Talk at SYNCHRON, Bamberg, Germany, November 2007. ©2007 Gerald Luettgen

http://www.cs.york.ac.uk/~luettgen
http://www.cs.york.ac.uk/~luettgen

ETAPS 2009 in York: 22"-29' March

q'!l|_||~'|
1= TR

@ 12th European Joint Conferences on Theory and Practice
of Software

@ Primary forum for academic and industrial researchers working
on topics relating to Software Science

@ Confederation of five main annual conferences, accompanied by
satellite workshops and other events

@ Run a satellite event - a workshop or a tutorial!

@ See www.cs.york.ac.uk/etaps09/ for details on how to propose
satellites (deadline: 14™ January 2008)

http://www.cs.york.ac.uk/etaps09/
http://www.cs.york.ac.uk/etaps09/

The CoSta Research Project

® Three-year EPSRC-funded research project at York:

@ BAE Systems as industrial collaborator

@ Research team consists of GL (PI), Dr Richard Paige (Co-PI),
Dr Andy Galloway (RA) and Ms Lishan Harbird (RS)

® Strateqic goal: Improve the foundations and tool support
for designing and building avionics software

@ Observation: Statechart languages are not fully adequate
for early design stages and refinement-based design

@ No support for declarative styles of specification

@ No adequate facilities for component-based design

Application Domain: Avionics Software

@ Project idea is the result of stimulating discussions at
NASA LaRC on designs of future flight control systems

@ Software engineers in avionics routinely rely on decades
of experience with avionics software and architectures

@ Design starts from existing architecture, plus requirements

@ Design finishes with executable model (validated via simulation)

@ Different specification styles are appropriate at different
design stages

@ Requirements predominently have a declarative character

@ Concrete designs are typically operational

The Bigger Picture

@ In practice, software engineers typically mix different
styles of specification:

@ Design languages, such as the UML, combine state machines
with the declarative Object Contraint Language (OCL)

@ Programming languages, such as Eiffel, combine imperative
language constructs with declarative contracts (assume-
guarantee-reasoning)

@ In formal methods, the focus is on pure theories
@ Operational theories - automata theory, process algebras, ...

@ Declarative theories - set-based notations, temporal logics, ...

thus often ignoring the “heterogeneous” reality!

The CoSta Project: Objectives

@ Extending Statecharts (Stateflow) by contracts (temporal
safety properties) so as to support mixed operational and
declarative specification styles

@ Developing a refinement relation for component-based
stepwise design that permits one to trade off declarative
content for operational content

@ Driven by industrial case studies, provided by our project
partner BAE Systems

@ Tool support in form of a simulator and a model checker

@ Refinement patterns that capture standard rules for
translating between operational and declarative content

Refinement Patterns: A Mode-Logic Example

-l(ONl N\ ONZ)

Mutually-exclusive states via contract

Refinement Patterns: A Mode-Logic Example

Mutually-exclusive states via event broadcasting

Other Patterns: Equivalence Patterns
(cf. KIELS Layouter [Reinhard von Hanxleden et al])

(Assumes semantics of or-states without implicit priority)

Concrete Questions to be Investigated

@ How exactly to enrich Statecharts with contracts?

@ What should the contract language be?

@ Pre-/post-conditions and invariants on states and transitions,
temporal safety properties, ...

@ Which semantics and behavioural preorders are suitable?

@ Compositionality is mandatory since refinement patterns
demand an open-systems view

@ Refinement should permit the resolution of disjunctive choices

@ Which refinement paftterns are applied in avionics?

@ How to formalise refinement patterns?

Some Related Work

@ Logic-time contracts for reactive embedded components

@ The CoSta contract language shall be a first-class citizen
within the mixed design notation

® Extending OCL with' femporal logics inside UML

@ Specifying global and local invariants between objects, and
pre-/post-conditions of methods

@ Designing avionics software with the UML?

® Design patterns for programming languages

@ Focusing on transforming designs fo implementations, rather
than on refining high-level declarative designs to low-level
operational designs

Foundations of CoSta’s Semantic Backbone
[Joint work with Walter Vogler at FOSSACS 06 & ICALP'07]

® Logic Labelled Transition Systems

@ Inconsistency as an observable entity
@ Composition operators on Logic LTS

@ Parallel operator, conjunction, disjunction, temporal operators
@ Two fully-abstact refinement preorders

@ "Synchronous setting”: Fully-synchronous parallel composition

@ "Asynchronous setting”: CSP-style parallel composition

@ Logic properties of these behavioural preorders

@ A is conjunction, distributivity laws, ...

The Setting of Logic LTS

LTS over alphabet that includes the silent event T, plus:

® T-purity, i.e., each state encodes either external choice or
internal choice

@ Inconsistency predicate F on states
@ Inconsistencies can arise by conjunctive composition
@ Runs through inconsistent states are semantically filtered out

@ Inconsistencies can propagate backwards along transitions ...

Backward Propagation of Inconsistencies

P
.
*
.

