

3.1 Control-based queue admission control 10

3.2 Control-based queue delay control 13

3.3 Relative Queue Delay Control 15

3.4 Control of Real-Time Databases 16

3.5 Challenges and Research Directions 17

4. Control of CPU Resources . 19

4.1 Feedback-Based Task Scheduling 20

4.2 Feedback-based Bandwidth and Reservation Allocation 21

4.3 Challenges and Research Directions 22

5. Feedback Scheduling of Control Systems 23

5.1 Actuators & Sensors . 24

5.2 Optimal Stationary Feedback Scheduling 25

5.3 Optimal Feedback Scheduling 26

5.4 Feedback Scheduling Structures 27

5.5 Value-Based Feedback Scheduling 27

5.6 Research Directions . 27

6. Control Middleware . 28

6.1 Research Directions . 30

7. Control of Communication Networks 31

7.1 Congestion Control . 31

7.2 Control and optimization of wireless networks 33

7.3 Interactions between TCP and wireless links 34

7.4 Challenges and Research Directions 36

1

8. Error Control of Software . 37

8.1 Research Directions . 38

9. References . 39

2

1. Executive Overview on Control of Real-Time

Computing Systems

1.1 Motivation and Objectives

An important result of the EU ARTIST FP5 project was four roadmaps on Hard
Real-Time Development Environments, Component-Based Design and Imple-
mentation Platforms, Adaptive Real-Time Systems for Quality of Service Man-
agement, and Execution Platforms respectively, [Bouyssounouse and Sifakis,
2005]. The current roadmap written by the partners of the Control for Embed-
ded Systems cluster within the EU/IST FP6 Network of Excellence ARTIST2 can
partly be viewed as an extension of the adaptive real-time system roadmap. The
focus is how flexibility, adaptivity, performance and robustness can be achieved
in a real-time computing or communication system through the use of control
theory.

Similar to the ARTIST roadmaps this roadmap is intended as a roadmap for re-
search rather than an roadmap on industrial R & D in general. The roadmap is
not a roadmap on real-time control. In real-time control the real-time computing
system is used as an implementation platform for a control system controlling
some external dynamical system, often a physical plant with external inputs
and outputs. Here, it is instead the real-time computing system that is the sub-
ject to the control. The item that is controlled is in most cases the allocation
of computing and communication resources, e.g., the distribution or scheduling
of CPU time among different competing tasks, jobs, requests, or transactions.
Due to this, control of computing systems also goes under the name of feedback
scheduling.

The roadmap assumes basic knowledge in real-time computing and control engi-
neering from the readers. In parallel to the current roadmap a separate roadmap
on Real-Time Techniques in Control System Implementation has been developed.

1.2 Background

Feedback-based approaches have always been used in engineering systems. One
example is the flow and congestion control mechanisms in the TCP transport
protocol. Typical of many applications of this type is that feedback control is
used in a more or less ad hoc way without any connections to control theory.
During the last 5-10 years this situation has changed. Today control theory is
beginning to be applied to real-time computing system in a more structured way.
Dynamic models are used to describe how the performance or quality of service
depend on the resources at hand. The models are then analyzed to determine
the fundamental performance limitations of the system. Based on the model and
the specifications control design is performed. In some cases the analysis and
design is based on optimization.

The research on control of computing systems has increased immensely and
gained a large interest during the last years. A large number of applications have
been proposed in different areas, e.g., high-performance web servers [Diao et al.,
2002; Gandhi et al., 2001; Lu et al., 2001; Robertsson et al., 2003], multimedia
streaming [Nahrstedt, 1995; Zhang et al., 2001], real-time databases [Amirijoo
et al., 2003d], web storage systems [Lu et al., 2002], network routers [Keshav,
1993; Christin et al., 2002], active queue management schemes [Hollot et al.,

3

Scheduler ResourceTask

Setpoint

Feedforward

Feedback

Figure 1 A feedback scheduler structure. Feedforward is used to adjust to known
changes in required resources.

2001a; Hollot et al., 2001b], processor architectures [Skadron et al., 2001], and
control systems [Cervin et al., 2002]. Several of these applications will be de-
scribed in further detail in the sequel. There is also a new textbook available
[Hellerstein et al., 2004]. However, so far most of the work presented in litera-
ture have been conducted by scientists working either in the real-time computing
or telecommunication fields, or in the automatic control field. Unfortunately, this
has sometimes led to erroneous models and strange results. One example is that
most control-theoretic models of queuing systems have been linear and determin-
istic, rather than nonlinear and stochastic which are better descriptions of the
true behaviour of a queuing system. Another example is incorrect assumptions
made by control researchers due to lack of deep knowledge of the details of the
computing and communication system.

1.3 Feedback scheduling

In a real-time system with hard timing constraints, e.g., deadlines, it is paramount
that all timing constraints are fulfilled. If sufficient information is available
about worst-case resource requirements, e.g., worst-case execution times (WCET),
then the results from classical schedulability theory can be applied to decide if
this is the case or not. Using, e.g., priority-based or deadline-based scheduling
strategies, it is then possible to provide a system implementation that guarantees
that the timing constraints are fulfilled at all times.

However, in many situations the hard real-time scheduling approach is unpracti-
cal. Worst-case numbers are notoriously difficult to derive. In order to be on the
safe side a heuristically chosen safety margin is often added to measurements
of “worst-case” values. This may lead to under-utilization of resources. In other
cases resource requirements vary greatly over time. The reason for this may be
changes in the external load on the system, e.g., large variations in the number of
requests to a web-server, or mode changes in application tasks. Again, designing
the system for the worst case may lead to under-utilization. The above situations
are both caused by uncertainty. A major strength of control theory is its ability
to manage uncertainty.

In feedback scheduling the allocation of resources is based on a comparison of
the actual resource consumption by, e.g., a set of tasks, with the desired resource
consumption (the setpoint value or the reference value). The difference, or con-
trol error, is then used for deciding how the resources should be allocated to the
different users. The decision mechanism constitutes the actual controller in the
feedback scheduling scheme. The structure of a feedback-based resource alloca-
tion scheme is shown in Figure 1. In the figure we assume that the resource

4

consumers are tasks that need a certain amount of CPU time each. The setpoint
of the controller/scheduler is the desired total CPU utilization. If a task knows
beforehand that it is about to change its resource consumption, it may inform
the scheduler about this directly. This constitutes a feedforward path in the con-
troller. Another name for a feedback loop is a closed loop. In relation to this a
conventional scheduling algorithms can be described as operating in open loop,
without any mechanisms that allow it to adjust to changes in loads, overruns,
etc.

A key observation here is that feedback scheduling is not suitable for applications
that are truly hard in nature. The reason for this is that feedback acts on errors.
In the CPU utilization case above this would mean that some tasks temporarily
might receive less resources than required, i.e., they could miss deadlines. Feed-
back scheduling is therefore primarily suited for applications that are soft, i.e.,
tolerate occasional deadline misses without any catastrophic effects, or that are
said to be adaptive. The latter means that missing one or more deadline does not
jeopardize correct system behavior, but only causes a performance degradation.
For this type of systems, the goal is typically to meet some Quality of Service
(QoS) requirements.

The adaptive class of real-time systems is a suitable description for a many
practical applications. This includes different types of multimedia applications,
and web server systems. It also includes a large class of control applications.
Most control systems can tolerate occasional deadline misses. The control per-
formance or Quality of Control (QoC) is also dependent on to which degree the
timing requirements are fulfilled. It is only in safety-critical control applications,
e.g., automotive X-by-wire applications, that the hard real-time model really is
motivated.

1.4 Important issues

Important issues in control of computing systems are what the inputs and out-
puts of the systems are, the structure and type of controller, and which modeling
formalism that is employed.

Inputs and outputs An important issue in all control problems is what the
inputs and outputs are. The input to the controlled system, i.e., the output of the
controller or the control variable, is the means by which the controller changes
the resource allocation. The output of the controlled system, also called the mea-
sured variable, is the variable or signal that the controller aims to maintain un-
der control, i.e., keep it at a constant desired setpoint or have it follow a changing
setpoint. The actuator is the mechanism through which the control variable is
entered into the controlled system. In a web-server control application the control
variable could be the total amount of work caused by pending requests whereas
the actuator could correspond to an admission control mechanism. The sensor is
the mechanism that is used to actually measure the measured variable. In a CPU
utilization control application the sensor could correspond to measurements of
the tasks’ actual execution time. In order to keep the controller from over-reacting
to spurious upsets in the measured variable, i.e., occasional overruns, a low-pass
filter is often included in the sensor.

Controller structure and type Another important issue is the structure and
type of the controller. In a feedback structure the controller bases its actions
on the measured variable and the setpoint only. In a feedforward structure the

5

actions are based only on the setpoint and/or on measurable disturbances acting
on the controlled system. In a combined feedback and feedforward structure the
feedforward path is typically used to provide a fast response to setpoint changes
whereas the feedback path is used to compensate for errors caused by distur-
bances acting on the controlled system, or incorrect modeling assumptions. In a
single-input single-output (SISO) structure the controller controls a single mea-
sured variable using one control variable, whereas in a multi-input multi-output
(MIMO) structure several measured variables and control variables are used. A
common controller structure is the cascade controller where two ordinary con-
troller are connected in series, the control variable of the first, outer, controller
being used as the setpoint of the second, inner controller.

The controller type decides how the control variable is calculated based on the
measured variable and setpoint. A common controller type both in control of
computer systems and in control in general is the PID controller. In the PID the
control variable is formed as combination of three terms: a proportional term,
an integral term, and a derivative term. In the proportional term the control
variable at time k, u(k), is proportional to the control error at time k, i.e.

u(k) = kp(yre f (k) − y(k)) = kpe(k),

where y(k) is the measured variable at time k, yre f (k) is the setpoint (or reference
value) at time k, and kp is the proportional gain. In the integral term the control
variable is proportional to the integral of the control error, i.e.,

u(k) = u(k− 1) + kie(k),

where ki is the integral gain. The integrator is hence implemented through ac-
cumulation. Finally, in the derivative part the control variable is proportional to
the derivative of the control error, i.e.,

u(k) = kd(e(k) − e(k− 1)),

where kd is the derivative gain parameter. Other common controller types are
controllers on input-output form and on state-space form. The order of the con-
troller corresponds to the number of old variables, i.e., the state, that must be
stored in order to calculate the the control variable. For example, a proportional
controller is of zero order and a PI controller is of first order.

The above controller types are linear. In a nonlinear controller the control vari-
able is a nonlinear function of the controller inputs. In an adaptive controller the
controller parameters vary over time based on changing conditions, whereas in a
non-adaptive controller the controller parameters are constant. Hence, the mean-
ing of the word adaptive is quite different in the computing community compared
to the control community. In the computing community an ordinary controller
with constant parameters, i.e., a nonadaptive controller from the control point
of view, is often considered as adaptive, since it generates different control sig-
nals for different external conditions, i.e., it adapts it behaviour to the external
conditions. For example, the name adaptive resource management is used in the
computing community to denote resource management systems where the re-
sources allocation is changed dynamically based on resource requirements and
availability. From a control point of view a more adequate name for this would
be dynamic resource management or controlled resource management.

6

For a general background on computer-based control, see [Åström and Witten-
mark, 1997], on PID control, see [Åström and Hägglund, 1995], on adaptive con-
trol, see [Åström and Wittenmark, 1995], and on control of computing systems,
see [Hellerstein et al., 2004].

Modeling Formalisms When designing a controller two ways can be followed.
In the heuristic approach a controller structure is selected based on experience
and heuristics and the controller parameters are tuned manually. Although this
approach works well in many cases, in particular for low-order controllers with
few parameters, the approach has no theoretical foundation. In the model-based
approach a model of the controlled systems is developed and this model is then
used during the design of the controller. The model describes the dynamic re-
lationship between system inputs and outputs. Due to the amazing properties
of feedback it is often sufficient with a quite coarse-grained model that only
captures the dominating dynamics and still achieve satisfactory performance.

When a computer-based controller is controlling a physical system (often denoted
plant) sampling is employed. The, normally continuous, outputs of the plant are
sampled with a certain sampling interval. This transforms the continuous-time
signals to discrete-time series which are then used by the controller to generate
the control variables, which also are discrete-time series. The digital-analog con-
verter often works as a zero-order hold device generating a piecewise constant
output signal which then is fed to the plant via the actuator. When sampling
continuous-time signals and systems the sampling period must be chosen with
care. A too long sampling interval may result in poor performance or instability.
Aliasing effects may introduce artificial disturbance frequencies into the system
unless proper analog anti-aliasing filtering is used. Measurement noise which
may be unavoidable also generate fundamental limitations on the performance
that the controller can generate.

When controlling a real-time computing system several things are different. The
controlled system is of a discrete nature and all variables are discrete. Sam-
pling and hold operations are not necessary. Measurement noise caused by the
environment is not such a large problem any more.

Although several tings become easier control of computing systems also introduce
new problems. A main problem is the lack of first principles models. When con-
trolling a physical plant the laws of nature decide to a large degree the behaviour
of the plant and can be use to derive dynamical models. Some examples are mass
balances, energy balances, and momentum balances. A computing system, on the
other hand, is a man-made artifact whose internal behaviour is not governed by
any laws of nature, at least not on the macroscopic level. This means that it
is, generally, not possible to derive any first principles models. One exception,
where theoretical models are available, though, is queuing theory [Kleinrock,
1975; Robertazzi, 1994]. Queuing theory models have also been used with some
success in the design of computing-system controllers. A drawback with queuing
models is that they in most cases only hold in the average case.

Computing systems are discrete-event dynamic systems (DEDS), [Cassandras
and Lafortune, 1999]. This and the fact that they are real-time systems makes
it natural to use a timed discrete-event formalism, such as timed automata or
timed Petri nets for modeling these systems. A drawback with this approach is
that it is in many cases too fine-grained and easily leads to state-space explosion.

7

This typically is the case in queuing control systems when the arrival and depar-
ture rates are large. Another issue is the types of problems that these formalisms
typically lend themselves to. Automata-based formalisms are well-suited for ex-
pressing and analyzing safety properties and blocking properties. Safety prop-
erties are concerned with the reachability of certain undesirable states, which
could model undesirable or faulty conditions. Blocking properties are concerned
with issues like deadlock and livelock.

Safety and blocking problems are, however, not the main concerns in perfor-
mance control of real-time computing systems. Instead, it is issues such as sta-
bility, performance, and robustness that are prime concerns. For these types of
problems a time-driven approach is more natural. However, the lack of first prin-
ciples knowledge necessitates a system identification-based approach, in which
a discrete-time model, typically a difference equation, is derived from measured
input and output data. One example of this the fitting of a discrete-time model
to measurement data using a least-square approach. The models derived in this
way are based on periodic sampling. Likewise, the controllers designed from this
type of models are based on periodic sampling. Although periodic controllers are
possible in real-time computing, and are also, to a large extent, the approach that
is mostly used in applications, it is from many respects more natural to invoke
the controller in an event-driven fashion. For example, in a queue length control
problem it makes more sense to calculate a new control action when a request
is queued or dequeued, or every n’th queue/dequeue event, rather than period-
ically. An event-based controller would also be better conditioned for controlling
the transient behaviour of the system, rather than the average behaviour.

