MiniLustre mais il fait le Maximum !
or
Towards the Development of a Certified Compiler for Lustre

Marc Pouzet
Université Paris-Sud 11 & INRIA Proval
Orsay

Workshop SYNCHRON
Bamberg, nov. 27th, 2007

Joint work with Dariusz Biernacki, Jean-Louis Colaco and Grégoire Hamon

A Certified compiler for SCADE/Lustre

Implement a verified compiler for a synchronous data-flow language with the help of the

proof assistant Coq

Combines certified compilation and translation validation
Certified translation

e Write a compilation function C' : L1 — Lo in Coq with its proof of semantics

preservation

e natural for local program transformation (e.g., data-flow to sequential code)

Translation validation

e Write C' independently (e.g., in Caml) and a validation function V' : L1 X L9 — bool

with its proof of semantics preservation

e casier for non local transformation (e.g., type or clock inference, find a clever scheduling

of equation, memory optimization)

See Xavier Leroy’s work for a discussion on pros and cons of both
2

Motivations (first step)

First build a reference compiler, as small as possible, purely functional (as much as possible)

and based on local rewriting rules

Focus on synchronous block-diagrams as found in Lustre/SCADE or (a subset of) Simulink

L]

h :

<
@

e formalize the code generation into imperative sequential code (e.g., C)

e as small as possible but realistic (the code should be efficient)

e make it modular, i.e., the definition of a stream function is compiled once for all
as a way to:

e build a certified compiler inside a Proof assistant

e complement previous works on the extension/formalization of synchronous languages
3

Code Generation

Principle:
A stream function f : Stream (1) — Stream(T") is compiled into a pair:

e an initial state and a transition function: (sg : S, f; : S x T — T" x S)
a stream equation y = f(x) is computed sequentially by yy,, Snt1 = fi(Sn, Tn)
An alternative (more general) solution:

e an initial state: sg : S

e avalue function: f, : S x T — T"

e a state modification (“commit”) function: fs : S x T" — S’
Final remarks:

e this generalises to MIMO systems

e in actual implementations, states are modified in place

e synchrony finds a very practicle justification here: a data-flow can be implemented as a

single scalar variable

Modular Code Generation

e produce a transition function for each block definition
e compose them together to produce the main transition function
e static scheduling following data-dependences

But modular code generation is not always feasible even in the absence of causality loops

o - (y, Z) — f(tay)

This observation has led to two different approaches to the compilation problem

Two Traditional Approaches
Non Modular Code Generation
e full static inlining before code generation starts

e enumeration techniques into (very efficient) automata ([Halowachs et all., Raymond
PhD. thesis, POPL 87, PLILP 91])

e keeps maximal expressiveness but at the price of modular compilation and the size of

the code may explode

e finding the adequate boolean variables to get efficient code in both code and size is
difficult

Modular code generation
e mandatory in industrial compilers
e no preliminary inlining (unless requested by the user)
® imposes stronger causality constraints: every feedback loop must cross an explicit delay

e well accepted by SCADE users and justified by the need for tracability
6

Proposal

a compiler where everything can be “traced” with a precise semantics for every

intermediate language
introduce a basic clocked data-flow language as the input language
general enough to be used as a input language for Lustre

be a “good” input language for modern ones (e.g., mix of automata and data-flow as
found in SCADE 6 or Simulink/StateFlow)

provides a slightly more general notion of clocks
and a reset construct

compilation through an intermediate “object based” intermediate language to represent

transition function

provide a translation into imperative code (e.g., structured C, Java)

Organisation of the Compiler

Stati c checkl ng

Cl ockedFl owKer nel

Transl ati1 on

.

