
Safe Reactive Programming:
the FunLoft Proposal

Frédéric Boussinot

MIMOSA Project, Inria Sophia-Antipolis

(Joint work with Frédéric Dabrowski)

http://www.inria.fr/mimosa/rp

With support from ALIDECS

SYNCHRON 2007

1

http://www.inria.fr/mimosa/rp

Introduction

Why not a General Purpose Synchronous Language?

• Modularity: how to reuse code?

• Dynamicity: how to deal with non-static aspects? (ex: memory
allocation)

• Asynchrony: how to deal with asynchronous aspects? (ex:
blocking IOs)

• Safe programming? (ex: how to prove the termination of
instants)

• Efficiency? (ex: how to benefit from multiprocessors)

2

Plan

1. Modularity & dynamicity: the causality issue

2. Mixing synchrony & asynchrony: the FairThreads model

3. Safe reactive programming: the FunLoft language

4. Efficiency: implementation on multicore architectures

5. Conclusion

3

Modularity (Compositionality)

• Question: how to define the specification associated with a
given code, allowing this code to be used in various contexts?

• Problem with causality: specifications are over-complex

• Example: parallel combination of P and Q

– P = present s1 else emit s2 end, Q = present s2

then emit s1 end. P || Q has no solution (causality
error)

– (pause;P) || Q is correct (constructive causality), but
(pause;P) || (pause;Q) is not.

– (pause;pause;P) || (pause;Q) is correct, but ...

• Information needed for putting P in parallel with Q without
causality errors is as complex as the semantics (automaton) of
P. No hope! “The map is as large as the Empire...”

4

Dynamicity

• Dynamic creation of new parallel components arise in many
contexts:

– Interpretor: interpretation of a new entry

– Embedded system: new versions, adding of new
functionalities

– Agent system: migrating agent reaching a new site

– Simulation: creation of new elements to simulate

• In all these contexts, it is difficultly acceptable that the
creation of a new component could raise causality issues

For both modularity and dynamicity concerns, causality
issues are a major drawback

5

An Alternative to Causality Issues

Delay to the next instant reaction to signal absence

1. present s then P else Q end: if s is present, P is
immediately executed; if s is absent, Q is executed at the next
instant.

2. If solutions with s present and s absent both exists, choose the
one with absence.

Example: in present s else emit s end, s is emitted at the
next instant if it is absent

Intuition: to be sure that a signal is absent you have to wait until
the end of instant. Implementation: when waiting for s, execution
suspends until s is emitted, or the instant terminates

6

Delayed Reaction to Absence

Causality errors are ruled out
Compositionality becomes achievable

New parallel components can be added at run time

• SL, SugarCubes, ReactiveML, FairThreads, ... are based on the
delayed reaction to absence

• Limitations of expressivity:

1. No strong preemption (strong abort), only weak one

2. Values of signals not immediately available

• Pragmatics: not really severe restrictions... (anyway, to be
compared to the introduction of pause statements to solve
causality problems)

Comparison with the standard approach (Esterel) still to
be done for real-life programs

7

Plan

1. Modularity & dynamicity: the causality issue

2. Mixing synchrony & asynchrony: the FairThreads
model

3. Safe reactive programming: the FunLoft language

4. Efficiency: implementation on multicore architectures

5. Conclusion

8

FairThreads

Model of threads with shared memory

• Threads linked to a scheduler are run cooperatively and share
the same instants. Synchronisation and communication
through broadcast signals

• Several schedulers run asynchronously. Thread migration

• Unlinked threads run in a preemptive way

9

FairThreads - 2

• GALS aspect of FairThreads: schedulers corresponds to locally
synchronous areas; systems made of several schedulers are
globally asynchronous

• Implementations: Java (restriction to a unique scheduler,
2002), Scheme (with specialised service threads, 2004), library
of FairThreads in C (2005), LOFT (2006)

• Graphical simulations (cellular automata)

10

Many Problems

• Data-races (= interference = lack of atomicity, ex: !x+!x 6=
2*!x) between linked and unlinked threads

• Data-races between threads linked to different schedulers

• Data-races between unlinked threads

• Non-cooperative thread linked to a scheduler (lack of reactivity)

• Uncontrolled creation of new threads

• Data with uncontrolled growing size (memory leaks)

• Buffering of communication between schedulers

Actually, all are standard problems in concurrency and
resource control!