A problem with aperiodic or event-based systems and aperiodic control of this
type, rather than the DEDS type, is the lack of theory. This is because the result-
ing system descriptions are both time-varying and non-linear and hence very dif-
ficult to analyze. However, there are several indications from the field of control
of physical systems that event-based control can have substantial advantages.

Event-based control of first-order stochastic systems was studied in [Åström and
Bernhardsson, 1999]. It was shown that an event-based controller for an in-
tegrator plant disturbed by white noise requires, on average, only one fifth of
the sampling rate of an ordinary, periodic controller to achieve the same out-
put variance. Similarly, in [Speranzon and Johansson, 2003] event-triggered vs.
periodic communication between mobile robots in a pursuit-evasion game was
studied. Monte Carlo simulations showed that the event-triggered approach only
required on average half the bandwidth of the periodic case.

1.5 Control of queues

Many aspects of the real-time performance of computing systems can be in-
ferred from the behaviour of resource queues. Some examples of such queues
are ready queues, semaphore queues, communication socket queues, and web
request queues. A queue can be modelled in various way. Using queuing theory
several types of models can be developed. One example is the so called Tipper’s
nonlinear flow model [Tipper and Sundareshan, 1990]. The model consists of a
nonlinear differential equation for the steady-state behavior of the queue length
of a M/M/1 or M/G/1-queue. As shown in [Robertsson et al., 2003] this model
can be used for analysis and control design of different types of controllers. At
a high level, a queue can be seen as an integrator of request flows. This can be
modeled using, e.g., a difference equation and then analyzed with control theory.

8

Flow models of queuing systems approximate the steady-state behaviour of the
queue and, are typically more accurate the higher the load is on server. However,
for small loads when the queue in most cases is empty, or, if the queue has a
limited number of entries, when the queue is nearly full, these types of models
are less appropriate. An alternative, then, is to model the queue as a discrete
event system using, e.g., automata or timed automata.

In a queue there it is the difference between the service rate and the arrival rate
that determines the delay experienced by the requests. Two types of actuators
can be used. An enqueue actuator influence the arrival rate of the queue. An
example of this is an admission control mechanism. Another example would be
to change the inter-arrival period for periodic requests, e.g., by changing the
period of a periodic task creating jobs that added to the ready queue. A dequeue
actuator instead influences the service rate of the requests. Examples of this type
of actuator mechanisms are different forms of quality adaptation. By reducing
the quality provided, the CPU resources needed are reduced and, hence, the
service time for the request.

An open question in queue length control is how to combine queuing models
with control-theoretic methods. A common approach in delay control is to use
nonlinear models from queuing theory for feedforward combined with simple
feedback control of PID type. The aim of the feedforward path is to provide fast
setpoint responses, whereas the role of the feedback controller is to compensate
for disturbances and incorrect modeling assumptions. An example of the latter
is incorrect assumptions about the stochastic nature of arrival and departure
processes. A common assumption is that these are Poisson processes, something
which is far from true for typical web traffic.

2. Current Industrial Practice and Needs

Control of computer system is still in its infancy with respect to industrial devel-
opment and applications. The work on feedback scheduling in real-time operating
systems is still only at a research stage. It is not until basic support for this is
available in commercial kernels and OS that the area has the potential to re-
ally grow. The same situation holds for control of server systems. However, the
real-time computing industry is quite conservative, in most cases still only sup-
porting basic priority-based scheduling. Still, partition-based temporal isolation
between tasks is available in some commercial OS, e.g., Integrity from Green
Hills Software. An important way to get industrial acceptance for this research
is to create standards. One example would be a control extension to POSIX, i.e.,
POSIX/Control.

In 2001 IBM started the autonomic computing initiative (ACI), [Kephart and
Chess, 2003]. The ultimate aim is to create self-managing computer systems to
overcome their rapidly growing complexity and to enable their further growth.
ACI encompasses the following four functional areas:

• Self-Configuration: Automatic configuration of components;

• Self-Healing: Automatic discovery, and correction of faults;

• Self-Optimization: Automatic monitoring and control of resources to ensure
the optimal functioning with respect to the defined requirements;

9

• Self-Protection: Proactive identification and protection from arbitrary at-
tacks.

One of the bases for autonomic computing is closed loop control. The activities
of IBM within control of, e.g., server and data storage systems, are part of the
autonomic initiative. The autonomic computing ideas have also been adopted
by other companies, e.g., Hitachi, [Iijima et al., 2002]. Large end users of web
server technology such as Amazon and Google also have a considerable inter-
est in control-based approaches to performance control. For example, Amazon
apply feedback control in their servers already today and has its own internal
development group within the area. A workshop on the future trends in control
of computer systems that was organized by NSF in May 2005 had industrial
participants from IBM, Microsoft, HP, and Amazon.

Control-based or adaptive resource management is a research area of strong in-
terest in particular to companies within the multimedia market, e.g., Philips.
However, adaptive resource management is a promising technology for all com-
panies that apply COTS technology in applications with resource limitations.
One example of this is industrial automation.

3. Control of Servers

More and more business and services rely on Internet technology and server
technology. Control has a natural position here, both within the communication
network and at the server side. Queue management is important in all servers,
e.g., web servers. Requests to the server are stored in an input queue, the server
or worker thread servicing the requests are stored in the ready queue or in
different waiting queues, e.g., in order to access memory. The architecture is
shown in Fig. 2.

3.1 Control-based queue admission control

Since queuing systems have a stochastic behavior it is difficult to find equations
that are simple enough to use in the analysis. A nonlinear flow model that is
well-suited for a control-based approach is the so called Tipper’s model. It was
first developed by [Agnew, 1976] and was further investigated in [Pitsillides et al.,
1995], [Sharma and Tipper, 1993], [Tipper and Sundareshan, 1990], and [Wang
et al., 1996]. In the references they show that the steady-state behavior of the
queue length, x, of a single server queue is given by

ẋ = λ − µG(x(t)) (1)

where λ is the mean rate of the arrival process and µ is the mean service rate.

For an M/M/1 system we have

G(x(t)) =
x(t)

x(t) + 1
(2)

and for an M/G/1 system the expression becomes

G(x(t)) =
x(t) + 1−

√

x2(t) + 2C2x(t) + 1
1− C2

(3)

10

Dequeuing

Request

Client Requst

Queue

I/O Queue

Outgoing Network I/O

Scheduler

Access

Resource

CPU Ready Queue

Server

threads

Web Server

Output

Figure 2 Web server

where C2 is the squared coefficient of the variance of the service time distribu-
tion. It has been shown in the cited references that the model is correct in terms
of average number of customers and service utilization during steady state.

Here we will use the M/M/1 version of this model to derive a admission controller
based on PI-control. The first step is to introduce a control signal. The output
of the controller, u, is the desired admission rate. This is used by a gate that
rejects those requests that cannot be admitted using percent blocking. Hence, u
is limited between 0 and 1. The model with the control signal is given by

ẋ = λu− µ
x(t)

x(t) + 1
. (4)

The next step is to linearize this equation around a certain operating point
x = x○. If we let y = x − x○ the linearized model becomes

ẏ = λy− µ
1

(x○ + 1)2
y = λu− µay (5)

with a = 1/(x○ + 1)2. We now control this model with a PI-controller given by

u(t) = K (e(t) +
1
TI

∫

e(τ)dτ). (6)

The closed loop system on Laplace transform form given by

Gcl(s) =
λK (s+ 1

TI
)

s(s+ µa) + λK (s+ 1
TI
)

(7)

11

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

Time
Q

u
e

u
e

 l
e

n
g

th

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

Time

A
d

m
is

s
io

n
 c

o
n

tr
o

l

 T
i
 = 10

 T
i
 = 1

 T
i
 = 50

 T
i
 = 50

 T
i
 = 10

 T
i
 = 1

Figure 3 Tipper’s nonlinear flow model controlled using a PI-based admission controller.

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

Time

Q
u

e
u

e
 l
e

n
g

th

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

Time

A
d

m
is

s
io

n
 c

o
n

tr
o

l

Figure 4 An M/M/1 queue controlled using a PI-based admission controller.

By choosing K and TI we have full freedom to position the poles of the closed
loop system, i.e. get the desired speed and damping. Simulations using the PI
controller on the nonlinear queuing model with λ = 2, µ = 1, x○ = 20, K = 0.1
and different values of Ti are shown in Figure 3. Here, the PI-controller has been
extended with an anti-windup mechanism to prevent the integrator state to grow
out of bounds during the initial transient when the control signal is limited to
1, i.e. all requests are admitted. Anti-windup is essential in all controllers with
integral action to achieve good performance during transients.

Finally, in Figure 4 the PI controller is applied to a simulation of a M/M/1 model
with discrete arrivals and departures. Here, the PI-controller is implemented
in discrete-time. As can be seen the controller behaves nicely also on the real
process. In [Robertsson et al., 2003] the stability of the above controller applied
to the nonlinear flow model in the M/G/1 case is analyzed and proved. The same
nonlinear flow model can also be used in an analogous way, if we instead control
the service times of the individual requests, i.e., if we use the service rate µ as
the control signal.

12

Controller Actuator

Server

Measured delay, D

RequestsQueuing
Model

∆µ

Arrival rate, λ

µ f f

∆D

Delay ref, Dr

µ

Figure 5 A feedforward + feedback service rate controller.

3.2 Control-based queue delay control

The delay that a server request experiences can be effected in different ways.
One possibility is to increase the number of server, or worker, threads. Another
possibility is to use quality adaptation or to modify the processor speed using,
e.g., dynamic voltage scaling. In [Sha et al., 2002] it was suggested to combine
feedback control with queuing theory-based feedforward control. The aim was
to keep the average timing delay experienced by the requests close to a desired
value Dr. For an M/M/1 queue with with arrival rate λ and service rate µ, the
long-term average queuing time for the requests is

D =
1

µ − λ
. (8)

The above equation can be solved for the value of µ that gives the desired delay
Dr. This gives an equation for the feedforward term, i.e.,

µ f f =
1
Dr
+ λ . (9)

The feedback controller was a linear P or PI controller. The role of the feedback
is to suppress incorrect modeling assumptions and transient errors around the
operating point. The actuator of the control systems was the number of server
threads reserved for the particular request class. The structure of the controller
is shown in Figure 5.

Queuing-theoretic models describe relations between long term averages only.
In the shorter time horizon, delay and rates may fluctuate. Internet traffic,
for example, is generally very bursty and changes abruptly. A way to handle
this is to sample quite seldom and to use the average value of the measured
variable over the time window since the previous sample as the input to the
controller. The drawback with this approach is that is less suited for handling
transient situations. In [Amirijoo et al., 2005] an approach is proposed that aims
to overcome this problem. A suitably chosen sampling period that captures the
system dynamics is combined with an estimator that produces estimations of the
controlled variable.

Another drawback with queuing theory-based models is that they make certain
restrictive assumptions about the arrival and service processes of the system,
which are often poorly matched by reality. In real server queues, the statistic
nature of the traffic may show considerable variations, and standard Poisson

13

������
��
��
�������
�����
�����

�����
�����
�����
�������
�������
�������
�����������������

����������
����������
������������������������

��������������
��������������

��������������
��������������
��������������

���������������
���������������
���������������
�������������������������������
����������������
����������������
����������������������������������

������������������
������������������

������������������
������������������
������������������

�������������������
�������������������
�������������������
�������������������

������
������
������

������
������
������

A B

CD

E

F

tnow

processing time

queuing time

t

cu
m
u
la
ti
ve
ar
ri
va
ls

an
d
de
pa
rt
u
re
s

Figure 6 Server queuing and processing delay over time.

processes do not capture this behavior. Instead, the Pareto distribution has been
reported to fit measurements of real web traffic well [Crovella and Bestavros,
1997]. This distribution has typically a long tail, and shows self-similar and long
range dependent characteristics.

In [Henriksson et al., 2004] an improved feedforward scheme is presented, that
makes no assumptions about the statistical properties of the traffic. Instead,
it predicts future delays as a function of instantaneous measurements of the
situation in the server queue. This includes current queue length and the arrival
times of the queued requests, which are assumed to be recorded for use in the
prediction.

Figure 6 shows a geometric picture used to derive the predictor equation. The
horizontal axis shows the evolution of time, and the vertical axis shows the
cumulative number of arrivals and departures of requests. Each horizontal two-
coloured block in the figure represents one request and is divided in queuing
time and processing time. The vertical distance in the shaded area at any point
in time (for example the distance CB at time tnow) represents the actual queue
length.

For the situation in the figure it can be noted that the line from the origin to
point B gives the average arrival rate of the ten first requests. Similarly, the
line between the origin and point C represents the average service rate of these
requests up until time tnow. Since the arrival rate exceeds the service rate, it can
be seen that the delays experienced by the requests build up.

The basic idea with the predictor is to choose the service rate that achieves a
desired average delay of the requests in the system taking into account their aver-
age queuing delay up until tnow. Geometrically this means modifying the slope of
the line CE to obtain a desired area of the shaded area CEBF. By continuously
updating the predictor as requests enter and leave the queue, sudden variations
are taken care of more rapidly than using the queuing-theoretic models.

The results presented in [Henriksson et al., 2004] are concerned with absolute
delay control by manipulation of the service rate of incoming requests. Note,
however, that the predictor could easily be used also in a scheme to adjust the

14

arrival rate using admission control. In that case one would change the slope
of the arrival rate instead, under the assumption that the service rate is being
constant.

The feedback controller used in [Henriksson et al., 2004] is a gain-scheduled
PI-controller based on feedback from actual delay measurements. Different con-
troller parameters are used based on the current setpoint and the estimated
arrival time. An observation window, Nobs, is used to accurately estimate the av-
erage values of arrival rates and precessing times of requests. The PI-controller
is invoked in an event-triggered fashion, every n’th event (request departure),
where n < Nobs. Also here, anti-windup was crucial to obtain good performance.

Simulations performed with TrueTime [Cervin et al., 2003] showed that the
instantaneous feedforward controller gave better results than the queuing theory-
based feedforward. The same results were achieved using experiments on an
Apache web server test-bed with the requests generated with the Scalable URL
Reference Generator (SURGE).

An advantage with this approach compared to the approach based on a feedfor-
ward term based on queueing theory is that no assumptions on the statistics
of request arrivals and departures are made. A short-coming of the scheme is
the fact that it is the actual processing times of future requests are not known,
but are estimated based on past measurements. However, every time a request
departs the estimation is redone. This can be compared to the receding horizon
principle employed in model-based predictive control (MPC).