Propagation - If the environment insists on
performing a, the process is forced to enter
the inconsistent state

No propagation - While the environment can
insist on a, the process can decide to perform
the “good a”

No propagation - The process decides on its
own which T-branch to follow ("disjunction”)

Conjunction on Logic LTS

@ Synchronous composition, but considering inconsistencies

® Inconsistency < different ready sets, i.e., if one process
offers an event that the other cannot perform

@ Examples:
r

P " q p i 5 P 2
o B
p q

/\ = = =] o
’a 90 ld A le F
3 s
qc1 b ; K
3 3

backward propagation

Synchronous Product and Conjunction

® Why not simply define conjunction as the ordinary
synchronous product on standard LTS?

@ Given a refinement preorder <, a conjunction operator A

should satisfy:

r<pAq ifandonlyif r<pandr<g

@ When taking A to be the synchronous product:
O<aAb but neither O <anor0Oc<b

for any reasonable <, where O stands for deadlock

@ Hence: differentiate between deadlock and inconsistency!

keynote:/Users/luettgen/York/presentations/Leicester-Nov-2007/leicester.key?id=BGSlide-7
keynote:/Users/luettgen/York/presentations/Leicester-Nov-2007/leicester.key?id=BGSlide-7

Ready-Tree Semantics
(cf. Possible-Worlds Semantics of [Veglioni/De Nicola, van Glabbeek, 1998])

® Ready free t of LTS p

@ Deterministic, tree-shaped LTS without T's (stable states only)

@ Mapping h from states of t to stable states of p, which must
preserve ready sets

@ Example:

Full Abstraction wrt. Conjunction

® Ready-tree preorder:

@ p srr q if Vi tis ready tree of p = t is ready tree of g

@ Lies between failures inclusion and ready simulation

@ Inconsistency preorder (as reference point):

@ p <r q if p consistent = q consistent

@ A consistent implementation p does never refine an inconsistent
specification g (“inconsistent requirements can never be satisfied”)

@ Full-abstraction result:

@ <r7 IS the largest precongruence wrt. A in &, l.e.,

psrq ifandonly if VrnpArssqATr

What about Parallel Composition on Logic LTS?

® Good news: Ready-tree preorder is also compositional for
the fully synchronous product ||

@ Bad news: Ready-tfree preorder is NOT compositional for
CSP-style parallel composition |la

@ Compositionality defect illustrated:

b b L] b/ \b b b

4 "parallel context”

Compositionality Defect Illustrated

pllsprr qllspyr

The red state
cannot be mapped!

Ready Simulation & Full Abstraction

@ Adaptation of ready simulation [Bloom/Istrail/Meyer, 1988] to
Logic LTS, i.e., p ks q if

@ Consistent steps of p can be matched by consistent steps of g

@ Stable states of p are matched by stable states of q that offer
the same ready set

@ Full-abstraction result:

® <rs is the largest precongruence wrt. A and ||a in ¢

@ It suffices in the proof to relate <rs to <r7, given the previous
full-abstraction result [details in ICALP’07 paper]

keynote:/Users/luettgen/York/presentations/Leicester-Nov-2007/leicester.key?id=BGSlide-16
keynote:/Users/luettgen/York/presentations/Leicester-Nov-2007/leicester.key?id=BGSlide-16

Logic Properties of Both Preorders

@ A is ‘and’:

@rs<pAgq ifandonly if r<pandr < g

@ Note again that this does not hold if A is simply taken to be

the synchronous product

@ Further properties:

@pAq=p ifandonly if p < q
@pANqlp

@pApP=p

@ pAff=Fff (ff is Logic LTS with a single, inconsistent state)

Extensions to Other Desired Operators

@ Standard logic operators:

@ Disjunction - pVvg "internal choice”

@ Negation on events - -a

@ Temporal operators (“safety properties”):

o Always - | | p | “p holds in every step/state”

@ Bounded eventually - O*p "p holds within k steps”

@ Embedding of temporal logic formulas is conservative:

@ psat @ if andonly if p < @

Next Milestone for the CoSta Project

(Progress report at SYNCHRON'08)

@ Design and implementation of the envisaged "Stateflow +
Contracts” language

@ Adaptation of the Logic LTS framework to this language

@ Required modifications to the Logic LTS framework:

@ Adapt transition labels to input/output-style labels
@ Integrate shared variables - second communication mechanism

@ Add a "true” predicate T - full underspecification

@ Desired - but probably a long-term goal:

@ Extend framework to support the synchrony hypothesis

Thank You!

@ Questions?

@ Some selected references:

@ G. Luttgen and W. Vogler. Conjunction on processes: Full-abstraction via
ready-tree semantics. TCS 373(1-2):19-40, 2007.

@ G. Littgen and W. Vogler. Ready simulation for concurrency: Its logical!
In ICALP, LNCS 4596:752-763, Springer, 2007.

@ F. Maraninchi and L. Morel. Logic-time contracts for reactive embedded
components. In EUROMICRO, pp.48-55. IEEE Press, 2004.

@ E.-R. Olderog. Nets, ferms and formulas. Cambridge Tracts in Theoretical
Computer Science 23. Cambridge University Press, 1991.

http://www.cs.york.ac.uk/~luettgen/publications/
http://www.cs.york.ac.uk/~luettgen/publications/
http://www.cs.york.ac.uk/~luettgen/publications/
http://www.cs.york.ac.uk/~luettgen/publications/
http://www.cs.york.ac.uk/~luettgen/publications/
http://www.cs.york.ac.uk/~luettgen/publications/