11

Also Problems in Synchronous Languages

These problems also exist for Synchronous Languages, at host
language level

module m :

var x := Nil : list in

loop

x := f(x);

pause

end

end

end module

• Memory leaks: list f(list x) {return Cons(0,x);}

• Lack of reactivity: list f(list x) {return f(x);}

• Data-races in the context of GALS:
list f(list x) {return Cons(global,Cons(global,x));}

12

Plan

1. Modularity & dynamicity: the causality issue

2. Mixing synchrony & asynchrony: the FairThreads model

3. Safe reactive programming: the FunLoft language

4. Efficiency: implementation on multicore architectures

5. Conclusion

13

FunLoft

• Inductive data types - First order functions

– Termination detection of recursively defined functions.
Consequence: termination of instants (“reactivity”)

• Restriction on the flow of data carried by references and events
(stratification)
Consequence: bounded system size ⇒ absence of memory leaks

• Separation of references (using a type and effect system):

– Schedulers own references shared by threads linked to them

– Threads own private references only accessible by them

– Consequence: atomicity of the cooperative model extended
to unlinked threads and to multi-schedulers ⇒ absence of
data-races

14

FunLoft Basic Syntax

p ::= x | C(p, . . . , p)

e ::= x | C(e, . . . , e) | match x with p − > e | . . . | p − > e

| f(e, . . . , e) | let x = e in e | ref e | !e | e:=e

| cooperate | thread f(e, . . . , e) | join e | unlink e | link s do e

| event | generate e with e | await e | get all values e in e

| loop e | while e do e

• Distinction function/module

– functions always terminate instantly; not mandatory for
modules

– functions can be recursively defined, modules cannot

• Schedulers, functions, and modules defined at top-level only

15

Example of Code: Colliding Particles

Type of particles:

type particle_t = Particle of

float ref * // x coord

float ref * // y coord

float ref * // x speed

float ref * // y speed

color_t // color

Module defining the particle behaviour:

let module particle_behavior (collide_event,color) =

let s = new_particle (color) in

begin

thread bounce_behavior (s);

thread collide_behavior (s,collide_event);

thread draw_behavior (s);

end

Note: particle s is shared by the three threads

16

Collision Behaviour

type ‘a list = Nil_list | Cons_list of ‘a * ‘a list

let process_all_collisions (me,list) =

match list with

Nil_list -> ()

| Cons_list (other,tail) ->

begin collision (me,other); process_all_collisions (me,tail) end

end

let module collide_behavior (me,collide_event) =

let r = ref Nil_list in

loop begin

generate collide_event with particle2coord (me);

get_all_values collide_event in r;

process_all_collisions (me,!r);

inertia (me);

end

Function process all collisions proved to terminate. The
loop in collide behavior proved to be not instantaneous

17

The Global System

let module main () =

let draw_event = event in

let collide_event = event in

begin

thread graphics (maxx,maxy,BLACK);

thread draw_processor (draw_event,size);

repeat particle_number do

thread particle_behavior (collide_event,draw_event,GREEN);

end

The program is ok: no possibility of data-races because
shared particle data structures are only accessed by
threads linked to the same scheduler

18

Static Analyses: Separation of the Memory

• Status public/private associated to references

– τ refs : type of a public reference created in scheduler s

– τ ref : type of a private reference

• Memory separation property:

– A public reference created in the scheduler s can only be
accessed by the threads linked to s

– A private reference can only be accessed by one unique
thread

• Access effect = set of scheduler names

Γ`e:τ refs,F
Γ`!e:τ,F∪{s}

Γ`e:τ ref ,F
Γ`!e:τ,F

19

Separation of the Memory - 2

• Checks:

1. When linked to a scheduler, a thread should not access a
public reference of an other scheduler

2. When unlinked a thread should not access a public reference

• Forbidden situations:

Γ`e:F F⊆{s}
Γ`link s do e:∅

Γ`e:∅
Γ`unlink e:∅

20

Separation of the Memory - 3

• One must also prevent a thread to access a private reference of
another thread

• Check 3: parameters of a new thread should not be private

f :τ→()/F Γ`ei:τi,Fi τi=τ ′
irefαi

⇒αi 6=
Γ`thread f(e):∪Fi

• Forbidden: private reference pointed to by a public reference

21

Separation of the Memory - 4

• Check 4: a reference and its initializing value should have same
status

Γ`e:τ,F τ=τ ′refα⇒α 6=
Γ`refse:τ refs,F

Γ`e:τ,F τ=τ ′refα⇒α=
Γ`ref e:τ ref ,F

• Proof: Memory separation is preserved by rewriting in the
formal operational semantics (extended with explicit ownership
of private references)

22

Static Analyses: Memory Leaks

References should not be used as “accumulators”

let r = ref Nil_list

let f () = !r

let module m () =

loop begin r := Cons_list (0,f()); cooperate end

• Stratification of references : region associated to each reference
creation r : ‘a list refk

• Types with read/write effect:
f : unit→ ‘a list [read : k,write :]

• e1 := e2 adds the arrow k1 ← k2 in the information flow graph,
for all k1 written by e1 and all k2 read by e2.