3.3 Relative Queue Delay Control

A FIFO queue can naturally be modeled as an integrator on differential or differ-
ence equation form. The same does unfortunately not hold for a priority queue.
Priority queues are common in real-time systems, e.g., the ready queue and
semaphore queues in a real-time kernel or server request queues in the case
the requests are divided into different service levels or classes represented by
different priorities. The usual way of handling this situation when the number
of priorities is small is to model the priority queue as a number of FIFO queues,
one for each priority level.

A commonly proposed performance optimization criterion for multi-class systems
is the weighted fairness guarantee. Here, the desired ratio of some performance
metrics across different classes is specified rather than absolute values for each
class. This is expressed as

Di+1(k)

Di(k)
=
ci+1

ci
, i = 1, ⋅ ⋅ ⋅ ,N − 1,

where Di(k) is the average performance (e.g., delay) of traffic class i at time k,
and ci is a constant per-class weighting factor representing the user’s relative
performance specifications. Several approaches have been proposed for multi-
class ratio control. For example, in [Lu et al., 2001; Lu et al., 2002] a solution
uses per-class control loops, where error ei(k) of classi at sampling time k is
given by the expression ei(k) =

ci
PN
j=1 c j

− Di(k)
PN
j=1 D j(k)

. The controller computes a

corresponding correction ∆bi to the current resource allocation bi. In [Lu et al.,
2003], the average of D1(k)

c1
, D2(k)

c2
, ..., DN (k)

cN
is taken as the common set point

15

∆ U

∆ U

Ready Queue

Ready Queue

Transaction Handler

FM CC BS

QoS Controller

QoD Manager

Precision
Control

Admission
Control

Monitor

Block

Miss percentages / ATE

MDE

Miss percentages, utilization / ATE

Dispatch

Abort / Restart /
Preempt

MDE

new

Update Transactions

User Transactions

Figure 7 Database QoS control architecture from [Amirijoo et al., 2003c]

letting individual ratios converge to their average. In [Lu et al., 2001], the per-
formance error of consecutive class pairs is defined as ei(k) =

ci+1
ci
− Di+1(k)

Di(k)
. It is

not clear which of these approaches that generally is the best. Also the relation-
ship between this type of ratio control and the type of ratio control employed in
process control is unclear.

3.4 Control of Real-Time Databases

Real-time database servers is another area where control techniques have been
proposed. These types of systems are being increasingly used within several ar-
eas, e.g., manufacturing, telecommunication systems and eCommerce. The de-
sire for vertical integration in, e.g., manufacturing systems, results in databases
containing data of highly different type, ranging from real-time sensor data to
high-level management and enterprise data.

Real-time databases must maintain both the logical consistency of the database
(integrity constraints) and its temporal consistency (meeting the deadline of
the transactions). Due to the difficulties in predicting the workload of real-time
databases, transaction deadline misses and data freshness violations may occur
during transient overloads. To overcome this problem feedback-based quality of
service (QoS) approaches have been proposed.

In [Amirijoo et al., 2003c] a common framework and architecture is proposed
that that unifies earlier proposed algorithms FCS-IC-1, FCS-IC-2, FCS-HEF,
and FCS-HEDF [Amirijoo et al., 2003a; Amirijoo et al., 2003b]. A main memory
database model is used with a single CPU. Data objects are either temporal or
non-temporal. A temporal data object di is is considered temporally inconsistent
or stale if the current time is later than the timestamp of the data plus the
length of the validity interval associated with di. Transactions are classified as
update transactions or user transactions. Update transactions arrive periodically
and update temporal data objects. User transactions arrive aperiodically and may
read temporal data and read/write non-temporal data. Transactions are modeled
as imprecise computations consisting of one mandatory subtransaction and a
number of optional subtransactions. The mandatory subtransaction is necessary

16

for an acceptable result whereas the optional subtransactions are executed in
sequence if there is enough time and resources available. Update transactions
are assumed to only have a single mandatory subtransaction. Quality of service
specifications are used both for data (quality of data (QoD)) and for transactions
(quality of transactions (QoT)). Each performance metric is specified in terms of
its reference value to express the stationary desired value and its overshoot and
settling time to express the transient performance. QoD is expressed in terms
of MDE (Maximum Data Error) which is the maximum value of the relative
error of a temporal data item. The QoT is specified either as the deadline miss
percentage of optional subtransactions or in terms of the average transaction
error (ATE) which measures the percentage of user transactions that are able
to complete all their subtransactions.

The architecture is shown in Fig.7. Admitted transactions are placed in the ready
queue. The transaction handler manages the execution of the transactions. When
the QoT specifications is defined as the deadline miss percentage of optional sub-
transactions the deadline miss percentage of mandatory user subtransactions
and of optional user subtractions are used as the controlled variable, whereas in
the other case the ATE is used as the controller variable. At each sampling in-
stant the controlled variables are monitored and fed to the QoS controller which
calculates a change, ∆U , to the total estimated requested utilization. Based on
∆U the QoD manager changes the total estimated requested utilization by mod-
ifying the QoD (i.e., adjusting MDE). The precision controller then schedules
the update transactions based on MDE. The part of ∆U that cannot be handled
through the QoD adjustments is taken care of by the admission controller. The
transaction handler consists of a freshness manager (FM), a concurrency control
unit (CC), and a basic scheduler (BS).

The different control algorithms use different combination of controllers, e.g.,
FCS-IC-1 uses one utilization controller and two miss percentage controllers
(one for the miss percentage of optional subtransactions and one for the dead-
line miss percentage of mandatory user subtransactions)., whereas FCS-IC-2
uses two miss percentage controllers. Both algorithms uses EDF as the basic
scheduler. The controllers are nonlinear algorithms, which are tailored to the
specific problem at hand rather than being based on, e.g., PID type of ideas. The
FCS-HE and FCS-HEDF control QoT through ATE. They are also designed to
enhance QoS fairness among transactions.

3.5 Challenges and Research Directions

The main objective in control of servers and software systems in general is to
derive a unified theory and framework for performance control of queuing system
that combines elements from control theory and queuing theory and which allows
an integration of both time-driven liquid model formalisms and event-driven
formalisms.

Several major challenges exists:

• Modelling challenges: Which is the right or optimal abstraction level
for this type of control problem is still a question with no clear answer.
Models at different levels and types need to be combined. In some cases
purely static models can be sufficient. For high load situations differential
equation-based liquid flow models can be applied. However, how to handle
medium-load traffic situations and rapid and large traffic changes is still

17

a challenge. It is also sometimes desirable to combine time-based models
with event-based discrete models. Hence, we need better understanding
for which models types that are best suited for a particular applications.
It is also possible that new models types must be derived for this type of
problems.

• Control challenges: The challenges for control are connected to the mod-
elling challenges above. How do we develop a control theory based on this
type of models. In certain cases symbolic values are better suited than nu-
meric values to describe the performance of software systems. For example
specifications and setpoints may be expressed in natural language of using
logical predicates rather than as real numbers. Control based on symbolic
representations is an active research area which so far not has been ap-
plied to this type of problems. In control of server systems where requests
arrive and depart in a event-based fashion, it is natural to implement a
controller in a event-based way, i.e., invoke the controller when a request
departs or at every n’th arrival, also if the controller has been designed in a
time-driven fashion assuming periodic sampling. This combination creates
several challenges.

• Software dynamics: Our current notion of dynamics is based on the be-
haviour of physical systems, e.g., mechanical systems. It is not necessarily
so that this type of dynamics also are suitable for software systems. The
same holds for stability. It is not completely clear what an unstable software
system really means or what type of stability definitions that make sense.
Related to this is the question of how we design or program software sys-
tems in such a way that they are observable and controllable. Which types
of sensor and actuators makes most sense for this type of systems.

In addition to research motivated by the objective and challenges above the fol-
lowing research directions are important:

• Control Patterns: In control in general and in particular in process con-
trol the characteristics of different types of control loops and control prob-
lems are well known and even in some cases formally categorized. Ex-
amples of different types of control loops with different characteristics are
flow control, temperature control, pressure control, and composition control.
Similarly a number of well-defined controller structures exist, e.g., cascade
control, ratio control, min-max selector structures etc. The same type of
classification is necessary also in control of computer systems. One possi-
bility is to make use of ideas from design patterns to create well-defined
patterns of control for server control systems. For instance, in which situa-
tion should a queue control problem be formulated as an admission control
problem and when should it be formulated as a delay control problem.

• Operating System Support: In order to make control of server systems
applicable on a wider industrial scale it is necessary to have built-in support
for this is operating systems and/or middleware. On which level this should
be is not clear. Should there be a POSIX/Control standard with built-in
support for feedback control?

• Control of the Software Engineering Process: The largest bottleneck
in the production of software-intensive systems today is the development

18

process itself, including requirements engineering and testing. Tight feed-
back with frequent incremental tests is a vital part of most agile devel-
opment process, e.g., eXtreme Programming (XP). A large challenge is to
apply control engineering methods in a formal way not only to the perfor-
mance control of the software systems but also to the software engineering
process itself.

• Control of multi-tier systems: Large eCommerce servers are multi-tier
systems consisting of web server front-ends, business logic in the intermedi-
ate layers, and database servers as back-ends. A client request to the overall
server propagates through the different tiers and give rise to sub-requests.
The overall system is a MIMO system where control is needed at several
layers. Control for this type of systems is an important research direction.
Model-based predictive control (MPC) is one interesting possibility.

• Handling of constraints: Constraints on control signals and state vari-
ables are common in queue problems and server problems. A queue can
never contain less than zero entries and memory constraints limit the max-
imum number of entries. In admission control it is only possible to admit
0 − 100% of all the requests. Methods for handling constraints are there-
fore important in this type of control problems. One example is anti-reset
windup techniques to avoid problems with control signal limitation in the
presence of integral action in the controller. Again, the possibility to include
constraints in the control problem formulation makes MPC an interesting
candidate technology.

• Performance metrics: In software systems additional metrics are impor-
tant in addition to performance. These include security, reliability, avail-
ability, efficiency, etc. Is it possible to also include these in the control
problem formulation? This issue strongly relates to error control of soft-
ware which is discussed in Section 8.

4. Control of CPU Resources

Feedback scheduling of CPU resources is an area where fairly much research has
been performed. In feedback scheduling the allocation of CPU resources is based
on a comparison of the actual resource consumption by, e.g., a set of tasks, with
the desired resource consumption (the setpoint value or the reference value). The
difference, or control error, is then used for deciding how the resources should be
allocated to the different users. Feedback scheduling is primarily suited for appli-
cations that with soft or adaptive real-time requirements. This includes different
types of multimedia applications, but also a large class of control applications.
Most control systems can tolerate occasional deadline misses. The control per-
formance or Quality of Control (QoC) is also dependent on to which degree the
timing requirements are fulfilled.

Feedback scheduling pf CPU resources has strong relationships with the queue
control employed in server systems. Controlling the delay experienced by task
jobs in the ready queue is not very much different from controlling the delay
experienced by web requests. This is particularly true if we consider aperiodic
tasks. Hence, many of the results in one area can be directly applied in the other
area.

19

Scheduler

Service Level

(SLC)
Controller

Controller
(AC)

PID controller

Admission

EDF

CPU

Accepted tasks

Submitted tasks

Computed tasks

Miss ratio

Miss ratio
Desired

CPU I

CPU
O

∆

∆

FC−EDF

Figure 8 The EDF-FC scheme (from [Stankovic et al., 1999])

The idea of using feedback in scheduling has to some extent been previously used
in general purpose operating systems, in the form of multi-level feedback queue
scheduling [Kleinrock, 1970; Blevins and Ramamoorthy, 1976; Potier et al., 1976].
However, this has mostly been done in an ad-hoc way.

4.1 Feedback-Based Task Scheduling

A more control-theoretical approach to task scheduling is taken in [Stankovic
et al., 1999; Lu et al., 1999] that present a scheduling algorithm called Feedback
Control EDF (FC-EDF). A PID controller regulates the deadline miss-ratio for
a set of soft real-time tasks with varying execution times, by adjusting their
CPU utilization. It is assumed that tasks can change their CPU consumption by
executing different versions of the same algorithm. An admission controller is
used to accommodate larger changes in the workload. The scheme is shown in
Fig. 8.

In [Lu et al., 2000] the approach is extended. An additional PID controller is
added that instead controls the CPU utilization. The two controllers are combined
using a min-approach. The resulting hybrid controller scheme, named FC-EDF2,
gives good performance both during steady-state and under transient conditions.
The framework is further generalized in [Lu et al., 2002], where the feedback
scheduler is broken down in three parts: the monitor that measures the miss
ratio and/or the utilization, the control algorithm, and the QoS actuator that
contains a QoS optimization algorithm to maximize the system value.

Many scheduling techniques that allow QoS adaptation have been developed.
An interesting mechanism for workload adjustments is given in [Buttazzo et al.,
1998], where an elastic task model for periodic tasks is presented. The relative
sensitivities of tasks to period rescaling are expressed in terms of elasticity co-
efficients. Each task is characterized by five parameters: computation time Ci,
a nominal period Ti0 , a minimum period Timin , a maximum period Timax , and
an elasticity coefficient ei ≥ 0. A task may change its period within its bounds.

20

When this happens the periods of the other tasks are adjusted so that the overall
system is kept schedulable. An analogy with a linear spring is used, where the
utilization of a task is viewed as the length of a spring that has a given rigidity
coefficient (1/ei) and length constraints. The elasticity coefficient is used to de-
note how easy or difficult it is to adjust the period of a given task (compress the
string). A task with ei = 0 can arbitrarily vary its period within its range, but
it cannot be varied by the scheduler during load reconfiguration. The approach
can be used under fixed or dynamic priority scheduling. Schedulability analysis
of the system under EDF scheduling is given. In principal it is possible to modify
the approach so that it also adjusts execution times. In [Gill et al., 1998], a mixed
static/dynamic-priority scheduling approach for avionics systems is presented.
Each task is associated with a criticality parameter. In overload situations, tasks
at the highest criticality level are allowed to execute before other tasks. Similar
ideas are used within the broader area of value-based scheduling, e.g., [Burns
et al., 2000].

The End-to-end Utilization CONtrol (EUCON) algorithm, [Lu et al., 2004], em-
ploys a distributed performance feedback loop that dynamically enforces desired
CPU utilization bounds on multiple processors in distributed real-time embedded
systems. EUCON is based on a model predictive control approach that models
the utilization control problem on a distributed platform as a multi-variable
constrained optimization problem. A multi-input-multi-output model predictive
controller is designed and analyzed based on a difference equation model of dis-
tributed real-time systems.

4.2 Feedback-based Bandwidth and Reservation Allocation

Another area where control-based ideas have been employed is for dynamic allo-
cation of bandwidth in aperiodic task servers and for dynamic allocation of re-
source reservations in reservation-based scheduling. Since aperiodic task servers
of the constant bandwidth server (CBS) type, [Abeni and Buttazzo, 1998], are
commonly used to implement reservation-based scheduling in systems with dy-
namic priorities (EDF), see [Abeni and Buttazzo, 2004], here the presentation
will be focused on feedback-based control of resource reservations. The main ap-
plication area for this techniques is multimedia applications, e.g., streamed audio
and video.