Annot at ed DK

Y

OBL

EmtC

Y

Structured C

Static Checking

Type checkl ng G ock checkl ng

— = CDK+Types = CDK+Types+C ocks

l Causal ity Check

CDK+Types+C ocks

{ Initializati on Check

CDK+Types+C ocks

A Clocked Data-flow Basic Language

10

A data-flow kernel where every expression is explicitely annotated with its clock

ct

a = e

e == vl|x|vfbyal|awhenC(x)]| (as)
op(a,...a)| f(a,..,a) everya
merge z (C — a) ... (C — a)

D == pat=a|DandD

pat == x| (pat, ..., pat)

d == node f(p) =pwithvarpinD

D = x:bt;..;x: bt

td = typelbt|typebt=C+..+C

v = Cli

ck = base|ckon C(x)

ct = ck|ctx..xct

11

Informal Semantics

h True False True False
T 0 I L2 L3

Y Y0 Y1 Y2 Y3

v fthy x v 0 I o
r+y To+Yo Ti1+Y1 T2+Y2 T3+ Y3
2z = x when True(h) | xg T2

t = y when False(h) Y1 Y3
merge h X Y1 X2 Y3

(True — 2)

(False — t)

e 2 is at a slower rate than x. We say its clock is ck on True(h)

e the merge constructs needs its two arguments to be on complementary clocks

e statically checked through a dedicated type system (clock calculus)

Derived Operators

1f x thenes else e3 merge I
(True — ey when True(x))

(False — e3 when False(x))

Yy =¢€1 —> € — y=1f init then ejelse ey

and 1nit = True fby False

pre (e) = nil fby e

Example (counter)

node counting (tick:bool; top:bool) = (o:int) with
var v: 1nt 1n
o = 1f tick then v else 0 -> pre o + v

and v = 1f top then 1 else 0
13

N-ary Merge

merge combines two complementary flows (flows on complementary clocks) to produce a

faster one:

Mer ge 1 O ERREE B

b7| b6 b5| b4| b3| b2 bl

introduced in Lucid Synchrone V1 (1996), input language of ReLuC
Example: merge ¢ (a when c¢) (b whenot c)

Generalization:
® can be generalized to n inputs with a specific extension of clocks with enumerated types
e the sampling e when c is now written e when True(c)
e the semantics extends naturally and we know how to compile it efficiently

e thus, a good basic for compilation

14

Reseting a behavior

e in SCADE/Lustre, the “reset” behavior of an operator must be explicitely designed with a

specific reset input

node count () returns (s:1int);
let

s = 0 fby s + 1
tel;

node resetable counter(r:bool) returns (s:int);
let

s = 1f r then 0 else 0 fby s + 1;
tel;

e painful to apply on large model

® propose a primitive that applies on node instance and allow to reset any node (no

specific design condition)

15

Modularity and reset
Specific notation in the basic calculus: f (a1, ..., a,) every c

e all the node instances used in the definition of node x are reseted when the boolean c is

true

e the reset is “asynchronous”: no clock constraint between the condition ¢ and the clock of

the node instance
is-it a primitive construct? yes and no

e modular translation of the basic language with reset into the basic language without
reset ([PPDPO00], with G. Hamon)

e essentially a translation of the initialization operator —>

® ¢ —>egbecomes 1f cthen ej else e9

e very demanding to the code generator whereas it is trivial to compile!
e useful translation for verification tools, basic for compilation

e thus, a good basic for compilation
16

Translation

Normalization

Annota ed CDK
Annotated CDK « {(norma |zec%
U Local Transformation
+
data—flow transformations (naive to clever) scheduling
(CSE, Constant Prop.)
Inlining '
ObjBasedLanguage
EmitC

Structured C

17

Syntactic Dependences and Scheduling

Programs which cannot be statically scheduled are rejected during the causality analysis

we define Left (e) for the list of variables from e which are free in e and not as an

argument of a delay fby
Left (D) is the union of such variables for any expression of D
for any pat = a from D, any variable from pat depends on Left (D)

the transitive closure defines the notion of static dependence (Halowachs et al, [PLILP
91])

the program can be statically scheduled if there is no cycle
simple inductive definitions (see [APGES 07] paper)

an equation x = v fby y + 2 is executed after every equations using x

Remark: several classical “graph based” optimization can be applied on this data-flow kernel

Common Sub-expression Elimination, Constant Propagation, Inlining

18

Putting Equations in Normal Form

® prepare equations before the translation

e extract delays from nested expressions by a linear traversal

e Equations are transformed such that delays are extracted from nested computation.