• Absence of cycles in the graph is checked; in m, k ← k

23

Inference with Constraints

Types with effects and constraints

let f (r1,r2) = r1:=!r2

• f : ‘a refk ∗ ‘b refl → unit [read : ‘b refl, write : ‘a refk]
(‘a refk ← ‘b refl)

let nok () = let r = ref Nil list in f (r,r)

• ‘a list refk ← ‘a list refk ⇒ k ← k ⇒ error

let ok () = let r = ref 0 in f (r,r)

• int refk ← int refk ⇒ ok

Constraints are collected during the construction of the most
general unifier, and checked when complete

24

Termination of Recursive Functions

type ‘a list = Nil list | Cons list of ‘a ∗ ‘a list

• Strict sub-term order: Cons list (head, tail) � tail

• Lexicographic extension:
f (a,Cons list (h, tail), t) � f (a, tail, Cons list (h, t))

• Analyses of chains of calls for arguments of inductive types

let process all collisions (me, list) =
match list with

Nil list − > ()
| Cons list (other, tail) − >

begin collision (me, other); process all collisions (me, tail) end

end

list = Cons list(other, tail)⇒ list � tail⇒ (me, list) � (me, tail)

25

Several other Static Analyses

• No instantaneous loops

• No uncontrolled thread creation in loops
loop begin thread m (); cooperate end

• No thread creation while unlinked (unlink thread m ())

• Events used in correct context

– Generated values should also be stratified

– No reference embedded in generated value

– No event shared by distinct schedulers

– No use of events while unlinked

Result: a well-typed program runs in bounded memory,
without data-races, and instants always terminate

26

References

Basic reactive model:

• A Synchronous pi-Calculus, R. Amadio, Journal of Information
and Computation 205, 9 (2007) 1470-1490.

Memory separation only, 1 scheduler, no events:

• Cooperative Threads and Preemptive Computations, Dabrowski,
F. and Boussinot, F., Proceedings of TV’06, Seattle, 2006.

Model without distinction module/function nor join (memory
separation proved) + polynomial resource control:

• Programmation Réactive Synchrone, Langage et Contrôle des
Ressources, F. Dabrowski’s Thesis, Paris 7, june 2007.

Ongoing work:

• Formalisation of FunLoft, F. Boussinot, F. Dabrowski.

27

Plan

1. Modularity & dynamicity: the causality issue

2. Mixing synchrony & asynchrony: the FairThreads model

3. Safe reactive programming: the FunLoft language

4. Efficiency: implementation on multicore architectures

5. Conclusion

28

Multicore Programming

• How can a single application benefit from a multicore
architecture? Answer: multithreading!

• General problem: how to get maximum of concurrency +
absence of data-races + maximum of parallelism

• Specific problem: How to adapt the colliding particles
simulation to multicore machines?

Idea: 2 schedulers, each one simulating half of the particles.
Problem 1: strong synchronisation between schedulers needed (to
animate particles uniformly). Problem 2: collide event shared
between the 2 schedulers (forbidden as the schedulers are
asynchronous).

29

Proposal: Synchronised Schedulers

• Strong synchronisation between schedulers (common ends of
instants), but parallelism during instants

• No sharing of memory (to avoid data races)

• Events shared among synchronised schedulers

30

Multithreaded Colliding Particles

let s1 = scheduler and s2 = scheduler

let module main () =

let draw_event = event in

let collide_event = event in

begin

link s1 do begin

thread graphics (maxx,maxy,BLACK);

thread draw_processor (draw_event,size);

repeat particle_number / 2 do

thread particle_behavior (collide_event,draw_event,GREEN);

end;

link s2 do

repeat particle_number / 2 do

thread particle_behavior (collide_event,draw_event,RED);

end

31

Demo

• CPU usage (left: 1 scheduler, right: 2 schedulers)

100% CPU 150% CPU

• Time to simulate 500 particles during 100 instants
1 sched 2 scheds

real 0m21.832s 0m14.189s

user 0m21.102s 0m21.369s

sys 0m0.220s 0m0.379s

Gain: 21/14 = 1.5

• Gain (1000 instants)

particles 100 200 300 400 500 600 1000

gain 1.2 1.3 1.4 1.51 1.52 1.56 1.57

32

Conclusion

FunLoft is experimental and far from being a GPSL!

• Lack of realistic bounds (polynomial?)

• Over-restricted detection of termination of functions

• No distribution, no objects, etc...

FunLoft provides:

• Concurrent programming with clear semantics

• Static analyses to prevent data-races and memory leaks, and to
ensure reactivity

• Efficient implementation: large number of components

• Syntax for multithreaded applications on multicore
architectures

Compiler available at www.inria.fr/mimosa/rp/FunLoft

33