The idea behind resource reservation is to explicitly control the computing re-
sources assigned to a given activity (job, task, or application). Each activity
receives a fraction (reservation) Ui of the processor capacity and will behave
as if it was executing alone on slower, virtual processor. If an activity attempts
to exceed its allocated reservation it will be delayed, preserving the resource
for other activities. Through resource reservation the experienced QoS of a task
will depend of how large reservation that has been reserved for the service. The
main benefit of resource reservation compared to using task priorities to express
relative importance is that it provides temporal isolation between tasks.

The motivation for feedback control in combination with resource reservation is
the need to cope with incorrect reservations, to be able to reclaim unused re-
sources and distribute them to more demanding tasks, and to be able to adjust
to dynamic changes in resource requirements. Hence, a monitoring mechanism
is needed to measure the actual demands and a feedback mechanism is needed
to perform the reservation adaptation. Two types of feedback are possible. On
a global, system-wide level a QoS controller adjusts the size of the individual

21

Local
Controller Task

Local
Controller Task

Local
Controller Task

Global QoS
Controller

Reservations

Max. reserv.

Figure 9 Hierarchical reservation control

reservations given to the different activities based on the measured performance
and resource utilization. On a task or activity level local feedback is employed
to adjust the resource requirements of the individual tasks based on the experi-
enced QoS levels and the amount of resources available to the task, as decided
by the global QoS controller. The local resource requirements can be done by
rate adaptation, executing the task at different service levels using, e.g., impre-
cise computations or multiple version, and job skipping. The resulting feedback
scheduling structure is hierarchical or cascaded and shown in Fig. 9.

A large amount of feedback-based or adaptive global QoS management systems
have been proposed. Some examples are [Chu and Nahrstedt, 1999; Aparah,
1998; Nakajima, 1998]. These systems does typically not consider the local appli-
cation behaviour. In [Abeni et al., 2002], the problem of dynamically assigning
bandwidths to a set of constant bandwidth servers is analyzed. A PI-based con-
troller structure is suggested. In [Palopoli et al., 2003] the authors propose an
hybrid control approach. The servers are modeled as discrete switched systems,
and a feedback scheduler that adjusts the server bandwidths is derived using
hybrid control theory. Finally, in [Cucinotta et al., 2004] they propose combining
feedback based on a stochastic dead-beat controller with a feedforward moving
average predictor. In [Abeni and Buttazzo, 2001] an adaptive reservation strategy
is proposed for controlling the CPU bandwidth reserved to a task based on QoS
requirements. A two-level feedback control is used to combine local application
level mechanisms with global system-level strategies.

4.3 Challenges and Research Directions

Many of the challenges and research directions in control of CPU resources are
similar to the ones for control of server systems. This includes in particular the
modeling challenges. Some the more specific research directions are the follow-
ing:

• Multiprocessor systems: Multiprocessor systems will become common in
the near future also for certain embedded applications. So far very little of
the control-based methods to CPU resource management have been applied
to multiprocessor systems.

• Power-aware CPU scheduling: Adjusting the CPU speed using, e.g., Dy-
namic Voltage Scaling (DVS) techniques, is an alternative way of adjusting
the service requirements of a task. Minimizing the power consumption is
also an important goal in itself for many networked embedded systems,
e.g., sensor networks. The joint optimization problem of minimizing energy

22

while still meeting real-time constraints already today receives a consider-
able attention from the research community. However, it is an important
area also for the future.

• End-to-end resource management: Resource management in distributed
systems where an activity spans multiple nodes is an important issue. How
do we adapt the resources individually in the different nodes in order to
obtain a good global behaviour, e.g., acceptable end-to-end response times?

• Control-theoretic adaptive resource management: Although adaptive
resource management is a well-established area it is still not common that
control-theoretic methods are being applied in the analysis and derivation
of the adaptation mechanisms. Here there is room for more research.

• Hierarchical resource allocation schemes: Hierarchical resource allo-
cation schemes based on dynamic reservations in combination with local
feedback control loops for the individual tasks is an interesting and promis-
ing approach where more research is needed. How do we enforce the notion
of virtual CPUs that execute within a real CPU with, possible, different
scheduling policies, and where the share that each virtual CPU receives of
the total CPU resources is dynamically adjusted based on resource require-
ments and availability?

• Efficient feedback scheduling mechanisms: One of the goals of feed-
back scheduling is to better make use of scarce resources. If this should be
doable it requires that the feedback scheduling mechanism itself does not
consume too much resources. Hence, efficient feedback scheduling mech-
anisms are of great importance. Methods that, e.g., require the on-line
solution of an optimization problem at each invocation have very limited
applicability.

5. Feedback Scheduling of Control Systems

Feedback-based resource scheduling is of particular interest for control systems.
Here we assume that a control system involving multiple control loops is im-
plemented as a multi-tasking system with each controller being realized as a
separate periodic task. The main resource of concern in these types of problems
is the CPU-time. The objective for the feedback scheduler is to dynamically ad-
just the CPU utilization of the controller tasks so that the task set remains
schedulable and the stability and performance requirements of the individual
controllers are met.

The structure is shown in Fig. 10. The controller are denoted Ci(z) and the
physical plants are denoted Pi(s). Control is used at two levels: to control a
number of physical plants and to control the resource allocation to the controllers.

In this approach the control performance can be viewed as a QoS parameter. The
feedback scheduling problem is often stated as a optimization problem where
the objective is to maximize the global control performance according to some
criterion, subject to resource and schedulability constraints.

There are several reasons why feedback scheduling can be applied to control
systems. One reason is the uncertainty associated with the WCET estimation.

23

C1(z) P1(s)

FBS

x1 xn

h1 hn

Usp

Figure 10 Feedback scheduling of control loops.

This is something that control applications share with most real-time comput-
ing applications. However, since control applications are reactive in nature it is
more expressed for these. An overly pessimistic WCET estimation may cause the
designer to chose a more powerful processor, which then will be under-utilized.
Alternatively, the designer will reduce the task utilization by increasing the
task periods, which will lead to poor control performance. In some control appli-
cations, e.g., hybrid and switching controllers and controllers employing on-line
optimization, the computational workload can change dramatically over time as
different control algorithms are switched in and out when the external environ-
ment changes, and from job to job due to the varying number of iterations that
are needed in the optimization.

An optimization-based approach to feedback scheduling requires performance
metrics that are parameterized with scheduling-related parameters, e.g., task
periods. For general applications this is normally not available. However, for
control application such performance metrics often exists. For example, using
tools such as Jitterbug, [Lincoln and Cervin, 2002], it is possible to evaluate
variance-type performance indices for linear control systems as a function of
sampling periods.

5.1 Actuators & Sensors

The actuators of a feedback scheduler are the means with which the scheduler
can modify the CPU utilization. For a controller task the task period is a natural
actuator. Changing the task period dynamically may be more or less difficult
depending on how the controller is implemented. For a controller implemented
on input-output form with an internal state consisting of multiple lagged values
of the measured value and the control signal it is generally more difficult to
change the sampling period than for a controller that is realized on state-space
form. In certain cases it may be necessary to use a Kalman filter to estimate the
values of the state at the new sampling instants.

Depending on the performance requirements one can either adjust the controller
parameters when the task period is changed, i.e., use gain scheduling with re-
spect to the sampling interval, or use the same controller parameters indepen-
dently on the task period. Another issue is the scheduling problem associated

24

with mode changes. Although the task set may be schedulable both before and
after the mode change, it is not necessarily schedulable during the mode change.

An alternative actuator is the execution time demands of the controller. This can
be realized using a multiple-versions approach or using an anytime approach.
In a multiple version approach one may use multiple control algorithms with
different execution time demands or one may occasionally skip the execution
of parts of the control algorithm. The anytime approach can be applied to con-
trollers in which the computations in the control algorithm or the sensors can be
expressed in an iterative way that may be terminated after an arbitrary number
of iterations, and where the control performance increases with the number of
iterations. One example where this is applicable is model-predictive controllers
(MPC) in which an quadratic optimization problem is solved in every sample.
In the case of an overload, the optimization may be terminated early and still
produce acceptable results. In [Henriksson et al., 2004], value-based dynamic
scheduling of multiple MPC controllers is considered using the optimization cost
function as the value function.

Another example is vision sensors where the image processing can be organized
to give improved object position estimates the more computation time that is
available [Henriksson and Olsson, 2004]. However, in general, changing the task
periods is more natural for control algorithms than changing the execution time
demands.

The sensor in this type of feedback scheduler is a measurement of the actual CPU
utilization. This assumes that the processor and RTOS are equipped with the
means to perform such measurements. In order to avoid control actions caused
by spurious measurement outliers (“noise”) a low-pass filter may be included in
the sensor. The low-pass filter can also be used to calculate an average of the
utilization over a certain time period, e.g., the sampling period of the feedback
scheduler.

5.2 Optimal Stationary Feedback Scheduling

The dynamics involved in feedback scheduling are often of low order or even
purely static. The reason for this is obvious. If a task is given more or less CPU
time the total utilization will change as soon as the next job of the task is started.
Often the dynamics in the feedback loop comes from the filtering in the sensor. A
consequence of this is that it is often enough with very simple control strategies
in the feedback scheduler.

In [Cervin, 2003] it was shown that a simple linear proportional rescaling of
the nominal task periods in order to meet the utilization set-point is optimal
with respect to the stationary control performance under certain assumptions.
It holds if the control cost functions, Ji(hi), where hi is the sampling period, are
quadratic, i.e.,

Ji(hi) = α i + β ih
2
i

or if they are linear,
Ji(hi) = α i + γ ihi,

and if the objective of the feedback scheduler is to minimize the sum of the
control cost functions or a weighted sum of the control cost functions. Linear or
quadratic cost functions are quite good approximations of true cost functions in
many cases.

25

The advantage of this approach is a simple and fast calculation that easily can be
performed on-line. The linear rescaling also has the advantage that it preserves
rate-monotonic ordering of the tasks and, thus, avoids any changes in task prior-
ities in the case that rate-monotonic fixed priority scheduling is used. It is also
possible to add more constraints to the optimization problem and still retain a
simple solution. For example, one can use the nominal task periods as minimum
task periods and use these whenever the utilization is less than the utilization
set-point. However, the linear rescaling property does not hold in all cases. If the
task set includes both tasks with quadratic cost functions and tasks with linear
cost functions, the solution is not as simple, although it is still computable.

It is also possible to assign maximum sampling periods to certain tasks. This
leads however to an iterative computation (LP-problem) in order to find the
total rescaling of all the tasks. This is equivalent to the calculations needed in
the elastic task model, [Buttazzo et al., 1998], when the tasks (springs) have
constraints on how much they may be compressed. However, it should be noted
that the the cost functions above only concern the task periods and not the input-
output latencies.

5.3 Optimal Feedback Scheduling

A drawback with the previous approach is that it does not consider the actual
control performance. The optimization only concerns the stationary performance.
Disturbances acting on the control loops will not be taken into account in the
optimization. In [Henriksson and Cervin, 2005] an alternative approach is pro-
posed. Instead of basing the optimization on stationary cost functions it is based
on finite-horizon cost functions related to the sampling period, the current state
of the control loop, and the period at which the feedback scheduler is invoked.
The optimization horizon corresponds to the period of the feedback scheduler.
Hence, rather than having cost functions that only are a function of the task
periods, i.e.,

Ji(hi) = α i + β ih
k
i ,

the cost functions now can be expressed as

Ji(hi, xi,T f bs) = α i(xi,T f bs) + β i(xi,T f bs)h
k
i .

The intuition behind this formulation is that a process in a transient phase, e.g.,
during a setpoint change, or exposed to an external disturbance may require
more resources, e.g., a smaller sampling interval, than a process in stationarity.

The approach is formulated for linear quadratic (LQ) controllers, although the
same approach also works for an arbitrary (i.e., non-optimal) state-feedback con-
trol law. The optimization objective is to minimize the combined performance of
all the control loops,

min
h1... hn

n
∑

i=1

Ji(hi, xi,T f bs)

subject to the utilization bound given by the schedulability condition

n
∑

i=1

Ci

hi
≤ Usp

This problem is a convex problem if the functions Ji(1/ fi, xi,T f bs) are convex
in fi. If all the cost functions have the same shape then an explicit solution

26

exists. If that is not the case analytical solutions exists only for special cases, e.g.,
integrator processes with minimum variance design cost functions. In other cases
the cost functions are approximated as linear functions at the current sampling
period and the cost function derivatives for each controller are computed off-line
and stored in look-up tables.

An important design parameter is the feedback scheduler period. The shorter the
period, the more responsive the system will be to external disturbances. However,
the execution of the feedback scheduler induces overhead and consumes CPU
time from the control tasks.

5.4 Feedback Scheduling Structures

Different structures are possible in feedback scheduling. A pure feedback scheme
is reactive in the sense that the feedback scheduler will only remove a utilization
error once it is already present. By combining the feedback with feedforward
a pro-active scheme is obtained. The feedforward path could be use to allow
controller task to inform the scheduler that they are changing their desired
amount of resources, e.g., changing their execution times or nominal sampling
periods, and to give the scheduler the possibility to compensate for this before
any overload has occurred. The feedforward path can be also be used for dynamic
task admission. A block diagram of the feedback-feedforward structure is shown
in Fig. 1.

5.5 Value-Based Feedback Scheduling

Most of the feedback scheduling approaches proposed for control applications are
indirect. By adjusting the task parameters, e.g., period and execution time, one
makes sure that the task set is schedulable and has certain timing properties
(latencies and jitter).These timing properties will then indirectly determine the
performance of the application. The problem with this is the relationship between
the timing parameters and the cost/performance. Often the relationship only
holds in stationarity and in a mean-value sense.

An interesting but still largely unexplored approach is to instead use value-based
or direct feedback scheduling. Here, the idea is to base the decision of which task
to execute on an instantaneous cost function. This cost function should grow the
longer the control loop executes in open loop and decrease when a control action
is issued. The instantaneous cost could then be used as a dynamic task priority
similar to the deadline in EDF. The resulting system would be a special case of
an aperiodic event-triggered sampled system.

5.6 Research Directions

The challenges and resource directions for feedback scheduling of control tasks
include all the challenges and research direction of control of CPU resources.
Additionally, the following items are important:

• Temporal robustness indices: Indices are needed that allow us to decide
how the control performance depends on the computing resources, e.g., on
the sampling period. Although work has and is being done in this area
more work is necessary

• Resource negotiation frameworks: Frameworks must be developed that
allow dynamic negotiation about resources and control performance be-
tween the control applications and the QoS manager. These frameworks

27

must be able to express the control-specific aspects of the problem in addi-
tion to the computing and scheduling-specific aspects. It must also be able
to express the performance requirements of the different control loops in a
flexible way.

