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Introduction

Why not a General Purpose Synchronous Language?

• Modularity: how to reuse code?

• Dynamicity: how to deal with non-static aspects? (ex: memory
allocation)

• Asynchrony: how to deal with asynchronous aspects? (ex:
blocking IOs)

• Safe programming? (ex: how to prove the termination of
instants)

• Efficiency? (ex: how to benefit from multiprocessors)
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Plan

1. Modularity & dynamicity: the causality issue

2. Mixing synchrony & asynchrony: the FairThreads model

3. Safe reactive programming: the FunLoft language

4. Efficiency: implementation on multicore architectures

5. Conclusion
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Modularity (Compositionality)

• Question: how to define the specification associated with a
given code, allowing this code to be used in various contexts?

• Problem with causality: specifications are over-complex

• Example: parallel combination of P and Q

– P = present s1 else emit s2 end, Q = present s2

then emit s1 end. P || Q has no solution (causality
error)

– (pause;P) || Q is correct (constructive causality), but
(pause;P) || (pause;Q) is not.

– (pause;pause;P) || (pause;Q) is correct, but ...

• Information needed for putting P in parallel with Q without
causality errors is as complex as the semantics (automaton) of
P. No hope! “The map is as large as the Empire...”
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Dynamicity

• Dynamic creation of new parallel components arise in many
contexts:

– Interpretor: interpretation of a new entry

– Embedded system: new versions, adding of new
functionalities

– Agent system: migrating agent reaching a new site

– Simulation: creation of new elements to simulate

• In all these contexts, it is difficultly acceptable that the
creation of a new component could raise causality issues

For both modularity and dynamicity concerns, causality
issues are a major drawback
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An Alternative to Causality Issues

Delay to the next instant reaction to signal absence

1. present s then P else Q end: if s is present, P is
immediately executed; if s is absent, Q is executed at the next
instant.

2. If solutions with s present and s absent both exists, choose the
one with absence.

Example: in present s else emit s end, s is emitted at the
next instant if it is absent

Intuition: to be sure that a signal is absent you have to wait until
the end of instant. Implementation: when waiting for s, execution
suspends until s is emitted, or the instant terminates
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Delayed Reaction to Absence

Causality errors are ruled out
Compositionality becomes achievable

New parallel components can be added at run time

• SL, SugarCubes, ReactiveML, FairThreads, ... are based on the
delayed reaction to absence

• Limitations of expressivity:

1. No strong preemption (strong abort), only weak one

2. Values of signals not immediately available

• Pragmatics: not really severe restrictions... (anyway, to be
compared to the introduction of pause statements to solve
causality problems)

Comparison with the standard approach (Esterel) still to
be done for real-life programs
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FairThreads

Model of threads with shared memory

• Threads linked to a scheduler are run cooperatively and share
the same instants. Synchronisation and communication
through broadcast signals

• Several schedulers run asynchronously. Thread migration

• Unlinked threads run in a preemptive way
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FairThreads - 2

• GALS aspect of FairThreads: schedulers corresponds to locally
synchronous areas; systems made of several schedulers are
globally asynchronous

• Implementations: Java (restriction to a unique scheduler,
2002), Scheme (with specialised service threads, 2004), library
of FairThreads in C (2005), LOFT (2006)

• Graphical simulations (cellular automata)
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Many Problems

• Data-races (= interference = lack of atomicity, ex: !x+!x 6=
2*!x) between linked and unlinked threads

• Data-races between threads linked to different schedulers

• Data-races between unlinked threads

• Non-cooperative thread linked to a scheduler (lack of reactivity)

• Uncontrolled creation of new threads

• Data with uncontrolled growing size (memory leaks)

• Buffering of communication between schedulers

Actually, all are standard problems in concurrency and
resource control!
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Also Problems in Synchronous Languages

These problems also exist for Synchronous Languages, at host
language level

module m :

var x := Nil : list in

loop

x := f(x);

pause

end

end

end module

• Memory leaks: list f(list x) {return Cons(0,x);}

• Lack of reactivity: list f(list x) {return f(x);}

• Data-races in the context of GALS:
list f(list x) {return Cons(global,Cons(global,x));}
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FunLoft

