

APRES'08
Adaptive and Reconfigurable

Embedded Systems

First International Workshop on Adaptive

and Reconfigurable Embedded Systems

St. Louis, MO, USA

April 21st, 2008

Editors:

Luís Almeida

Sebastian Fischmeister

Insup Lee

Julián Proenza

Sponsored by:

First International Workshop on Adaptive
and Reconfigurable Embedded Systems

(APRES’08)

St. Louis, MO, USA, April 21st, 2008

Organizers:

Luís Almeida, Univ. of Aveiro, Portugal

Sebastian Fischmeister, Univ. of Waterloo, Canada

Insup Lee, Univ. of Pennsylvania, USA

Julián Proenza, Univ. of the Balearic Islands, Spain

Program Committee:

Anton Cervin, Lund University, Sweden

Antonio Casimiro, University of Lisbon, Portugal

Arnaldo Oliveira, University of Aveiro, Portugal

Carlos Eduardo Pereira, UFRG, Brazil

Chang-Gun Lee, Seoul National University, Korea

Christoph Kirsch, University of Salzburg, Austria

Eric Rutten, INRIA Grenoble, France

Guillem Bernat, Rapita Systems, UK

Jane Liu, Academia Sinica, Taiwan

Jean-Dominique Decotignie, CSEM, Switzerland

Jörg Kaiser, University of Magdeburg, Germany

Joseph Sifakis, VERIMAG, Grenoble, France

Lucia Lo Bello, University of Catania, Italy

Marco Caccamo, University of Illinois UC, USA

Marga Marcos, University of the Basque Country, Spain

Marisol García-Valls, Univ. Carlos III in Madrid, Spain

MoonZoo Kim, KAIST, Korea

Neil Audsley, University of York, UK

Pau Martí, Technical University of Catalonia, Spain

Paulo Pedreiras, University of Aveiro, Portugal

Raj Rajkumar, Carnegie Mellon University, USA

Robert Trausmuth, Univ. of Applied Sciences WN, Austria

Roman Obermaisser, Technical University Vienna, Austria

Stefan Petters, NICTA, Australia

Thomas Nolte, Malardalen University, Sweden

Xue Liu, McGill University, Canada

Additional Reviewers:

Eduardo R. B. Marques

Elisabet Estévez

Emanuele Toscano

Federico Pérez

Insik Shin

Qixin Wang

Rainer Trummer

Reiner Perozzo

Robert Staudinger

Sina Meraji

Stanley Bak

Yunho Kim

Sponsors:

IST-004527 ARTIST2 Network of Excellence on Embedded Systems Design

Preface

Adaptive systems can respond to environmental changes including hardware/software defects,

resource changes, and non-continual feature usage. As such, adaptive systems can extend the

area of operations and improve efficiency in the use of system resources. However, adaptability

also incurs overhead in terms of system complexity and resource requirements. For example, an

adaptive system requires some means for reconfiguration. These means and their mechanisms

introduce additional complexity to the design and the architecture, and they also require

additional resources such as computation, power, and communication bandwidth. Consequently,

adaptive systems must be diligently planned, designed, analyzed, and built to find the right

tradeoffs between too much and too little flexibility.

The issue is how to provide the adaptability to the application, because it affects all aspects of

the development process (e.g., capturing, methodologies, modeling, analysis, testing, and

implementation), the chosen system technologies (e.g., computation and communication

models, interfaces, component-based design, programming languages, dependability, and design

patterns) and the system itself (e.g., operating system, middleware, network protocols, and

application frameworks).

In many systems, flexibility and the resulting tradeoffs is usually ignored until a very late stage.

Many try to retrofit existing prototypes, middleware, operating systems, and protocols with

concepts and means for flexibility such as run-time system reconfiguration or reflexive

diagnostics and steering methods. Such retrofitting typically leads to disproportionate overhead,

unusual tradeoffs, and in general it leads to less satisfactory results.

The purpose of the workshop is to discuss new and on-going research that is centered on the

idea of adaptability as first class citizen and consider the involved tradeoffs.

Among the 26 initial submissions, 16 papers have been selected and organized in 4 sessions,

covering a wide spectrum of the subject of Adaptive and Reconfigurable Embedded Systems. It

is our wish that the workshop provides an appropriate and relaxed environment to discuss these

new ideas and approaches. In order to facilitate it each speaker will have 15 minutes for the

presentation and each session will finish with a 30-minute panel discussion with the 4 speakers

of that session. Moreover, we will have Prof. Karl-Erik Arzen from Lund University in Sweden

as invited speaker. The title of his speech will be: Adaptivity in Embedded Systems, Why, What

and How.

We would like to thank all the people that have made possible this event. First of all, thanks to

the organizers of the Cyber Physical Systems Week for accepting our proposal of celebrating

this workshop; second, to the authors that submitted their articles; third, to the members of the

Program Committee and other reviewers for their fundamental contribution to the quality of the

final program; and last but not least, to the ARTIST2 Network of Excellence on Embedded

Systems Design for their financial support.