• Formal performance guarantees: Formal performance guarantees on
control loops is something that today require that we have a fairly static
implementation of the control system with respect to resource utilization,
e.g., a statically scheduled time-triggered control loop has a very predictable
performance. It is an open question whether it is possible to combine the
flexibility implied by feedback scheduling with formal guarantees and, in
that case, what type of formal guarantees.

6. Control Middleware

Applying control techniques to a computer software system requires certain
generic services that are common to most applications. Often these have to do
with the sensor and actuator interface of the control loop. For example, in queue
delay control it is necessary to be able to measure arrival and departure times of
requests and calculate average delays. Rather than implementing the support for
this in every application (waste of development resources) or provide the support
in the operating system (often not possible) an alternative is to use middleware
technology.

A middleware is a software abstraction layer that mediates the interactions be-
tween a component or application and its environment or between two appli-
cations by providing services that the applications may call, i.e., the middle-
ware provides the glue between the application and the interface. Middleware
technology is commonly used in distributed system to provide communication
services. Some examples are Java-RMI, Microsoft’s COM, and CORBA. Middle-
ware frameworks are also available for real-time and embedded systems, e.g.,
RT-CORBA and Embedded CORBA. There are also a large amount of research
middleware framework developed for pervasive networked embedded system ap-
plications, e.g., mobile systems and sensor systems. Some examples of these are
GAIA [Romn et al., 2002], WSAMI [Issarny et al., 2005], and AURA [Garlan et al.,
2002].

A few middleware solution have been developed explicitly for control purposes.
ControlWare [Zhang et al., 2002] is a middleware QoS-control architecture origi-
nally designed to help programmers apply control theory to control software per-
formance. It allows the user to express QoS specifications off-line, maps these
specifications into appropriate feedback loops. tunes the controllers to guarantee
various performance specifications, and connects the loops to the right perfor-
mance sensors and actuators in the application code such that the desired QoS is
achieved [Abdelzaher et al., 2003]. The aim of ControlWare is to isolate the soft-
ware application programmer from control theoretic issues while still utilizing
the theory. At the same time, it isolates the control engineer from the software
task of interfacing the controller to the controlled software system and designing
software performance sensors and actuators.

The basic abstraction provided in ControlWare is a component. A component has
several input ports, output ports and some parameters. Components are con-
nected via their ports, and communicate with each other via an infrastructure

28

Approximate

System Model

Controller

Performance

Actuator

(Resource

Allocator)

Sensor

Software

System

Actual

Performance

Setpoint

Resource Actual

Performance
Allocation

Figure 11 Absolute Guarantee Control Pattern (from [Zhang et al., 2002])

named Softbus. Properly connected, several components (various number of sen-
sors, actuators and controllers) form a control loop. Two main types of software
sensors and actuators are supported: passive and active. A passive sensor or ac-
tuator is simply a function or software component that returns sensor data or
accepts a command to perform an actuation when called by a controller. An ac-
tive sensor, on the other hand, is a thread that usually is awakened periodically
by the operating system to perform sensing or actuation.

The topology of a control loop is described by a template. Essentially, a tem-
plate describes a general solution to a type of QoS guarantee. In other words,
it maps a type of QoS guarantee problem into a single control problem. Several
QoS performance control templates are supported. For example, absolute conver-
gence guarantees, relative differentiated service guarantees, prioritization, and
optimization guarantees.

The absolute convergence guarantee ensures that some performance metric R
converges asymptotically to a desired value Rdesired and that the error is bounded
at all times. The guarantee is translated into the control loop shown in Fig.
11. In [Zhang et al., 2002] the corresponding control loop patterns for relative
differentiated service, prioritization, and utility maximization are presented.

A related middleware example is IBM’s Autotune Agents, see [Diao et al., 2003]
where an agent-based solution is proposed which automates the tuning of the
IT environment for e-commerce applications and also automatically designs an
appropriate tuning mechanism for the target system. The paper illustrates this
in the context of managing a web server, where the problem of controlling CPU
and memory utilization of an Apache web server is studied using the application-
level tuning parameters MaxClients and KeepAlive which are exposed by the
server. Using the AutoTune agent framework agents are constructed to auto-
mate a control-theoretic methodology that involves model building, controller
design, and run-time feedback control. The designed feedback control system is
able to handle the dynamic and interrelated dependencies between the tuning
parameters and the performance metrics with guaranteed stability.

The Agilos (Agile QoS) architecture, [Li and Nahrstedt, 1999], is a middleware
control architecture designed to provide middleware services to assist application-
aware adaptations, namely, adaptation mechanisms that are tuned to the perfor-
mance goals and specific functionalities of an application and which attempt to

29

adapt themselves or the applications for the purpose of providing the best possi-
ble QoS under available resource conditions, and of achieving the most graceful
quality degradation in case of scarce resources. Agilos is designed as a three-
tier architecture: In the first and lowest tier, application-neutral adaptors and
observers maintain tight relationships with individual types of resources, and
react to changes in resource availability. In the second tier, application-specific
configurators are responsible for making decisions on when and what adaptive
mechanisms are to be invoked in a client-server application, based on on-the-
fly user preferences and application-specific rules. Furthermore, though each
configurator corresponds to one application, configurators share the same fuzzy
inference engine for rule processing. Finally, QualProbes provide QoS probing
and profiling services so that application-specific adaptation rules can be either
derived by measurements or specified explicitly by the user. In the third tier,
a gateway and negotiators are introduced to control adaptation behavior in an
application with multiple clients and servers, so that dynamic reconfigurations
of client-server mappings are possible and tuned to the best interests of the
application. The adaptation algorithm in Agilos is based on PID control.

FCS/nORB is a feedback control real-time scheduling service on nORB, a small-
footprint Object Request Broker (ORB) middleware for networked embedded sys-
tems [Lu et al., 2003]. FCS/nORB provides middleware support for real-time
performance portability across platforms and robust performance guarantees in
face of workload/platform variations. Three types of control loops are supported:
control of CPU utilization, control of deadline miss ratio, and combined control
of utilization and miss ratio.

The same group is also developing CAMRIT, a control-based adaptive middleware
framework for real-time image transmission in distributed real-time embedded
systems [Wang et al., 2004]. CAMRIT features a distributed feedback control loop
that meets image transmission deadlines by dynamically adjusting the quality of
image tiles. Control theory is applied to design a control algorithm with analytic
assurance of system stability and performance, despite uncertainties in network
bandwidth.

There are also other types of middleware associated with control. However, the
majority of these are intended for real-time control, i.e., control of some physi-
cal system using some type of networked embedded control system. One system
worth mentioning, however, is Etherware [Baliga et al., 2004]. Etherware is a
messaging middleware for networked control loops. Of key importance is the con-
cept of service continuity, i.e., the ability to maintain a communication channel
during node restarts and upgrades and to recover from failure situations.

6.1 Research Directions

The most important research item for control middleware is to develop these
systems from research prototypes to something that may be used more widely.
Other research directions of importance are the following:

• Middleware functionality: It is still an open question whether the mid-
dleware only should be passive, i.e., provide sensing and actuation services
that the application can use to itself implement the feedback control, or if
it should be active, i.e., the middleware should be responsible for the actual
control loop. Both of these approaches have advantages and disadvantages.

30

7. Control of Communication Networks

Traffic control of communication networks involves issues such as congestion
control, routing and admission control. Here we survey the main areas relevant
for this roadmap. Several other surveys are also available, e.g., see [Liu et al.,
2003a; Kwon and Kim, 2000]. Of particular interest is congestion control and how
to control heterogeneous networks consisting of a blend of wired and wireless
links.

7.1 Congestion Control

The success of the Internet as a worldwide information carrying network can
be attributed to the feedback mechanisms that controls the data transfer in the
transport layer in the Internet protocol stack. These algorithms has historically
managed to distribute network resources among contending users in a suffi-
ciently fair and resource-efficient way. An explanation to this is that the control
is allocated at the end-systems (users) and hence obey a decentralized structure.
This design allows widely heterogeneous demands ranging from a few packets
(“mice”) to long bandwidth greedy streams (“elephants”), but still avoids the com-
plexity of a centralized allocation mechanism. The Transmission Control Protocol
(TCP) that was presented in the late 1980s [Jacobson, 1988] and its numerous
refinements, see e.g. [Stevens, 1997; Mathis et al., 1996; Hoe, 1996; Floyd and
Henderson, 1999; Jacobson et al., 1992; Allman et al., 1999], is the dominating
end user protocol used today carrying approximately 90% of the total traffic.

Furthermore, together with the source control, buffers have played a key-role dur-
ing the evolution of the Internet. Since end-users base control action on limited,
corrupt and delayed information; buffers are used at links inside the network to
smooth out errors in the control, hence making the system more robust. Auxil-
iary control from the network interior has also been introduced by “intelligent”
links that marks or drop packets depending on the traffic load. This is referred
to as Active Queue Management (AQM) in the literature, see e.g. [Hollot et al.,
2001a] and the references therein for examples.

Historically congestion control algorithms have been designed by computer sci-
entist outside the framework of control theory. The tremendous complexity of
the Internet makes it extremely difficult to model and analyze, and it has been
questioned if mathematical theory can offer any major improvements in this
area. However, recently significant progress in the theoretical understanding of
network congestion control has been made following seminal work by Kelly and
coworkers [Kelly et al., 1998; Kelly, 1999] (see also the surveys [Kelly, 2003; Low
and Srikant, 2004] and the book [Srikant, 2004]). The key is to work at the
correct level of aggregation which is fluid flow models with validity at longer
time-scales than the round-trip time (RTT). By explicitly model the congestion
measure signal fed back to sources, posing the network flow control as an opti-
mization problem where the objective is to maximize the total source utility, it is
shown that the rate control problem can be solved in a completely decentralized
manner [Kelly et al., 1998; Low and Lapsley, 1999] under the constraint that
each source has a (concave) utility function of its rate. The aggregated conges-
tion measure along the path, which can be packet loss probability or queuing
delay depending on the protocol variant, corresponds to the Lagrange multipli-
ers in the optimization (or price in an economic interpretation) and has to be
distributed to, or estimated, at the end-users. The pricing algorithm is carried
out by AQM at the individual links.

31

This optimization perspective of the rate control problem has been taken in a
number of contributions. It also allow for dynamical laws and the developed
algorithms can be classified as (1) primal, when the control at the source is
dynamic but the link uses a static law; (2) dual, when the link uses a dynamic
law but the source control is static; and (3) primal–dual, when dynamic controls
are used both at the source and the links, see [Low et al., 2002a; Liu et al.,
2003b; Low and Srikant, 2003], for nice overviews.

By appropriate choice of utility function, even protocols not based on optimiza-
tion, such as TCP Reno, can be interpreted as distributed algorithms trying to
maximize the total utility [Low and Srikant, 2003; Low, 2000]. Delay based pro-
tocols such as TCP Vegas [Brakmo and Peterson, 1995] or TCP FAST [Jin et al.,
2004] can be classified as a primal–dual algorithm with the queuing delay as a
dynamic link price which is estimated at the source.

To ensure that the system will reach and maintain a favorable equilibrium, it
is important to assess the dynamical properties, such as stability and conver-
gence, of the schemes. Instability means that the protocol is unable to sustain
the equilibrium, and manifests itself as severe oscillations in aggregate traffic
quantities, such as queue lengths.

Stability of the basic schemes, which allow dynamic rate control and static mark-
ing, or dynamic queue management schemes and static source rate control, was
established already in [Kelly et al., 1998; Low and Lapsley, 1999] but under very
idealized settings. When both source rate and link price updates are dynamic,
stability has been proved using time-scale separation in [Kunniyur and Srikant,
2002], and for the single bottleneck case in [Altman et al., 1998; Hollot and Chait,
2001]. A unifying framework for establishing global stability of congestion control
laws based on passivity has been proposed in [Wen and Arcak, 2004].

The above results have all ignored the effect of network delay, and assumed that
price information is available instantaneously at the source, that the sources
take immediate action, and that the new rates affect the link prices instanta-
neously. However, stability of the protocols in equilibrium depends critically on
the feedback delay. Naturally, recent research focus on source- and link control
laws that guarantees stability for more general network configurations and de-
lay distributions. Conditions for local stability of a single-user, single bottleneck
scenario were derived in [Johari and Tan, 2001], and it was conjectured that the
same condition guarantees stability also in the case of heterogeneous round-trip
delays. A weaker version of the conjecture was proved in [Massoulie, 2000] and
the original conjecture was proved in [Vinnivombe, 2000; Vinnicombe, 2002].
Local stability of Reno/RED with feedback delays has been studied in [Hollot
et al., 2001; Low et al., 2002b]. The stability analysis reveals that these protocols
tend to become unstable when the delay increases and, more surprisingly, when
the capacity increases. This has spurred an intensive research in protocols that
maintains local stability also for networks with high bandwidth-delay product,
see e.g., [Paganini et al., 2001; Floyd, 2003; Kelly, 2003]. In [Paganini et al.,
2001] the authors study decentralized control that scales with network capacity
and proves local stability for heterogeneous delays. This class of controllers are
further examined in [Lestas and Vinniecombe, 2004] and it is stated that the
stability result is valid even for the less ideal case of non-symmetric protocols.

Local stability results have mainly been achieved using frequency methods, a
major strength is that they take delay into account. However, classical Lyapunov

32

techniques, used for analyzing global stability properties, do not have this fea-
ture. To be able to achieve global results but still not ignoring delay one have
to rely on alternative methods such as e.g. the Lyapunov-Krasovskii and the
Lyapunov-Razumikhin methods [Gu et al., 2003; Niculescu, 2001], which are
closely related extensions of Lyapunov’s classical method. A further discussion
on different methods for network analysis can be found in [Papachristodoulou
et al., 2004]. Moreover, in [Deb and Srikant, 2003] the Lyapunov-Razumikhin
theorem is used to achieve conditions for global stability for a single link ac-
cessed by a single source in the presence of delay. The same technique is used
in [Ying et al., 2004] to generalize the result to a general topology and multi-
ple sources with heterogeneous delays. Lyapunov-Krasovskii functionals is used
in [Mazenc and Niculescu, 2003] to study global stability of a class of nonlin-
ear dynamical systems with delay presented by Kelly [Kelly, 2001] and used to
model congestion control mechanisms for the Internet. An alternative approach
is taken in [Peet and Lall, 2004] where the authors analyzes the global stability
of TCP/AQM setting over a single link with homogeneous delays. The stability
proof is here based on the theory of integral-quadratic constraints.