• Inductive data types - First order functions

– Termination detection of recursively defined functions.
Consequence: termination of instants (“reactivity”)

• Restriction on the flow of data carried by references and events
(stratification)
Consequence: bounded system size ⇒ absence of memory leaks

• Separation of references (using a type and effect system):

– Schedulers own references shared by threads linked to them

– Threads own private references only accessible by them

– Consequence: atomicity of the cooperative model extended
to unlinked threads and to multi-schedulers ⇒ absence of
data-races
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FunLoft Basic Syntax

p ::= x | C(p, . . . , p)

e ::= x | C(e, . . . , e) | match x with p − > e | . . . | p − > e

| f(e, . . . , e) | let x = e in e | ref e | !e | e:=e

| cooperate | thread f(e, . . . , e) | join e | unlink e | link s do e

| event | generate e with e | await e | get all values e in e

| loop e | while e do e

• Distinction function/module

– functions always terminate instantly; not mandatory for
modules

– functions can be recursively defined, modules cannot

• Schedulers, functions, and modules defined at top-level only
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Example of Code: Colliding Particles

Type of particles:

type particle_t = Particle of

float ref * // x coord

float ref * // y coord

float ref * // x speed

float ref * // y speed

color_t // color

Module defining the particle behaviour:

let module particle_behavior (collide_event,color) =

let s = new_particle (color) in

begin

thread bounce_behavior (s);

thread collide_behavior (s,collide_event);

thread draw_behavior (s);

end

Note: particle s is shared by the three threads
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Collision Behaviour

type ‘a list = Nil_list | Cons_list of ‘a * ‘a list

let process_all_collisions (me,list) =

match list with

Nil_list -> ()

| Cons_list (other,tail) ->

begin collision (me,other); process_all_collisions (me,tail) end

end

let module collide_behavior (me,collide_event) =

let r = ref Nil_list in

loop begin

generate collide_event with particle2coord (me);

get_all_values collide_event in r;

process_all_collisions (me,!r);

inertia (me);

end

Function process all collisions proved to terminate. The
loop in collide behavior proved to be not instantaneous
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The Global System

let module main () =

let draw_event = event in

let collide_event = event in

begin

thread graphics (maxx,maxy,BLACK);

thread draw_processor (draw_event,size);

repeat particle_number do

thread particle_behavior (collide_event,draw_event,GREEN);

end

The program is ok: no possibility of data-races because
shared particle data structures are only accessed by
threads linked to the same scheduler
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Static Analyses: Separation of the Memory

• Status public/private associated to references

– τ refs : type of a public reference created in scheduler s

– τ ref : type of a private reference

• Memory separation property:

– A public reference created in the scheduler s can only be
accessed by the threads linked to s

– A private reference can only be accessed by one unique
thread

• Access effect = set of scheduler names

Γ`e:τ refs,F
Γ`!e:τ,F∪{s}

Γ`e:τ ref ,F
Γ`!e:τ,F
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Separation of the Memory - 2

• Checks:

1. When linked to a scheduler, a thread should not access a
public reference of an other scheduler

2. When unlinked a thread should not access a public reference

• Forbidden situations:

Γ`e:F F⊆{s}
Γ`link s do e:∅

Γ`e:∅
Γ`unlink e:∅
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Separation of the Memory - 3

• One must also prevent a thread to access a private reference of
another thread

• Check 3: parameters of a new thread should not be private

f :τ→()/F Γ`ei:τi,Fi τi=τ ′
irefαi

⇒αi 6=
Γ`thread f(e):∪Fi

• Forbidden: private reference pointed to by a public reference
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Separation of the Memory - 4

• Check 4: a reference and its initializing value should have same
status

Γ`e:τ,F τ=τ ′refα⇒α 6=
Γ`refse:τ refs,F

Γ`e:τ,F τ=τ ′refα⇒α=
Γ`ref e:τ ref ,F

• Proof: Memory separation is preserved by rewriting in the
formal operational semantics (extended with explicit ownership
of private references)
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Static Analyses: Memory Leaks

References should not be used as “accumulators”

let r = ref Nil_list

let f () = !r

let module m () =

loop begin r := Cons_list (0,f()); cooperate end

• Stratification of references : region associated to each reference
creation r : ‘a list refk

• Types with read/write effect:
f : unit→ ‘a list [read : k,write :]

• e1 := e2 adds the arrow k1 ← k2 in the information flow graph,
for all k1 written by e1 and all k2 read by e2.

