
Synchronous Data-flow Modeling of
Shared Resources

Erwan Jahier & Nicolas Halbwachs & Pascal Raymond
(Verimag)

November 2007 Bamberg

1

Context (cf the previous presentation
of N. Halbwachs)

ADL = joint description of software and hardware

software (process, thread, program, data)

hardware (processor, memory, bus)

Modeling an ADL into a Synchronous language

→ Give a precise temporal semantics to the ADL

→ Take advantage of the validation (formal verif, test)
of the host language

⇒ accurate validation w.r.t. time

2

Motivations

Modeling Shared resources (bus, memory)

Cannot be overlooked

Fine-grained protocol analysis (compared to usual pro-
tocol criterion that ignore functional aspects)

WCET1

P1
+ ... +

WCETn

Pn

≤ n(2
1
n − 1)

3

Example

1−2

1−5

10

1−2

30

5−10

thr2

thr1

thr3

thr4

4

Synchronous modelling of Asynchrony
and shared resources

Execution time (for time-lasting tasks)

Clock drifts (for tasks running on several processors)

Multitasking (for tasks running on the same processor)

5

Shared Resources access protocol

Rate monotonic scheduling

No lock

Lock

Basic Inheritance (BIP)

Priotity ceiling Protocol (PCP)

6

Scheduling n tasks and m resources

Scheduler inputs:

dispatchedk = Task tk asks for the cpu

ask cstk
rl

= Task tk asks for the resource rl

Scheduler outputs:

cpuk = Task tk has the cpu

convention: ti has priority over tj iff i < j

7

No Lock

In Lustre for 3 tasks

node cpu_from_dispatched(

dispatched1, dispatched2, dispatched3: bool

t1_ask_cs_r1, t1_ask_cs_r1, ... :bool)

returns (cpu1, cpu2, cpu3 : bool);

let

cpu1 = dispatched1;

cpu2 = dispatched2 and not cpu1;

cpu3 = dispatched3 and not cpu1 and not cpu2;

tel

8

No lock

For n tasks

∀k ∈ [1, n] : cpuk = dispatchedk ∧
∧

0<i<k

cpui

9

Lock (1)

For n tasks and m resources

First, we compute a utilitary relation indicating which
task is in critical section

∀k ∈ [1, n] ∀l ∈ [1, m] :

have cstk

rl
= ask cstk

rl
∧ (• have cstk

rl
∨ cpuk)

• ≡ previous value

10

Lock (2)

Then, we compute a utilitary relation indicating if tasks
ti inhibits task tk via a resource rl

∀k, i ∈ [1, n], i 6= k, ∀l ∈ [1, m] :

ti inhibitstk

rl
= ask cstk

rl
∧ have csti

rl

11

Lock (3)

Computing the elected thread

∀k ∈ [1, n] :

cpuk = dispatchedk ∧
∧

0<i<k

cpui ∧
∧
i 6=k

ti inhibitstk
rl

12

Lock (2-bis)

Computing the inhibits relation (bis)

have cstk
rl

= ask cstk
rl
∧ (cpuk ∨ • have cstk

rl
)

cpuk = dispatchedk∧
∧

0<i<k cpui ∧
∧

i 6=k ti inhibitstk
rl

ti inhibitstk
rl

= ask cstk
rl
∧ have csti

rl

cycle: t inhibitst
r→ have cst

r→ cpu→ t inhibitst
r.

ti inhibitstk
rl

= ask cstk
rl
∧ •have csti

rl
∧ ask csti

rl

13

Priority Inversion

t3

t2

t1

lock(r)

access(r)

14

Basic Inheritance Protocol

Fixing the priority inversion problem

idea: a task that have locked a resource r inherits of
the priority of tasks that want to access to r

⇒ ti inhibits∗tk
relation

15

Computing the ti inhibits∗tk relation

path(i, k) = { cycle-free inhibit. paths from ti to tk}

∀(i, k), i 6= k : ti inhibits∗tk
=∨

p=(i1,...,is)∈path(i,k)

ti inhibitsti1
r1
∧ ti1 inhibitsti2

r2

∧ ... ∧ tis
inhibitstk

rk

∧ ti is inhibited

16

Basic Inheritance Protocol

ii0 = 0
∀k ∈ [1, n] : (cpuk, iik) =

dispatchedk → (False, iik−1) (1)

(cpu1 ∨ ... ∨ cpuk−1) → (False,−1) (2)

{ tj inhibits∗tk
→ (False, j) }j∈[1,n],j 6=k (3)

iik−1 = k → (True,−1) (4)

iik−1 > 0 → (False, iik−1) (5)

True → (tk is inhibited, 0) (6)

17

dispatched1, dispatched2, dispatched3, dispatched4

ii0 = 0
∀k ∈ [1, n] : (cpuk, iik) =

dispatchedk → (False, iik−1) (1)

(cpu1 ∨ ... ∨ cpuk−1) → (False,−1) (2)

{ tj inhibits∗tk
→ (False, j) }j∈[1,n],j 6=k (3)

iik−1 = k → (True,−1) (4)

iik−1 > 0 → (False, iik−1) (5)

True → (tk is inhibited, 0) (6)

18

dispatched1, dispatched2, dispatched3, dispatched4

ii0 = 0
(cpu1, ii1) =

dispatched1 → (False, ii0) (1)

(False) → (False,−1) (2)

{ tj inhibits∗t1 → (False, j) }j∈[1,n],j 6=1 (3)

ii0 = 1 → (True,−1) (4)

ii0 > 0 → (False, ii0) (5)

True → (t1 is inhibited, 0) (6)