7.2 Control and optimization of wireless networks

Future wireless networks are expected to support a wide variety of applications,
ranging from high data rate services for flexible ad-hoc networks to ultra-low
power operation for longevity of wireless sensor networks. Whereas the link ca-
pacities in wireline networks are fixed, the capacities of wireless links can be
adjusted by the allocation of communications resources, such as transmit powers,
bandwidths, or time-slot fractions, to different links. Adjusting the resource allo-
cation changes the link capacities, influences the optimal routing of data flows,
and alters the total utility of the network. Hence, the optimal network operation
can only be achieved by coordinating the operation across the networking stack.
This is often referred to as cross-layer optimization. Emerging microprocessor
technologies are enabling wireless units to become equipped with the processing
power needed to implement adaptive transmission techniques and to make in-
telligent decisions about packet routing and resource management – cross-layer
coordination is becoming technologically feasible.

A fundamental question is whether it is worthwhile to introduce advanced re-
source management and coordination schemes. One way of attacking this prob-
lem is to try to determine the information-theoretic capacity, which includes
optimization over all possible modulation and coding schemes and involves many
of the unsolved problems of network information theory [Ephremides and Ha-
jek, 1998; Cover and Thomas, 1991]. Recent contributions in this direction can
be found in, e.g., [Gupta and Kumar, 2000; Grossglauser and Tse, 2001]. An
alternative approach is to focus on network layer capacity, where coding and
modulation schemes are fixed, and one optimizes over some critical parameters,
such as power allocations and scheduling decisions. An initial study of the po-
tential performance benefits of cross-layer coordination in a number of small
ad-hoc networks was carried out in [Toumpis and Goldsmith, 2002], and models
and methods for cross-layer optimization of multi-hop wireless networks have
been proposed in, e.g., [Xiao et al., 2002; Julian et al., 2002; Johansson et al.,
2003; Värbrand et al., 2003; Cruz and Santhanam, 2003; Johansson and Xiao,
2004; Radunovic and Boudec, 2004]. These methods allow us to evaluate the
cross-layer optimized performance of networks of significant sizes under orthog-
onal channel models [Xiao et al., 2002], CDMA with and without [Julian et al.,

33

2002; Johansson et al., 2003; Loretti et al., 2005] interference cancellation, S-
TDMA [Värbrand et al., 2003; Johansson and Xiao, 2004] and ultra-wide band
channels [Radunovic and Boudec, 2004]. While these references focus on perfor-
mance and fairness objectives, power-optimal network operation is considered in
[Cruz and Santhanam, 2003; Madan et al., 2005].

The centralized optimization schemes described above are useful for gaining in-
sight in the performance benefits of coordinating the different layers of the pro-
tocol stack, but are quite far from the distributed routing and resource manage-
ment protocols needed in practice. Centralized solutions tend to incur large com-
munication overhead costs, introduce a single-point-of failure, and scale poorly
with the number of network nodes. Moreover, the optimal policies may be com-
putationally demanding to execute. One way to synthesize a distributed protocol
from a network model is to use mathematical decomposition techniques, simi-
larly to the congestion control analysis and design methods for the fixed Internet
[Low and Lapsley, 1999]. For example, by applying dual decomposition to the
central optimization problem for wireless systems, one will often find that it
is possible to subdivide the problem into smaller problems; typically a network
problem (the same as the source and router subproblems for wireline networks)
and an additional resource allocation subproblem. Whether or not the resource
allocation subproblem can be solved in a distributed way depends on the channel
models and the structure of the resource constraints; if the resource constraints
are local to nodes and the channels are orthogonal, the problem is easily solved.
With global constraints on the resources or with significant interference between
channels, the problem gets harder, and a combination of these constraints are not
likely to have a distributed solution. However, with only one of these constraints
the problem can be solved in a distributed way. A distributed solution to the joint
congestion control and power allocation problem for CDMA systems, under the
assumption that all links can sustain high SINRs and that power constraints
are local to each node, is presented in [Chiang, 2005]. A distributed solution
to the joint congestion control and spectrum assignment problem for orthogonal
channels but a network-wide resource constraint is derived in [Johansson and
Johansson, 2005]. A particular feature of this algorithm is that nodes only ne-
gotiate and exchange resources with its neighbors. Distributed solutions to joint
congestion control and link scheduling under simplified interference models are
presented in [Chen et al., 2005; Yi and Shakkottai, 2004].

All approaches described so far, centralized as well as distributed, have con-
sidered fluid models where traffic and link capacities are averaged. Cross-layer
optimization under statistical traffic models have been considered in, e.g., [Neely
et al., 2003; Lin and Shroff, 2004]

7.3 Interactions between TCP and wireless links

TCP was designed with wired links in mind, and performance problems are
common when running TCP over wireless links. To address the problems, there
are three main approaches.

Making the link friendlier to TCP In wired networks, almost all losses are
due to congestion. The most fundamental problem with wireless links is that
there are also a fairly high rate of losses due to noise and interference on the
radio channel. One approach is to repair these losses at the link layer, using
Forward Error Correction (FEC) or Automatic Repeat Request (ARQ), which
retransmits damaged radio frames.

34

Forward error correction adds redundant data to the radio frames or sequences of
radio frames, and the radio link receiver can use this redundancy to reconstruct
the data even if part of the transmitted data is damaged. The cost is that some of
the bandwidth is “wasted” on redundant data. The optimal amount of redundancy
is a non-trivial trade-off [Chahed et al., 2003; Barakat and Altman, 2002].

Automatic Repeat Request is a common mechanism in existing systems such
as UMTS, and comes in several different flavours. This is a link-layer feedback
mechanism where the radio link receiver detects damaged frames and asks the
sender to retransmit them [Bai et al., 2000; Canton and Chahed, 2001; Bertsekas
and Gallager, 1992; Chockalingam et al., 1999].

It is important to not focus only on the loss rate of the radio link, also the delay
distribution can have an impact on TCP. The ARQ mechanism reduces the loss
rate to almost zero, but instead adds random delays [Möller and Johansson,
2003; Möller et al., 2004; Klein et al., 2004].

Improvements to the TCP algorithm A different approach is to address the
TCP algorithms, and try to make them more robust with respect to the trans-
mission properties (primarily loss and delay distribution) of an heterogeneous
network with mixed wired and wireless links. This is a huge area of current re-
search [Mascolo et al., 2001; Sarolahti et al., 2003; Cen et al., 2003; Samaraweera,
1999; Fu and Liew, 2003; Ludwig and Katz, 2000].

The challenge for end-to-end transport control is to estimate the important fea-
tures of the network path, such as the roundtrip time, available bandwidth,
bottleneck queue size, and to distinguish between events such as congestion loss,
radio link losses, and temporary outages when packets are not lost but buffered
somewhere in the network.

The goal of this line of research is not only to make TCP work well over a
particular radio link technology, but to make TCP robust enough to work over a
wide range of current and future radio links.

Split-connection The third approach puts a proxy in the network, close to
the base station. The straight forward way to arrange this is to split the con-
nection in two; one TCP connection between server and proxy (assumed to use
the wired Internet), and another TCP connection between the proxy and the
terminal [Bakre and Badrinath, 1995; Yavatkar and Bhagawat, 1994].

A split-connection setup violates the traditional end-to-end principle of the In-
ternet. It can be attractive from a deployment perspective, because one can use
a specialized transport protocol between the proxy and the terminal, tailored to
the radio network at hand, without any changes to the TCP implementation in
the server.

A more subtle form of proxying is to use a Protocol Helper. Such a proxy does
not play the part of a TCP end point. Instead it monitors the packets that are
part of each TCP stream, and it can add, manipulate, resort, duplicate, drop or
delay packets, both data packets and acknowledgements.

The protocol helper hides radio related errors by locally resending lost down-
stream packets, or manipulating the upstream ack packets to avoid that the
sending TCP interpret radio link errors as congestion losses.

35

7.4 Challenges and Research Directions

Control-based approaches in communication networks is a very large research
field, in particular if wireless systems, e.g., sensor networks, are included. A
necessarily non-exhaustive list of important research directions includes the fol-
lowing items:

• Cross-layer design: In order to be able to control the network performance
it is necessary to measure and modify the network parameters. The current
ISO-OSI stack layer is not ideally supported for cross layer designs where
information from the lower layers must be made available at the application
layer and where the application layer must be able to modify the behaviour
of the lower layer protocols dynamically. Hence, new protocols and protocol
models are needed that simplify this.

• Theory and engineering principles for designing dynamic re-
source allocation protocols Theories and engineering principles for dy-
namically allocating resources in wireless ad hoc networks to ensure qual-
ity of service are needed for a wide range of applications. One interesting
suggestion is to have a formal, possibly optimization-based, theory for the
design of network protocols based on a model of the underlying network and
a specification of the application requirements. The theory should consider
the effects and interactions of link layer, network layer, transport layer
and the application, and ensure robust behavior in the presence of system
variations and information delays.

• Network State Estimation: The control of network performance often
requires access to network state variables, such as available bandwidth,
round-trip times, and packet loss. These variables are typically not imme-
diately available, but must be estimated from other quantities. The design
of reliable and efficient estimators for network state is thus instrumental
for many applications, and requires the development of simple and flexi-
ble models of network dynamics together with the associated advances in
estimation theory.

• Network interfaces: Cross-layer feedback and designs pose requirements
on the interface between the application layer and the physical layers.
Which are the network sensors that can be used by an application to ob-
tain information about the status of the network and its resources, i.e., link
quality, power levels, local link utilization/delay, and retransmission/loss
rates. Which are the corresponding network actuators that the applica-
tion may use to effect the network performance? The actuators can, e.g.,
be divided into load management actuators (routing, load balancing, radio
range control, packets drops etc), resource management actuators (node
mobility, processor duty cycle etc), and, in particular in the case of sensor
networks, data manipulation actuators (level of data aggregation, amount
of in network processing, etc).

• Interoperability of heterogeneous networks: In the future our net-
works will be more and more heterogeneous, consisting of a mixture of
different wired and wireless communication protocols. Is it possible to de-
rive a theory for, e.g., network performance control, that is applicable also
in this case?

36

8. Error Control of Software

The complexity and size of the software systems that our society depends on
are continuously growing. The use of systems of systems and components de-
veloped independently and analyzed and tested in isolation, easily give rise to
brittle and error-prone systems. Some of the sources of difficulties are unexpected
interactions, inadequate development infrastructures, and system instabilities.
Unexpected interactions are caused by incompatible abstractions, incorrect or
implicit assumptions in the system interfaces, and incompatible real-time, fault-
tolerance, and security protocols. Inadequate development infrastructures are
reflected in the lack of domain-specific reference architectures, tools, and de-
sign patterns, with known and parameterized real-time, robustness, and secu-
rity properties. Finally, system instabilities result when faults and failures in one
component cascade along complex and unexpected dependency graphs resulting
in catastrophic system-wide failures.

The solution to the problem of unexpected interactions is to provide techniques
and tools that support making the semantic assumptions of each component ex-
plicit and machine checkable. The development infrastructure problem needs to
be approached by the development of formally specified and validated coherent
real-time, robustness, security, and networking protocols together with domain
models, reference architectures, and tools with parameterized real time, robust-
ness, and security properties. The solution to system instability is to focus on
the development on stable software architectures. This is the core idea behind
error control of software.

The development of completely defect-free complex software systems is extremely
difficult, if not impossible. At the same time several large existing software sys-
tems are remarkably stable and reliable in the presence of thousands or maybe
millions of residual software bugs, e.g., the telecom networks or the WWW sys-
tem of systems. Hence, rather than focusing the development effort on trying to
eliminate all bugs at design time it is important to develop methods that allow
us to develop safe and stable software systems that still can utilize COTS-quality
software components with a considerable amount of residual bugs. Hence, the
focus should be on detection and recovery from software errors at run-time, in
addition to elimination of software errors at design-time. With this approach
the chances of developing robust software systems within finite budgets will be
greatly increased, also for safety-critical applications.

The idea behind error control of software is to use ideas similar to the ideas used
in feedback control in order to detect malfunctioning software components and,
in that case fall back on, a well-tested core software component that is able to
provide the basic application service with guarantees on performance and safety.
Hence, the basic idea assumes that a certain amount of defect-free components
are available, that can be used to implement the fall-back safety core service.
The second key idea is to always design your system to have a simple and well
formed dependency tree, with a minimal number of dependency relations among
components and a maximal number of USE relations. This is necessary in order
to be able to identify the core services and keep them small. The background to
several of the key ideas of the area is given in [Sha, 2001].

One of the first examples of software error control is the Simplex architecture de-
veloped by Lui Sha et al at SEI/CMU, see, e.g., [Sha, 1998; Seto et al., 1998]. The

37

objective of Simplex was to support safe on-line updates of safety-critical real-
time control systems. The basic building blocks of Simplex were replacement
units, software components with a given communication interface. The replace-
ment units were organized into application units, which also included communi-
cation and management functions. An executing control system would typically
consist of one safety unit (controller) and one baseline unit (controller). The
safety unit guarantees a basic service quality level and contains operation moni-
toring code for monitoring the state of the application. The baseline controller is
the controller that is executing normally. When the baseline controller should be
updated with a new version, the execution of the new, possibly error-prone, base-
line version is monitored by the safety unit. The monitoring includes both safety,
i.e., is the system under control in a safe state, and performance, i.e., does the
system perform no worse than with the old version of the baseline unit. If this is
not the case the safety unit is switched in and, eventually, the old version of the
baseline unit. The safety unit scheme provides protection against semantic appli-
cation faults. This is combined with protection against timing faults through the
use of watchdog timers, and protection against execution-related faults through
enforcing that each replacement unit uses separated and protected data, storage,
and computation resources.

A stable software system is a system that has bounded response to errors and
which can maintain key properties in spite of errors in non-critical components.
The domain of convergence in software error control is the states that satisfy
the precondition of the recovery units. Stability control is the mechanism used
to ensure that the preconditions will hold. A stable system allows for safe testing
of new components under realistic operating conditions, i.e., on-line upgrades.

The reason why error control of software is treated in the context of this roadmap
is our strong belief that real-time computing has a lot to learn and gain from
control theory. However, in software error control our view of what control is has
to be broadened substantially. Control is normally concerned with the temporal
behaviour of systems. The ideas behind software error control are, however, not
restricted to the temporal behaviour. The same approach can in principle also
be used for applications that only contain functional requirements. In this case
software error control has strong relationships to techniques that are commonly
associated with fault tolerance, e.g., hardware and software redundancy and di-
versity through replication and N-version programming. However, the principles
behind software error control have so far mainly been applied to reactive ap-
plications, i.e., avionics control systems. The major challenges is to develop a
new paradigm for software stability control based on an integration of concepts
from fault-tolerant computing and control that is applicable to a wide range of
application types.

8.1 Research Directions

• Application identification: So far the software error control ideas have
primarily been applied to reactive feedback control applications. It is neces-
sary to investigate what other types of applications the approach is suitable
for.

• Software robustness/stability as a control problem: The notion of
feedback control needs to be broadened in order to really match the require-
ments of software error control. New formalisms and models for software
error control are needed.

