
Introducing the CoSta Project:
Contractual Statecharts

Gerald Lüttgen
High Integrity Systems Engineering Research Group &
Programming Languages and Systems Research Group

Department of Computer Science
University of York, U.K.

 Talk at SYNCHRON, Bamberg, Germany, November 2007. ©2007 Gerald Luettgen

http://www.cs.york.ac.uk/~luettgen
http://www.cs.york.ac.uk/~luettgen

 ETAPS 2009 in York: 22nd-29th March

12th European Joint Conferences on Theory and Practice
of Software

Primary forum for academic and industrial researchers working
on topics relating to Software Science

Confederation of five main annual conferences, accompanied by
satellite workshops and other events

Run a satellite event - a workshop or a tutorial!

See www.cs.york.ac.uk/etaps09/ for details on how to propose
satellites (deadline: 14th January 2008)

http://www.cs.york.ac.uk/etaps09/
http://www.cs.york.ac.uk/etaps09/

The CoSta Research Project

Three-year EPSRC-funded research project at York:

BAE Systems as industrial collaborator

Research team consists of GL (PI), Dr Richard Paige (Co-PI),
Dr Andy Galloway (RA) and Ms Lishan Harbird (RS)

Strategic goal: Improve the foundations and tool support
for designing and building avionics software

Observation: Statechart languages are not fully adequate
for early design stages and refinement-based design

No support for declarative styles of specification

No adequate facilities for component-based design

Application Domain: Avionics Software

Project idea is the result of stimulating discussions at
NASA LaRC on designs of future flight control systems

Software engineers in avionics routinely rely on decades
of experience with avionics software and architectures

Design starts from existing architecture, plus requirements

Design finishes with executable model (validated via simulation)

Different specification styles are appropriate at different
design stages

Requirements predominently have a declarative character

Concrete designs are typically operational

In practice, software engineers typically mix different
styles of specification:

Design languages, such as the UML, combine state machines
with the declarative Object Contraint Language (OCL)

Programming languages, such as Eiffel, combine imperative
language constructs with declarative contracts (assume-
guarantee-reasoning)

In formal methods, the focus is on pure theories

Operational theories - automata theory, process algebras, ...

Declarative theories - set-based notations, temporal logics, ...

thus often ignoring the “heterogeneous” reality!

The Bigger Picture

The CoSta Project: Objectives

Extending Statecharts (Stateflow) by contracts (temporal
safety properties) so as to support mixed operational and
declarative specification styles

Developing a refinement relation for component-based
stepwise design that permits one to trade off declarative
content for operational content

Driven by industrial case studies, provided by our project
partner BAE Systems

Tool support in form of a simulator and a model checker

Refinement patterns that capture standard rules for
translating between operational and declarative content

Refinement Patterns: A Mode-Logic Example

OFF1

ON1

on1/ off1/

OFF2

ON2

on2/ off2/

¬(ON1 ∧ ON2)

Mutually-exclusive states via contract

Refinement Patterns: A Mode-Logic Example

Mutually-exclusive states via event broadcasting

OFF1

ON1

on1/ off1/

OFF2

ON2

on2/ off2/i1 i2
i2 ∨ i1 ∨

Other Patterns: Equivalence Patterns
(cf. KIEL’s Layouter [Reinhard von Hanxleden et al])

A

B

C

l

l

A

B

Cl

(Assumes semantics of or-states without implicit priority)

Concrete Questions to be Investigated

How exactly to enrich Statecharts with contracts?

What should the contract language be?

Pre-/post-conditions and invariants on states and transitions,
temporal safety properties, ...

Which semantics and behavioural preorders are suitable?

Compositionality is mandatory since refinement patterns
demand an open-systems view

Refinement should permit the resolution of disjunctive choices

Which refinement patterns are applied in avionics?

How to formalise refinement patterns?

Some Related Work

Logic-time contracts for reactive embedded components

The CoSta contract language shall be a first-class citizen
within the mixed design notation

Extending OCL with temporal logics inside UML

Specifying global and local invariants between objects, and
pre-/post-conditions of methods

Designing avionics software with the UML?

Design patterns for programming languages

Focusing on transforming designs to implementations, rather
than on refining high-level declarative designs to low-level
operational designs

Foundations of CoSta’s Semantic Backbone
[Joint work with Walter Vogler at FOSSACS’06 & ICALP’07]

Logic Labelled Transition Systems

Inconsistency as an observable entity

Composition operators on Logic LTS

Parallel operator, conjunction, disjunction, temporal operators

Two fully-abstact refinement preorders

“Synchronous setting”: Fully-synchronous parallel composition

“Asynchronous setting”: CSP-style parallel composition

Logic properties of these behavioural preorders

∧ is conjunction, distributivity laws, ...

The Setting of Logic LTS

LTS over alphabet that includes the silent event τ, plus:

τ-purity, i.e., each state encodes either external choice or
internal choice

Inconsistency predicate F on states

Inconsistencies can arise by conjunctive composition

Runs through inconsistent states are semantically filtered out

Inconsistencies can propagate backwards along transitions ...

a ba τ ττ

Backward Propagation of Inconsistencies

Propagation - If the environment insists on
performing a, the process is forced to enter
the inconsistent state

a b

F

F

a b

F

a
No propagation - While the environment can
insist on a, the process can decide to perform
the “good a”

τ τ

F b

No propagation - The process decides on its
own which τ-branch to follow (“disjunction”)

Conjunction on Logic LTS

Synchronous composition, but considering inconsistencies

Inconsistency ⇔ different ready sets, i.e., if one process
offers an event that the other cannot perform

Examples:

a

p
∧

b

q
=

a b

r

a

p
∧=F

p’
∧

a a

q’

a b

= F=
a

F

a

F

F =

backward propagation

Synchronous Product and Conjunction

Why not simply define conjunction as the ordinary
synchronous product on standard LTS?