19

dispatched1, dispatched2, dispatched3, dispatched4

ii0 = 0
(cpu1, ii1) =

dispatched1 → (False, ii0) (1)

(False) → (False,−1) (2)

{ tj inhibits∗t1 → (False, j) }j∈[1,n],j 6=1 (3)

ii0 = 1 → (True,−1) (4)

ii0 > 0 → (False, ii0) (5)

True → (t1 is inhibited, 0) (6)

20

dispatched1, dispatched2, dispatched3, dispatched4

ii1 = 0
(cpu2, ii2) =

dispatched2 → (False, ii1) (1)

(cpu1) → (False,−1) (2)

{ tj inhibits∗t2 → (False, j) }j∈[1,n],j 6=2 (3)

ii1 = 2 → (True,−1) (4)

ii1 > 0 → (False, ii1) (5)

True → (t2 is inhibited, 0) (6)

21

dispatched1, dispatched2, dispatched3, dispatched4

ii1 = 0
(cpu2, ii2) =

dispatched2 → (False, ii1) (1)

(cpu1) → (False,−1) (2)

{ tj inhibits∗t2 → (False, j) }j∈[1,n],j 6=2 (3)

ii1 = 2 → (True,−1) (4)

ii1 > 0 → (False, ii1) (5)

True → (t2 is inhibited, 0) (6)

22

dispatched1, dispatched2, dispatched3, dispatched4

ii2 = 0
(cpu3, ii3) =

dispatched3 → (False, ii2) (1)

(cpu1 ∨ cpu2) → (False,−1) (2)

{ tj inhibits∗t3 → (False, j) }j∈[1,n],j 6=3 (3)

ii2 = 3 → (True,−1) (4)

ii2 > 0 → (False, ii2) (5)

True → (t3 is inhibited, 0) (6)

23

dispatched1, dispatched2, dispatched3, dispatched4

ii2 = 0
(cpu3, ii3) =

dispatched3 → (False, ii2) (1)

(cpu1 ∨ cpu2) → (False,−1) (2)

{ tj inhibits∗t3 → (False, j) }j∈[1,n],j 6=3 (3)

ii2 = 3 → (True,−1) (4)

ii2 > 0 → (False, ii2) (5)

True → (t3 is inhibited, 0) (6)

24

dispatched1, dispatched2, dispatched3, dispatched4,
t3 inhibits∗t1

ii0 = 0
(cpu1, ii1) =

dispatched1 → (False, ii0) (1)

(False) → (False,−1) (2)

{ tj inhibits∗t1 → (False, j) }j∈[1,n],j 6=1 (3)

ii0 = 1 → (True,−1) (4)

ii0 > 0 → (False, ii0) (5)

True → (t1 is inhibited, 0) (6)

25

dispatched1, dispatched2, dispatched3, dispatched4,
t3 inhibits∗t1

ii0 = 0
(cpu1, ii1) =

dispatched1 → (False, ii0) (1)

(False) → (False,−1) (2)

t3 inhibits∗t1 → (False, 3) (3)

ii0 = 1 → (True,−1) (4)

ii0 > 0 → (False, ii0) (5)

True → (t1 is inhibited, 0) (6)

26

dispatched1, dispatched2, dispatched3, dispatched4,
t3 inhibits∗t1

ii1 = 3
(cpu2, ii2) =

dispatched2 → (False, ii1) (1)

(cpu1) → (False,−1) (2)

{ tj inhibits∗t2 → (False, j) }j∈[1,n],j 6=2 (3)

ii1 = 2 → (True,−1) (4)

ii1 > 0 → (False, ii1) (5)

True → (t2 is inhibited, 0) (6)

27

dispatched1, dispatched2, dispatched3, dispatched4,
t3 inhibits∗t1

ii2 = 3
(cpu3, ii3) =

dispatched3 → (False, ii2) (1)

(cpu1 ∨ cpu2) → (False,−1) (2)

{ tj inhibits∗t3 → (False, j) }j∈[1,n],j 6=3 (3)

ii2 = 3 → (True,−1) (4)

ii2 > 0 → (False, ii2) (5)

True → (t3 is inhibited, 0) (6)

28

problem: the BIP can deadlock

t2

t1

lock(r1)

lock(r2) access(r1)

access(r2)

→ (statically) forbid such intertwined use of locks

→ Priority Ceiling Protocol

29

Priority ceiling Protocol

Priority ceiling of a resource r PC(r) is the priority of
the more prioritary task that migth access to r (static)

The priority ceiling of a task tk PCk is the maximum
of the priority ceilings of the resources locked by other
tasks than tk (dynamic)

∀k : PCk = Min{

if
∨

i∈[1,n],i 6=k

(ask csti

rl
∧ •have csti

rl
)

then PC(l) else n
}l∈[1,m]

30

Priority ceiling Protocol

BIP + tk can lock a resource r only if its priority is
higher than its priority ceiling (k < PCk).

31

Priority ceiling Protocol

ii0 = 0
∀k ∈ [1, n] : (cpuk, iik) =

dispatchedk → (False, iik−1) (1)

(cpu1 ∨ ... ∨ cpuk−1) → (False,−1) (2)

{ tj inhibits∗tk
→ (False, pc(j)) }j∈[1,n],j 6=k(3)

iik−1 = k → (True,−1) (4)

iik−1 > 0 → (False, iik−1) (5)

True → (tk is inhibited

∧ (ask cstk ⇒ PCk > k),

0) (6)

where pc(j) = if PCj > j then j else 0

32

Demo

wc *.ml

→ “cpu.mli”

→ “cpu test.ml”

lesar finds the deadlock in BIP

lesar proves the absence of deadlock in PCP

33

	Title page