38

• Application development: The number of documented examples where
software error control has been applied is very small. In order to increase
the understanding for the subject and to develop the necessary methods
and theory, more documented applications must be developed.

• Relationships to ordinary fault-tolerance:The relationships to the
methods within the traditional fault tolerance area must be clarified.

9. References

Abdelzaher, T., J. Stankovic, C. Lu, R. Zhang, and Y. Lu (2003): “Feedback
performance control in sofware services.” IEEE Control Systems Magazine,
23:3.

Abeni, L. and G. Buttazzo (1998): “Integrating multimedia applications in hard
real-time systems.” In Proc. 19th IEEE Real-Time Systems Symposium.
Madrid, Spain.

Abeni, L. and G. Buttazzo (2001): “Hierarchical QoS management for time
sensitive applications.” In Proc. IEEE Real-Time Technology and Applications
Symposium. Taipei, Taiwan.

Abeni, L. and G. Buttazzo (2004): “Resource reservation in dynamic real-time
systems.” Real-Time Systems, 27, pp. 123–167.

Abeni, L., L. Palopoli, G. Lipari, and J. Walpole (2002): “Analysis of a reservation-
based feedback scheduler.” In Proc. 23rd IEEE Real-Time Systems Sympo-
sium.

Agnew, C. E. (1976): “Dynamic modeling and control of congestion-prone
systems.” Operations Research, 24:3, pp. 400–419.

Allman, M., v. Paxson, and W. Stevens (1999): “TCP congestion control.” RFC
2581.

Altman, E., T. Basar, and R. Srikant (1998): “Robust rate control for ABR
sources.” In IEEE Infocom, pp. 166–173. San Francisco, CA.

Amirijoo, M., J. Hansson, S. Gunnarsson, and S. Son (2005): “Enhancing feed-
back control scheduling performance by the on-line quantification and sup-
pression of measurement disturbance.” In Proceedings of the 11th IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS’05).

Amirijoo, M., J. Hansson, and S. Son (2003a): “Algorithms for managing QoS
for real-time data services using imprecise computation.” In Proceedings of
the 9th International Conference on Real-Time and Embedded Computing
Systems and Applications (RTCSA).

Amirijoo, M., J. Hansson, and S. Son (2003b): “Error-driven QoS management
in imprecise real-time databases.” In Proceedings of the 15th EuroMicro
Conference on Real-Time Systems (ECRTS).

Amirijoo, M., J. Hansson, and S. Son (2003c): “Specification and management of
QoS in imprecise real-time databases.” In Proceedings of the Seventh Inter-
national Database Engineering and Applications Symposium (IDEAS’03).

39

Amirijoo, M., J. Hansson, and S. H. Son (2003d): “Specification and manage-
ment of qos in imprecise real-time databases.” In Proceedings International
Database Engineering and Applications Symposium, pp. 192–201.

Aparah, D. (1998): “Adaptive resource management in a multimedia operating
system.” In Proceedings of the 8th International Workshop on Network and
Operating System Support for Digital Audio and Video.

Åström, K. J. and B. Bernhardsson (1999): “Comparison of periodic and event
based sampling for first-order stochastic systems.” In Preprints 14th World
Congress of IFAC, vol. J, pp. 301–306.

Åström, K. J. and T. Hägglund (1995): PID Controllers: Theory, Design, and
Tuning. Instrument Society of America, Research Triangle Park, North
Carolina.

Åström, K. J. and B. Wittenmark (1995): Adaptive Control. Addison-Wesley,
Reading, Massachusetts.

Åström, K. J. and B. Wittenmark (1997): Computer-Controlled Systems. Prentice
Hall.

Bai, Y., P. Zhu, A. Rudrapatna, and A. T. Ogielski (2000): “Performance of
TCP/IP over IS-2000 based CDMA radio links.” In Proc. of IEEE 52th
VTC’2000-Fall. IEEE.

Bakre, A. and B. R. Badrinath (1995): “I-TCP: Indirect TCP for mobile hosts.”
15th International Conference on Distributed Computing Systems.

Baliga, G., S. Graham, L. Sha, and P. R. Kumar (2004): “Service continuity
in networked control using Etherware.” In Proceedings of Middleware 2004,
Toronto, Canada.

Barakat, C. and E. Altman (2002): “Bandwidth tradeoff between TCP and link-
level FEC.” Comput. Networks, 39:5, pp. 133–150.

Bertsekas, D. and R. Gallager (1992): Data Networks, second edition edition.
Prentice Hall.

Blevins, P. and C. Ramamoorthy (1976): “Aspects of a dynamically adaptive
operating system.” IEEE Transactions on Computers, 25:7, pp. 713–725.

Bouyssounouse, B. and J. Sifakis, Eds. (2005): Embedded Systems Design: The
ARTIST Roadmap for Reasearch and Development. Number 3436 in LNCS.
Springer-Verlag.

Brakmo, L. S. and L. L. Peterson (1995): “TCP Vegas: end-to-end congestion
avoidance on a global Internet.” IEEE Journal on Selected Areas in Commu-
nications, 13:8, pp. 1465–1480.

Burns, A., D. Prasad, A. Bondavalli, F. D. Giandomenico, K. Ramamritham,
J. Stankovic, and L. Stringini (2000): “The meaning and role of value in
scheduling flexible real-time systems.” Journal of Systems Architecture, 46,
pp. 305–325.

Buttazzo, G., G. Lipari, and L. Abeni (1998): “Elastic task model for adaptive rate
control.” In Proc. 19th IEEE Real-Time Systems Symposium, pp. 286–295.

Canton, A. and T. Chahed (2001): “End-to-end reliability in UMTS: TCP over
ARQ.” In Globecom 2001.

40

Cassandras, C. and S. Lafortune (1999): Introduction to Discrete Event Systems.
Kluwer.

Cen, S., P. C. Cosman, and G. M. Voelker (2003): “End-to-end differentiation
of congestion and wireless losses.” IEEE/ACM Trans. on Networking, 11:5,
pp. 703–717.

Cervin, A., J. Eker, B. Bernhardsson, and K.-E. Årzén (2002): “Feedback-
feedforward scheduling of control tasks.” Real-Time Systems, 23:1.

Cervin, A., D. Henriksson, B. Lincoln, J. Eker, and K.-E. Årzén (2003): “How
does control timing affect performance?” IEEE Control Systems Magazine,
23:3, pp. 16–30.

Chahed, T., A.-F. Canton, and S.-E. Elayoubi (2003): “End-to-end TCP perfor-
mance in W-CDMA/UMTS.” In ICC’2003. Anchorage.

Chen, L., S. H. Low, and J. C. Doyle (2005): “Joint congestion and media access
control design for ad hoc wireless networks.” In Proceedings of the IEEE
Infocom. Miami, FL. To Appear.

Chiang, M. (2005): “Balancing transport and physical layers in wireless multihop
networks: Jointly optimal congestion control and power control.” IEEE
Journal on selected areas in communications, 23:1, pp. 104–116.

Chockalingam, A., A. Zorzi, and V. Tralli (1999): “Wireless TCP performance
with link layer FEC/ARQ.” In Proceedings of IEEE ICC’99, pp. 1212–1216.

Christin, N., J. Liebeherr, and T. Abdelzaher (2002): “A quantitative assured
forwarding service.” In Proceedings of IEEE INFOCOM.

Chu, H. and K. Nahrstedt (1999): “CPU service classes for multimedia applica-
tions.” In Proceedings of the IEEE International Conference on Multimedia
Computing and Systems.

Cover, T. M. and J. A. Thomas (1991): Elements of Information Theory. John
Wiley & Sons, Inc., New York.

Crovella, M. E. and A. Bestavros (1997): “Self-similarity in world wide web traffic:
Evidence and possible causes.” ACM/IEEE Transaction on Networking, 5:6.

Cruz, R. L. and A. V. Santhanam (2003): “Optimal routing, link scheduling and
power control in multi-hop wireless networks.” In Proceedings of the IEEE
Infocom. San Francisco, CA.

Cucinotta, T., L. Palopoli, and L. Marzario (2004): “Stochastic feedback-based
control of QoS in soft real-time systems.” In Proceedings of the Conference
on Decision and Control (CDC).

Deb, S. and R. Srikant (2003): “Global stability of congestion controllers for the
internet.” IEEE Transactions on Automatic Control, 48:6, pp. 1055–1060.

Diao, Y., N. Gandhi, J. Hellerstein, S. Parekh, and D. Tilbury (2002): “Mimo
control of an apache web server: Modeling and controller design.” In American
Control Conference.

Diao, Y., J. L. Hellerstein, S. Parekh, and J. P. Bigus (2003): “Managing
web server performance with autotune agents.” IBM Systems Journal, 42:1,
pp. 136–149.

41

ElBatt, T. and A. Ephremides (2002): “Joint scheduling and power control for
wireless ad-hoc networks.” In Proceedings of the IEEE Infocom. New York,
NY.

Ephremides, A. and B. Hajek (1998): “Information theory and communication
networks: an unconsummated union.” IEEE Transactions on Information
Theory, 44:6, pp. 2416–2434.

Floyd, S. (2003): “Highspeed TCP for large congestion windows.” Internet Draft
<draft-floyd-tcp-highspeed-02.txt>.

Floyd, S. and T. Henderson (1999): “The NewReno modification to TCP’s fast
recovery algorithm.” RFC 2582.

Fu, C. P. and S. C. Liew (2003): “TCP veno: TCP enhancement for transmission
over wireless access networks.” IEEE Journal on Selected Areas in Commu-
nications, 21:2, pp. 216–228.

Gandhi, N., S. Parekh, J. Hellerstein, and D. Tilbury (2001): “Feedback control
of a lotus notes server: Modeling and control design.” In American Control
Conference.

Garlan, D., D. P. Siewiorek, A. Smailagic, and P. Steenkiste (2002): “Aura:
Toward distraction-free pervasive computing.” IEEE Pervasive Computing.

Gill, C. D., D. L. Levine, and D. C. Schmidt (1998): “Dynamic scheduling
strategies for avionics mission computing.” In Proc. 17th IEEE/AIAA Digital
Avionics Systems Conference.

Grossglauser, M. and D. Tse (2001): “Mobility increases the capacity of ad-hoc
wireless networks.” In Proceedings of the IEEE Infocom. Anchorage, AL.

Gu, K., V. L. Kharitonov, and J. Chen (2003): Stability of Time-Delay Systems.
Birkhäuser.

Gupta, P. and P. R. Kumar (2000): “The capacity of wireless networks.” IEEE
Transactions on Information Theory, 46, March, pp. 388–404.

Hajek, B. and G. Sasaki (1988): “Link scheduling in polynomial time.” IEEE
Transactions on Information Theory, 34:5, pp. 910–917.

Hellerstein, J. L., Y. Diao, S. Parekh, and D. M. Tilbury (2004): Feedback Control
of Computing Systems. John Wiley.

Henriksson, D. and A. Cervin (2005): “Optimal on-line sampling period assign-
ment for real-time control tasks based on plant state information.” In Pro-
ceedings of the Joint IEEE CDC–ECC Conference, Sevilla, Spain, December
2005.

Henriksson, D., Y. Lu, and T. Abdelzaher (2004): “Improved prediction for web
server delay control.” In submission to Euromicro Conference on Real-Time
Systems. Catania, Sicily, Italy.

Henriksson, D. and T. Olsson (2004): “Maximizing the use of computational
resources in multi-camera feedback control.” In Proceedings of the 10th
IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS04). Toronto, Canada.

Hoe, J. C. (1996): “Improving the start-up behavior of a congestion control
scheme for TCP.” In Conference proceedings on Applications, technologies,
architectures, and protocols for computer communications, pp. 270–280.

42

Hollot, C., V. Misra, D. Towsley, and W.-B. Gong (2001): “A control-theoretic
analysis of RED.” In IEEE Infocom, vol. 3, pp. 1510–1519. Anchorage, Alaska.

Hollot, C. V. and Y. Chait (2001): “Nonlinear stability analysis for a class of
TCP/AQM networks.” In IEEE CDC, pp. 2309–2314. Orlando, FL.

Hollot, C. V., V. Misra, D. F. Towsley, and W. Gong (2001a): “A control theoretic
analysis of RED.” In Proceedings of IEEE INFOCOM, pp. 1510–1519.

Hollot, C. V., V. Misra, D. F. Towsley, and W. Gong (2001b): “On designing
improved controllers for AQM routers supporting TCP flows.” In Proceedings
of IEEE INFOCOM, pp. 1726–1734.

Iijima, T., K. Ouchi, Y. Maruyama, and S. Nemoto (2002): “Hitachi’s latest
supervisory and control system for advanced combined cycle power plants.”
Hitachi Review.

Issarny, V., D. Sacchetti, F. Tartanoglu, Ferdaand Saihan, R. Chibout, N. Levy,
and A. Talamona (2005): “Developing ambient intelligence systems: A solu-
tion based on web services.” Journal of Automated Software Engineering,
12.

Jacobson, V. (1988): “Congestion avoidance and control.” SIGCOMM Comput.
Commun. Rev., 18:4, pp. 314–329.

Jacobson, V., R. Braden, and D. Borman (1992): “TCP extensions tor high
performance.” RFC 1323.

Jin, C., D. X. Wei, and S. H. Low (2004): “FAST TCP: motivation, architecture,
algorithms, performance.” In Proceedings of IEEE Infocom. IEEE.

Johansson, B. and M. Johansson (2005): “Primal and dual approaches to
distributed cross-layer optimization.” In 16th IFAC World Congress on
Automatic Control. To Appear.

Johansson, M. and L. Xiao (2004): “Scheduling, routing and power allocation for
fairness in wireless networks.” In Proceedings of IEEE VTC Spring. Milan,
Italy.

Johansson, M., L. Xiao, and S. Boyd (2003): “Simultaneous routing and power
allocation in CDMA wireless networks.” In Proceedings of the IEEE Interna-
tional Conference on Communications, pp. 51–55. Anchorage, Alaska.

Johari, R. and D. Tan (2001): “End-to-end congestion control for the Internet:
delays and instability.” IEEE/ACM Transactions on Networking, 6:9, pp. 818–
832.

Julian, D., M. Chiang, D. O’Neill, and S. Boyd (2002): “QoS and fairness
constrained convex optimization of resource allocation for wireless cellular
and ad hoc networks.” In Proceedings of the IEEE Infocom, pp. 1–10. New
York, NY.

Kelly (2001): “Mathematical modelling of the internet.” In Bjorn Engquist
and Wilfried Schmid (Eds.), Mathematics Unlimited – 2001 and Beyond@
Springer.

Kelly, F. (2003): “Fairness and stability of end-to-end congestion control.”
European Journal of Control, 9, pp. 159–176.

43

Kelly, F., A. Maulloo, and D. Tan (1998): “Rate control in communication
networks: shadow prices, proportional fairness and stability.” Journal of the
Operational Research Society, 49, pp. 237–252.