Normal Form:

ce

ca

cq

6ck

a when C'(z) | op (a,...,a) | x | v

merge x (C' — ca) ... (C — ca) | e

Ceck

z=cal|z=(vEfbya)®

| (2,....2) = (f (a,...,a) every z)™

DandD | eq

19

Example

2 = ((((4 £by 0) * 3) when True(c)) + k)~ o= Truel©)
and 0 = (merge ¢ (True — (5 fby (2 + 1)) + 2)
(False — ((6 fby x)) when False(c)))*

IS rewritten into:

2 = (((t1 * 3) when True(c)) + k)~ o Truel®)
and o = (merge ¢ (True — to + 2)
(False — t3 when False(c)))¥
and t; = (4 £by o)
and ty = (5 Tby (2 4 1))k © Tee(®
and t3 = (6 fby)"

20

p,m

Intermediate Language

class f =
(memory m,
instances j,
reset() returns() = S,
step (p) returns (p) = var p in S)
r = c|state(x) :=c|S; S| skip
o.reset | (z,...,x) = o.step(c,...,C)

case (x){C:S;...;C: S}

xz|v|state(x) | op(c,...,c)
C |1
o:f,...,o:f

r:t,...,x:t

21

Intermediate Language

the minimal need to represent transition functions

we introduce an ad-hoc intermediate language to represent them

it has an “object-based” flavor (with minimal expressiveness nonetheless)
static allocation of states only

it can be trivially translated into a imperative language

we only need a subset set of C (functions and static allocation of structures, very simple

pointer manipulation)

22

Principles of the translation

e Hierarchical memory model which corresponds to the call graph: one local memory for

each function call

e Control-structure (invariant): a computation on clock ck is executed when ck is true
® a guarded equations x = ek translates into a control-structure

E.g., the equation:
T — (y 4 2)base on C1(x1) on Co(x2)

is translated into a piece of control-structure:

case (z1) {C : case (x2) {Cy: x =y + 2}}

23

e |ocal generation of a control-structure from a clock

Control(base, S) = S
Control(ck on C(x), S) Control(ck,case (x) {C' : S})

e merge them locally

Join(case (x) {C1:51;...;Cn : Sp},
case (x) {Cy :51;...;Cn : SL})
= case () {C1 : Join(S51,57);...;Cy : Join(Sy, S.)}
Join(S1,S2) = S1; 55

e the translation is made on a linear traversal of the sequence of normalized and

scheduled equations
e every function defines a machine (a “class”)

e control-optimization: find a static schedule which gather equations guarded by related
clocks

24

Translation
A context (m, si, 7, d, s):
e m is the state memory [vy/x1, ..., Up /Ty
e s is the initialization code (reset method)
e j is the instance memory | f1 /01, ..., fin/0Om]
e d is the set of local variables
® S is a sequence of instructions
A few mutually recursive functions:
o TE (1 sids) (€)translates an expression in context (1, si, j, d, s)
L TA(mm’j,d,S) (, eCk) translates an expression storing the result in x
o TEq(.sijd.s) (€q) for equations
o TEqList(

m,si.j.d.s) (€qlist) for a list of equations

25

Translation

A few definitions (see paper [APGESO07] for details)

TA(1.5i.5.d,5) (T, e®) = (m, si, j, d, Control(ck,x = TE (1.si5.d,s) (€)))

TEq(m sijds) (@ =ca) = TAqy, s a5 (T, ca)
TEq (1 51.j.d+at]5) (@ = (v £by a)™) = let ¢ = TE (s, 53,5.4,6) (@) in

26

(m + |z : t],[state (x) :

J,d,

| Control(ck, state (x) :

v|Qsi,

c)|@Qs)

Example

node count (x : int; z : bool) returns (o : int);
var

1 : bool; o02:int;
let

1 = true fby false;
o = merge 1 (true -> (x + 02) when true(i))
(false —> (0 fby o + 1) when false(i));
02 = merge 1 (true -> (42 fby (o when true(i))) + 1)
(false —> 0);
tel;

27

class count {

x 1 : bool; x 3 : 1int; x_ 2 : 1int;
reset () { mem x_ 1 = true; mem x_ 3 = 42; mem xX_2
step(x : 1nt; z : bool) returns (o : 1int) {

1 : bool; 02 : int;