Luís Almeida, Univ. of Aveiro, Portugal

Sebastian Fischmeister, Univ. of Waterloo, Canada

Insup Lee, Univ. of Pennsylvania, USA

Julián Proenza, Univ. of the Balearic Islands, Spain

List of Papers

1 Systems 1
1.1 Semantics-Preserving and Incremental Runtime Patching of Real-Time Programs.

Christoph M Kirsch, Lúıs Lopes and Eduardo R B Marques. 3
1.2 Limitations of Adaptable System Architectures for WCET Reduction.

Jack Whitham and Neil Audsley. 8
1.3 Adaptive Framework for Efficient Resource Management in RTOS.

Ameet Patil and Neil Audsley. 12
1.4 Enhancing the Adaptivity for Multi-Core Embedded Systems with Dynamic Performance Scaling

in FPGA.
Yan Zhang and Gang Quan. 16

2 Distributed Systems 21
2.1 Building Adaptive Embedded Systems by Monitoring and Dynamic Loading of Application Mod-

ules.
Florian Kluge, J̈org Mische, Sascha Uhrig and Theo Ungerer. 23

2.2 A Programmable Arbitration Layer for Adaptive Real-Time Systems.
Sebastian Fischmeister and Robert Trausmuth. 27

2.3 ViRe: Virtual Reconfiguration Framework for Embedded Processing in Distributed Image Sensors.
Rahul Balani, Akhilesh Singhania, Chih-Chieh Han and Mani Srivastava. 32

2.4 Trade-off Analysis of Communications Protocols for Wireless Sensor Networks.
Jerome Rousselot, Amre El-Hoiydi and Jean-Dominique Decotignie. 36

3 Scheduling 41
3.1 A GA-Based Approach to Dynamic Reconfiguration of Real-Time Systems.

Marco A. C. Sim̃oes, George M. Lima and Eduardo Camponogara. 43
3.2 CPU Utilization Control Based on Adaptive Critic Design .

Jianguo Yao and Xue Liu. 47
3.3 A hierarchical approach for reconfigurable and adaptive embedded systems.

Moris Behnam, Thomas Nolte and Insik Shin. 51
3.4 Suitability of Dynamic Load Balancing in Resource-Constrained Embedded Systems: An Overview

of Challenges and Limitations.
Magnus Persson, Tahir Naseer Qureshi and Martin Törngren . 55

4 Design and Modeling 59
4.1 Flexible User-Centric Automation and Assistive devices.

J. W. S. Liu, C. S. Shih, T. W. Kuo, S. Y. Chang, Y. F. Lu and M. K. Ouyang. 61
4.2 Towards an Integrated Planning and Adaptive Resource Management Architecture for Distributed

Real-time Embedded Systems.
Nishanth Shankaran, John Kinnebrew, Xenofon Koutsoukos, Chenyang Lu, Douglas Schmidt and
Gautam Biswas. .65

4.3 Designing Reconfigurable Component Systems with a Model Approach.
Brahim Hamid, Agnes Lanusse, Ansgar Radermacher and Sébastien Ǵerard 69

4.4 Enabling Extensibility of Sensing Systems through Automatic Composition over Physical Loca-
tion.
Maurice Chu and Juan Liu. 74

v

1. Systems

Semantics-Preserving and Incremental
Runtime Patching of Real-Time Programs†

Christoph M. Kirsch
University of Salzburg
ck@cs.uni-salzburg.at

Luı́s Lopes
CRACS/University of Porto

lblopes@dcc.fc.up.pt

Eduardo R. B. Marques
University of Porto
edrdo@dcc.fc.up.pt

Abstract

We propose semantics-preserving and incremental run-
time patching of real-time programs as a robust means for
reconfiguring hard real-time systems at runtime. We con-
sider programs that describe non-functional aspects of pro-
cesses such as their timing properties and communication
behavior, and give examples written in the Hierarchical
Timing Language (HTL). Runtime patching is the process
of replacing portions of such programs at runtime by new
code. It is semantics-preserving if the switch to the result-
ing code and the code itself could have been compiled be-
forehand, had the patch been known. It is incremental if
analyzing and generating the code only involves an effort
proportional to the size of the patch, not the patched pro-
gram. This can even be done with system-wide properties
such as schedulability by exploiting HTL-specific features.

1. Introduction
Software has the great advantage of being flexible. In

fact, for now, it probably remains the single most flexible
concept for engineering even the most complex systems.
The majority of IT industries exploit that flexibility and
sometimes even use it as foundation for their business mod-
els. There are important exceptions though. Large portions
of the real-time systems industry, in particular, the ones
working on mission- and safety-critical applications essen-
tially ignore software-related flexibility. There are goodrea-
sons after all. Getting large software systems and, in partic-
ular, real-time systems right is still extremely difficult.How
can we then even think about modifying such systems while
they are running? Clearly, adaptivity is not just a nice-to-
have feature, especially in real-time systems where it may

†C. M. Kirsch is supported by a 2007 IBM Faculty Award, the EU
ArtistDesign Network of Excellence on Embedded Systems Design, and
the Austrian Science Fund No. P18913-N15. L. Lopes is partially sup-
ported by project CALLAS from Fundação para a Ciência e Tecnologia
(contract PTDC/EIA/71462/2006). E. R. B. Marques is supported by the
SFRH/BD/29461/2006 grant from Fundação para a Ciência eTecnologia.