Kelly, F. P. (1999): “Mathematical modelling of the Internet.” In Fourth Interna-
tional Congress on Industrial and Applied Mathematics, Edinburgh, Scotland.

Kelly, T. (2003): “Scalable TCP: improving performance in highspeed wide
area networks.” In First International Workshop of Protocols for Fast Long-
Distance Networks.

Kephart, J. O. and D. M. Chess (2003): “The vision of autonomic computing.”
IEEE Computer, January.

Keshav, S. (1993): “A control-theoretic approach to flow control.” In Proceedings
of the conference on Communications architecture & protocols, pp. 3–15.

Klein, T. E., K. K. Leung, R. Parkinson, and L. G. Samuel (2004): “Avoiding TCP
timeouts in wireless networks by delay injection.” In IEEE Globecom 2004.

Kleinrock, L. (1970): “A continuum of time-sharing scheduling algorithms.” In
AFIPS Conference Proceedings, Spring Joint Computer Conference, pp. 453–
458.

Kleinrock, L. (1975): Theory, Volume 1, Queuing Systems. Wiley-Interscience.

Kunniyur, S. and R. Srikant (2002): “A time-scale decomposition approach to
adaptive ECN marking.” IEEE Transactions on Automatic Control, 47:6,
pp. 884–894.

Kwon, W. H. and H. S. Kim (2000): “A survey of control-theoretic approaches in
wired and wireless communication networks.” In Proceedings of the Korea-
Japan Joint Workshop.

Lestas, I. and G. Vinniecombe (2004): “Are optimization based Internetcongestion
control models fragile with respect to TCP strucutre and symmetry?” In IEEE
Proceedings of Conference on Decission and Control, pp. 2372–2377. IEEE.

Li, B. and K. Nahrstedt (1999): “A control-based middleware framework for qual-
ity of service adaptations.” IEEE Journal on Selected Areas in Communica-
tions, September.

Lin, X. and N. B. Shroff (2004): “Joint rate control and scheduling in multihop
wireless networks.” In Proceedings of the IEEE CDC. Paradise Island,
Bahamas.

Lincoln, B. and A. Cervin (2002): “Jitterbug: A tool for analysis of real-time
control performance.” In Proceedings of the 41st IEEE Conference on Decision
and Control. Las Vegas, NV.

Liu, S., T. Basar, and R. Srikant (2003a): “Controlling the Internet: A survey
and some new results.” In Proceedings of the IEEE Conference on Decision
and Control.

Liu, S., T. Basar, and R. Srikant (2003b): “Controlling the Internet: A survey and
some new results.” In Proc. 42nd IEEE Conference on Decision and Control,
pp. 3048–3057. Maui, Hawaii USA.

Loretti, S., P. Soldati, and M. Johansson (2005): “Cross-layer optimization of
multi-hop radio networks with multi-user detectors.” In Proceedings of the
IEEE WCNC. New Orleans, LA.

44

Low, S. H. (2000): “A duality model of TCP and queue management algorithms.”
In Proceedings of ITC Specialist Seminar on IP Traffic Measurement,
Modeling and Management.

Low, S. H. and D. E. Lapsley (1999): “Optimization flow control – I: Basic
algorithm and convergence.” IEEE/ACM Transactions on Networking, 7:6,
pp. 861–874.

Low, S. H., F. Paganini, and J. C. Doyle (2002a): “Internet congestion control.”
Control Systems Magazine, 22:1, pp. 28–43.

Low, S. H., F. Paganini, J. Wang, S. A. Adlakha, and J. C. Doyle (2002b):
“Dyanmics of TCP/RED and a scalable control.” In IEEE Infocom, vol. 1,
pp. 239–248. New York, NY.

Low, S. H. and R. Srikant (2003): “A mathematical framework for designing
a low-loss, low-delay Internet.” Networks and Spatial Economics, January-
February. special issue on "Crossovers between Transportation Planning and
Tellecommunications".

Low, S. H. and R. Srikant (2004): “A mathematical framework for designing a
low-loss, low-delay Internet.” Networks and Spatical Economics, 4, pp. 75–101.

Lu, C., T. Abdelzaher, J. Stankovic, and S. Son (2001): “A feedback control
approach for guaranteeing relative delays in web servers.” In IEEE Real-Time
Technology and Applications Symposium. TaiPei, Taiwan.

Lu, C., G. A. Alvarez, and J. Wilkes (2002): “Aqueduct: Online data migration
with performance guarantees.” In USENIX Conference on File and Storage
Technologies.

Lu, C., J. Stankovic, T. Abdelzaher, G. Tao, S. Son, and M. Marley (2000):
“Performance specifications and metrics for adaptive real-time systems.” In
Proc. 21st IEEE Real-Time Systems Symposium, pp. 13–23.

Lu, C., J. Stankovic, G. Tao, and S. H. Son (1999): “Design and evaluation of a
feedback control EDF scheduling algorithm.” In Proc. 20th IEEE Real-Time
Systems Symposium, pp. 56–67.

Lu, C., J. A. Stankovic, S. H. Son, and G. Tao (2002): “Feedback control real-
time scheduling: framework, modeling and algorithms.” Real-Time Systems,
23:1/2, pp. 85–126.

Lu, C., X. Wang, and C. Gill (2003): “Feedback control real-time scheduling in
orb middleware.” In Proceedings of the 9th IEEE Real-Time and Embedded
Technology and Applications Symposium.

Lu, C., X. Wang, and X. Koutsoukos (2004): “End-to-end utilization control in dis-
tributed real-time systems.” In Proceedings of the International Conference
on Distributed Computing Systems (ICDCS), Tokyo, Japan.

Lu, Y., T. Abdelzaher, C. Lu, L. Sha, and X. Liu (2003): “Feedback control
with queueing-theoretic prediction for relative delay.” In IEEE Real-Time and
Embedded Technology and Applications Symposium.

Lu, Y., T. Abdelzaher, C. Lu, and G. Tao (2002): “An adaptive control framework
and its application to differentiated caching services.” In International
Conference on Quality of Service. Miami Beach, FL.

45

Lu, Y., A. Sexana, and T. Abdelzaher (2001): “Differentiated caching services;
a control-thoeretical approach.” In Proceedings of the 2001 International
Conference on Distributed Computing Systems, pp. 615–622.

Ludwig, R. and R. H. Katz (2000): “The Eifel algorithm: Making TCP robust
against spurious retransmissions.” ACM Computer Communication Review,
30:1.

Madan, R., S. Cui, S. Lall, and A. Goldsmith (2005): “Cross-layer design for
lifetime maximization in interference-limited wireless sensor networks.” In
Proceedings of the IEEE Infocom. Miami, FL. To Appear.

Mascolo, S., C. Casetti, M. Gerla, M. Y. Sanadidi, and R. Wang (2001): “TCP
Westwood: bandwidth estimation for enhanced transport over wireless links.”
In MobiCom. Rome, Italy.

Massoulie, L. (2000): “Stability of distributed congestion control with hetero-
geneous feedback delays.” Technical Report. Microsoft Research, Cambridge,
UK.

Mathis, M., J. Mahdavi, S. Floyd, and A. Romanow (1996): “TCP selective
acknowledgements options.” RFC 2018.

Mazenc, F. and S. I. Niculescu (2003): “Remarks on the stability of a class of
TCP-like congestion control models.” In IEEE Proceedings of Conference on
Decission and Control, pp. 5591–5594. IEEE.

Möller, N. and K. H. Johansson (2003): “Influence of power control and link-level
retransmissions on wireless TCP.” In Quality of Future Internet Services, vol.
2811 of Lecture Notes in Computer Science. Springer-Verlag.

Möller, N., K. H. Johansson, and H. Hjalmarsson (2004): “Making retransmission
delays in wireless links friendlier to TCP.” In Proc. 43rd IEEE Conference on
Decision and Control. IEEE.

Nahrstedt, K. (1995): “End-to-end qos guarantees in networked multimedia
system.” ACM Computing Surveys, 27:4.

Nakajima, T. (1998): “Resource reservation for adaptive QoS mapping in real-
time Mach.” In Proceedings of Sixth International Workshop on Parallel and
Distributed Real-Time Systems (WPDRTS).

Neely, M. J., E. Modiano, and C. E. Rohrs (2003): “Dynamic power allocation
and routing for time varying wireless networks.” In Proceedings of the IEEE
Infocom. San Francisco, CA.

Niculescu, S. I. (2001): Delay Effects on Stability. Springer.

Paganini, F., J. C. Doyle, and S. H. Low (2001): “Scalable laws for stable network
control.” In IEEE CDC, vol. 1, pp. 185–190. Orlando, FL.

Palopoli, L., L. Abeni, and G. Lipari (2003): “On the application of hybrid control
to CPU reservations.” In Proceedings of the Conference on Hybrid Systems
Computation and Control (HSCC03).

Papachristodoulou, A., L. Li, and J. C. Doyle (2004): “Methodological frameworks
for large-scale network analysis and design.” ACM SIGCOMM Computer
Communications Review, 34:3, pp. 7–20.

46

Peet, M. and S. Lall (2004): “On global stability of Internet congestion control.”
In IEEE Proceedings of Conference on Decission and Control, pp. 1035–1041.
IEEE.

Pitsillides, A., J. Lambert, and D. Tipper (1995): “A multilevel optimal control
approach to dynamic bandwidth allocation in broadband ISDN.” Telecommu-
nication Systems, 4, pp. 71–96.

Potier, D., E. Gelenbe, and J. Lenfant (1976): “Adaptive allocation of central
processing unit quanta.” Journal of the ACM, 23:1, pp. 97–102.

Radunovic, B. and J.-Y. L. Boudec (2004): “Rate performance objectives of multi-
hop wireless networks.” In Proceedings of the IEEE Infocom. Hong Kong.

Robertazzi, T. G. (1994): Computer Networks and Systems: Queuing Theory and
Performance Evaluation. Springer-Verlag.

Robertsson, A., B. Wittenmark, and M. Kihl (2003): “Analysis and design of
admission control in web-server systems.” In Proceedings of ACC’03.

Romn, M., C. Hess, R. Cergueira, R. Campbell, and K. Nahrstedt (2002):
“Gaia: A middleware infrastructure to enable active spaces.” IEEE Pervasive
Computing, Oct-Dec.

Samaraweera, N. K. G. (1999): “Non-congestion packet loss detection for TCP
error recovery using wireless links.” IEEE Proceedings-Communications,
146:4, pp. 222–230.

Sarolahti, P., M. Kojo, and K. Raatikainen (2003): “F-RTO: an enhanced recovery
algorithm for TCP retransmission timeouts.” ACM SIGCOMM Computer
Communication Review, 33:2.

Seto, D., J. P. Lehoczky, and L. Sha (1998): “Task period selection and
schedulability in real-time systems.” In Proc. 19th IEEE Real-Time Systems
Symposium, pp. 188–198. Madrid, Spain.

Sha, L. (1998): “Dependable system upgrade.” In Proc. IEEE Real Time Systems
Symposium.

Sha, L. (2001): “Using simplicty to control complexity.” IEEE Software, 18:4.

Sha, L., X. Liu, Y. Lu, and T. Abdelzaher (2002): “Queuing model based network
server performance control.” In IEEE Real-Time Systems Symposium.

Sharma, S. and D. Tipper (1993): “Approximate models for the study of
nonstationary queues and their applications to communication networks.” In
Proc. of IEEE International Conference on Communications, pp. 352–358.

Skadron, K., T. Abdelzaher, and M. R. Stan (2001): “Control-theoretic techniques
and thermal-RC modeling for accurate and localized dynamic thermal man-
agement.” In International Symposium on High Performance Computer Ar-
chitecture.

Speranzon, A. and K. Johansson (2003): “Distributed pursuit-evasion game:
Evaluation of some communication schemes.” In The Second Annual Sym-
posium on Autonomous Intelligent Networks and Systems.

Srikant, R. (2004): The Mathematics of Internet Congestion Control. Birkhauser.

47

Stankovic, J. A., C. Lu, S. H. Son, and G. Tao (1999): “The case for feedback
control real-time scheduling.” In Proc. 11th Euromicro Conference on Real-
Time Systems, pp. 11–20.

Stevens, W. (1997): “TCP slow start, congestion avoidance, fast retransmit, and
fast recovery algorithms.” RFC 2001.

Tipper, D. and M. K. Sundareshan (1990): “Numerical models for modeling com-
puter networks under nonstationary conditions.” IEEE Journal on Selected
Areas in Communications, 8:9, pp. 1682–1695.

Toumpis, S. and A. Goldsmith (2002): “Capacity regions for wireless ad hoc net-
works.” In Proceedings of the IEEE International Conference on Communi-
cations. New York, NY.

Värbrand, P., D. Yuan, and P. Björklund (2003): “Resource optimization of
spatial TDMA in ad hoc radio networks: a column generation approach.” In
Proceedings of the IEEE Infocom. San Francisco, CA.

Vinnicombe, G. (2002): “On the stability of networks operating TCP-like conges-
tion control.” In IFAC World Congress. Barcelona, Spain.

Vinnivombe, G. (2000): “On the stability of end-to-end congestion control
for the Internet.” Technical Report CUED/F-INFENG/TR.398. Cambridge
University, Cambridge, UK.

Wang, W., D. Tipper, and S. Banerjee (1996): “A simple approximation for
modeling nonstationary queues.” In Proc. of IEEE Infocom’96, pp. 255–262.

Wang, X., H.-M. Huang, V. Subramonian, C. Lu, and C. Gill (2004): “Camrit:
Control-based adaptive middleware for real-time image transmission.” In
Proceedings of IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS) Toronto, Canada.

Wen, J. T. and M. Arcak (2004): “A unifying passivity framework for network
flow control.” IEEE Transactions on Automatic Control, 49:2, pp. 162–174.

Xiao, L., M. Johansson, and S. Boyd (2002): “Simultaneous routing and resource
allocation via dual decomposition.” In Proceedings of the 4th Asian Control
Conference, pp. 29–34. Singapore.

Yavatkar, R. and N. Bhagawat (1994): “Improving end-to-end performance of
TCP over mobile internetworks.” In Workshop on Mobile Computing Systems
and Applications.

Yi, Y. and S. Shakkottai (2004): “A hop-by-hop congestion control over a wireless
multi-hop network.” In Proceedings of the IEEE Infocom.

Ying, L., G. E. Dullerud, and R. Srikant (2004): “Global stability of internet
congestion controllers with heterogeneous delays.” In Proceedings of the
American Control Conference 2004.

Zhang, Q., W. Zhu, and Y.-Q. Zhang (2001): “Resource allocation for multimedia
streaming over the internet.” IEEE Transactions on Multimedia, 3:3, pp. 339–
355.

Zhang, R., C. Lu, T. F. Abdelzaher, and J. A. Stankovic (2002): “Controlware:
A middleware architecture for feedback control of software performance.” In
Proceedings of the 2002 International Conference on Distributed Computing
Systems. Vienna, Austria.

48