Given a refinement preorder ≤, a conjunction operator ∧
should satisfy:

 r ≤ p ∧ q if and only if r ≤ p and r ≤ q

When taking ∧ to be the synchronous product:

 0 ≤ a ∧ b but neither 0 ≤ a nor 0 ≤ b

for any reasonable ≤, where 0 stands for deadlock

Hence: differentiate between deadlock and inconsistency!

[Divergence]

keynote:/Users/luettgen/York/presentations/Leicester-Nov-2007/leicester.key?id=BGSlide-7
keynote:/Users/luettgen/York/presentations/Leicester-Nov-2007/leicester.key?id=BGSlide-7

Ready-Tree Semantics
(cf. Possible-Worlds Semantics of [Veglioni/De Nicola, van Glabbeek, 1998])

Ready tree t of LTS p

Deterministic, tree-shaped LTS without τ’s (stable states only)

Mapping h from states of t to stable states of p, which must
preserve ready sets

Example:

a

c d

b b b

x

c d

a a

b

x

t

a

c d

b

p

b

x

b b

x

c d

a a‘natural’ h

Full Abstraction wrt. Conjunction

Ready-tree preorder:

p ≤RT q if ∀t. t is ready tree of p ⇒ t is ready tree of q

Lies between failures inclusion and ready simulation

Inconsistency preorder (as reference point):

p ≤F q if p consistent ⇒ q consistent

A consistent implementation p does never refine an inconsistent
specification q (“inconsistent requirements can never be satisfied”)

Full-abstraction result:

≤RT is the largest precongruence wrt. ∧ in ≤F , i.e.,
p ≤RT q if and only if ∀r. p ∧ r ≤F q ∧ r

What about Parallel Composition on Logic LTS?

Good news: Ready-tree preorder is also compositional for
the fully synchronous product ||

Bad news: Ready-tree preorder is NOT compositional for
CSP-style parallel composition ||A

Compositionality defect illustrated:

a a

b b

x

p

a

b b

x

q

=RT

c d

b b

r

“parallel context”

Compositionality Defect Illustrated

a

c d

b

q||{b}r

b

x

b b

x

c d

a a

c

d

b

p||{b}r

x

b b

x

a a

dc

d

b

ca
a a

a
≠RT

a

c d

b b b

x

c d

a a

b

x

‘na
tu

ra
l’
h

The red state
cannot be mapped!

Ready Simulation & Full Abstraction

Adaptation of ready simulation [Bloom/Istrail/Meyer, 1988] to
Logic LTS, i.e., p ≤RS q if

Consistent steps of p can be matched by consistent steps of q

Stable states of p are matched by stable states of q that offer
the same ready set

Full-abstraction result:

≤RS is the largest precongruence wrt. ∧ and ||A in ≤F

It suffices in the proof to relate ≤RS to ≤RT , given the previous
full-abstraction result [details in ICALP’07 paper]

[Details]

keynote:/Users/luettgen/York/presentations/Leicester-Nov-2007/leicester.key?id=BGSlide-16
keynote:/Users/luettgen/York/presentations/Leicester-Nov-2007/leicester.key?id=BGSlide-16

Logic Properties of Both Preorders

∧ is ‘and’:

r ≤ p ∧ q if and only if r ≤ p and r ≤ q

Note again that this does not hold if ∧ is simply taken to be
the synchronous product

Further properties:

p ∧ q = p if and only if p ≤ q

p ∧ q ≤ p

p ∧ p = p

p ∧ ff = ff (ff is Logic LTS with a single, inconsistent state)

Extensions to Other Desired Operators

Standard logic operators:
Disjunction - p∨q “internal choice”

Negation on events - ¬a

Temporal operators (“safety properties”):

Always - ☐ p “p holds in every step/state”

Bounded eventually - ♢≤k p “p holds within k steps”

Embedding of temporal logic formulas is conservative:

p sat φ if and only if p ≤ φ

Next Milestone for the CoSta Project
(Progress report at SYNCHRON’08)

Design and implementation of the envisaged “Stateflow +
Contracts” language

Adaptation of the Logic LTS framework to this language

Required modifications to the Logic LTS framework:

Adapt transition labels to input/output-style labels

Integrate shared variables - second communication mechanism

Add a “true” predicate T - full underspecification

Desired - but probably a long-term goal:

Extend framework to support the synchrony hypothesis

Thank You!

Questions?

Some selected references:

G. Lüttgen and W. Vogler. Conjunction on processes: Full-abstraction via
ready-tree semantics. TCS 373(1-2):19-40, 2007.

G. Lüttgen and W. Vogler. Ready simulation for concurrency: It’s logical!
In ICALP, LNCS 4596:752-763, Springer, 2007.

F. Maraninchi and L. Morel. Logic-time contracts for reactive embedded
components. In EUROMICRO, pp.48-55. IEEE Press, 2004.

E.-R. Olderog. Nets, terms and formulas. Cambridge Tracts in Theoretical
Computer Science 23. Cambridge University Press, 1991.

http://www.cs.york.ac.uk/~luettgen/publications/
http://www.cs.york.ac.uk/~luettgen/publications/
http://www.cs.york.ac.uk/~luettgen/publications/
http://www.cs.york.ac.uk/~luettgen/publications/
http://www.cs.york.ac.uk/~luettgen/publications/
http://www.cs.york.ac.uk/~luettgen/publications/