• Absence of cycles in the graph is checked; in m, k ← k
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Inference with Constraints

Types with effects and constraints

let f (r1,r2) = r1:=!r2

• f : ‘a refk ∗ ‘b refl → unit [read : ‘b refl, write : ‘a refk]
(‘a refk ← ‘b refl)

let nok () = let r = ref Nil list in f (r,r)

• ‘a list refk ← ‘a list refk ⇒ k ← k ⇒ error

let ok () = let r = ref 0 in f (r,r)

• int refk ← int refk ⇒ ok

Constraints are collected during the construction of the most
general unifier, and checked when complete

24



Termination of Recursive Functions

type ‘a list = Nil list | Cons list of ‘a ∗ ‘a list

• Strict sub-term order: Cons list (head, tail) � tail

• Lexicographic extension:
f (a,Cons list (h, tail), t) � f (a, tail, Cons list (h, t))

• Analyses of chains of calls for arguments of inductive types

let process all collisions (me, list) =
match list with

Nil list − > ()
| Cons list (other, tail) − >

begin collision (me, other); process all collisions (me, tail) end

end

list = Cons list(other, tail)⇒ list � tail⇒ (me, list) � (me, tail)
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Several other Static Analyses

• No instantaneous loops

• No uncontrolled thread creation in loops
loop begin thread m (); cooperate end

• No thread creation while unlinked (unlink thread m ())

• Events used in correct context

– Generated values should also be stratified

– No reference embedded in generated value

– No event shared by distinct schedulers

– No use of events while unlinked

Result: a well-typed program runs in bounded memory,
without data-races, and instants always terminate
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Multicore Programming

• How can a single application benefit from a multicore
architecture? Answer: multithreading!

• General problem: how to get maximum of concurrency +
absence of data-races + maximum of parallelism

• Specific problem: How to adapt the colliding particles
simulation to multicore machines?

Idea: 2 schedulers, each one simulating half of the particles.
Problem 1: strong synchronisation between schedulers needed (to
animate particles uniformly). Problem 2: collide event shared
between the 2 schedulers (forbidden as the schedulers are
asynchronous).
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Proposal: Synchronised Schedulers

• Strong synchronisation between schedulers (common ends of
instants), but parallelism during instants

• No sharing of memory (to avoid data races)

• Events shared among synchronised schedulers
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Multithreaded Colliding Particles

let s1 = scheduler and s2 = scheduler

let module main () =

let draw_event = event in

let collide_event = event in

begin

link s1 do begin

thread graphics (maxx,maxy,BLACK);

thread draw_processor (draw_event,size);

repeat particle_number / 2 do

thread particle_behavior (collide_event,draw_event,GREEN);

end;

link s2 do

repeat particle_number / 2 do

thread particle_behavior (collide_event,draw_event,RED);

end
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Demo

• CPU usage (left: 1 scheduler, right: 2 schedulers)

100% CPU 150% CPU

• Time to simulate 500 particles during 100 instants
1 sched 2 scheds

real 0m21.832s 0m14.189s

user 0m21.102s 0m21.369s

sys 0m0.220s 0m0.379s

Gain: 21/14 = 1.5

• Gain (1000 instants)

particles 100 200 300 400 500 600 1000

gain 1.2 1.3 1.4 1.51 1.52 1.56 1.57
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Conclusion

FunLoft is experimental and far from being a GPSL!

• Lack of realistic bounds (polynomial?)

• Over-restricted detection of termination of functions

• No distribution, no objects, etc...

FunLoft provides:

• Concurrent programming with clear semantics

• Static analyses to prevent data-races and memory leaks, and to
ensure reactivity

• Efficient implementation: large number of components

• Syntax for multithreaded applications on multicore
architectures

Compiler available at www.inria.fr/mimosa/rp/FunLoft
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