1 = mem(x_1);

mem x_1 = false;

switch (1) {
case false
o2 = 0;
O = mem(x_2) + 1;
case true
o2 = mem(x_3) + 1;
O = xX + 02;
mem X_ 3 = 0O;
b

mem X_2 = 0; }
28

Example (modularity)

e cach function is compiled separately

e a function call needs a local memory

node count (x:1nt) returns (o:1int);
let

o =0 fby o + x;
tel;

node condact (c:bool;input:int) returns (o:1nt);
let
O = merge ¢ (true —> count (input when true(c)))

(false —> (0 fby o) when false(c));
tel;

29

class condact {

X 2 : 1int; x_ 4 : count;

reset () {
X _4.reset (

4

)
mem x_2 = 0;

}
step(c : bool; input : int) returns (o : int) {
X_ 3 : 1int;

switch (c) {
case true
(x_3) = x_4.step(input);
O = X_3;
case false
O = mem(x_2);
}i
mem X_2 = 0; }

30

Administrative code

Basis

Emitters to concrete languages

Optimizations

MiniLustre in Numbers

Abstract syntax + printers
Lexer&Parser

main (misc, symbol tables, loader)
graph

scheduling

type checking

clock checking

causality check
normalization

translate (to ob)

(C, Java and Caml)

Inline + reset

Dead-code Removal

Data-flow network minimization

31

335
546
285
74
67
269
190
30
95
132
arround 300 each
250
42
162

Extensions (towards a full language)

Pur el y Dat aFl ow Language
+
aut omat a, signals,

| oop iteration, richer clocks,
et c.

- Cl ocked Dat aFl ow Language

e exiend the source language with new programming constructs
e translation semantics into the basic data-flow language

e this is essentially the approach we have followed previously (Lucid Synchrone, ReLuC compiler
of SCADE)

e clocks play a central role
e simple and gives very good code
e reuse of the existing code generator (adequate in the context of a certification process)

Question: What about polymorphism and higher-order?

32

Formal Certification (Coq programming)
In parallel, we have done:
e an implementation of MiniLustre in the programming language of Coq (1500 loc)
e extracted caml code + hand-coded caml code to get the compiler
e type and clock inference also done

We are currently working on the semantics and proof of equivalence between the source language

and the intermediate language

33

Semantics

We (finally) choose a “reaction semantics” (in SOS style) for the source language

Values: w+ = w | (wt, ..., wt)
w = abs|v
Reaction Environnement: R = [wl/gg17 ey ’wn/flfn] (z + = x; # xj)
— - w+ S
Reaction: R e —e R - D— D

Lemma 1 (Normalization) if Dy € Norm(D) then R+ D B D' then
Rt Dy — Dy AN DY € Norm(D’)

Lemma 2 (Scheduling) if Dg € Sch (D) then R+ D LN D’ then
R\ Dg % DI A D € Sch (D)

We define the predicate R = D %, D’ for normalized and scheduled equations; Init(D) gives

seq

the initial state (left part of fby).

Lemma 3 (Sequential computation) I/ Dg € Sch (Norm(D)) then R, R’ + D LNy
R, Init(D) = Dg =% D, A Dl € Sch (Norm(D')) A R' = Init(Ds), Ro

seq

34

Semantics for the Intermediate Language

An operational one (in SOS style two). No fix-point.

p u= |vi/x1;...;0m /2] where x; # x; forall i # j
and
m u= |v1/X15 . Xy
J = [01/01;...;0p /0]
M = (m,j)
O = (M, reset =S, step = Ap.qwith S)

Two predicate:

o M,plk el v:eevaluatesto vin M and p
o M,pE S| p', M’ for instructions

Prove the preservation of semantics for the translation function.

35

Conclusion
Current
e a reference (small) MiniLustre compiler has been implemented

e semantics “on paper” (source and intermediate language) and semantics preservation of the

translation
Future (relatively close)
e Coqg development of the semantics preservation

e finish the Coq programming of the reference compiler (combines translation validation (e.g.,

scheduling) and certified compilation)
Future (longer term)
e mixed systems (data-flow systems + mode-automata)
® source-to-source transformation into the data-flow system
e translation semantics (as done in ReLuC [EMSOFT’05, EMSOFT’06])

e the reference implementation MiniLustre has been done accordingly (about 300 extra lines of

Caml code)
36