We would like to thank João Sousa and Raja Sengupta for inspiration
in this work and Sebastian Fischmeister for some relevant suggestions and
comments.

give rise to unforeseen application scenarios and software
development methodologies. What is even more exciting
though is that the essential, enabling technologies may cur-
rently be shaping up to make adaptivity of even hard real-
time systems a reality.

We believe there are two key ingredients. Adaptivity
needs a strong semantical foundation and non-trivial scal-
ability. We need to know what reconfiguration means and
how to do it fast, even on large systems. There is a growing
research trend towards so-called semantics-preserving exe-
cution environments for real-time systems such as the real-
time language Giotto [9] and its successors but also other
work on synchronous reactive languages [2], which provide
notions of composability that go beyond the typical schedu-
lability guarantees of more traditional real-time languages
and operating systems. For example, Giotto programs can
be modified without changing the relevant properties of the
unmodified portions as long as there are sufficient computa-
tional resources. Relevant properties are not just schedula-
bility but also task functionality, intertask communication,
and I/O times. Nevertheless, checking schedulability and
other system-wide properties remains necessary but is of-
ten difficult and may limit scalability of reconfiguration at-
tempts. Recent work, however, on incremental schedulabil-
ity analysis of traditional task models [5] but also language-
based models [7], in combination with stronger, semanti-
cal notions of composability, may lead to fast, scalable, and
semantics-preserving reconfiguration of real-time systems.

In this paper, we propose semantics-preserving and in-
crementalruntime patchingof real-time programs as a ro-
bust means for reconfiguring even large systems at runtime,
and give examples written in HTL [7], a Giotto succes-
sor. So far, we have only studied the idea conceptually and
worked with examples. Our plan is to design and imple-
ment runtime patching support in our existing HTL infras-
tructure [1] and perform experiments with unmanned vehi-
cles in Salzburg [4] and Porto [12]. In Section 2, we give an
intuitive overview of our approach. In Section 3, key con-
cepts of HTL are provided, followed by a presentation of an
HTL-based runtime patching model in Section 4.

1. Systems 3

2. Runtime Patching
We consider programs that describe non-functional as-

pects of processes such as their timing properties and com-
munication behavior. The syntax tree of such a programP

is depicted schematically in the left portion of Fig. 1. The
program describes a set of processes as illustrated in the
right portion of Fig. 1. We assume that there is a means to
identify subprograms of a given program, for instance, by
unique path names. The syntax tree in Fig. 1 shows such a
pathσ to a subprogramS of P . We also assume that there is
a homomorphic relationshipF between (syntactic) program
and (semantical) process composition in the sense that a
strict subprogram of a given program can only affect the rel-
evant behavior of a strict subset of the processes described
by the program, i.e.,F (P \ S + S) = F (P \ S) + F (S).
Fig. 1 indicates that subprogramS only affects the rele-
vant behavior of a strict subset of all processes described
by programP . Examples of relevant behavior are process
functionality, periodicity, and I/O times while resource con-
sumption such as CPU usage is not. Processes described by
S may share resources with processes described by other
parts ofP and may therefore affect their access to resources.
We discuss how to check resource consumption in principle
below.

Figure 1. Syntax and semantics

By runtime patching we intuitively mean the process of
identifying a subprogramO of a programP by a pathσ

and then replacingO in P by a new programN , logically
instantaneous at runtime, i.e., during the execution ofP ,
resulting in a programP ′, as shown in Fig. 2. The time
instant when the patch takes effect is called the install in-
stantI. Applying a runtime patch may take time and may
therefore be started some time beforeI. However, a runtime
patch should only take effect atomically atI, similar to, for
example, atomic transactions in databases. Runtime patch-
ing enables software adaptivity because patches (σ andN)
do not need to be known at compile time, and programs do
not need to be stopped for patching. Patch operator imple-
mentations may require some form of dynamic loading and
linking as well as possibly incremental compilation, unless
programs are interpreted.

We do not intend runtime patching to extend the expres-
siveness of the language in which patched programs are
written. In fact, we advocate runtime patching to preserve
the exact original language semantics. In other words, there
must be a programQ that is syntactically equivalent toP
but with O replaced by a conditional expression choosing

Figure 2. Patching

betweenO andN as illustrated in Fig. 3. During the exe-
cution ofQ, the conditional expression, depicted by a box,
mimicks runtime patching by switching fromO to N ex-
actly atI, i.e., whenO in P is patched to becomeN . Run-
time patching is thus a semantics-preserving means to mod-
ify programs at runtime in a way that could have been done
at compile time, if the timing of the patch (I) and the patch
itself (σ andN) had already been known.

Figure 3. Preserving semantics
Runtime patching involves program analysis and code

generation. If a patch requires re-checking program-wide
properties such as overall resource consumption, or even
full re-compilation, runtime patching may either be limited
in scale or may take too long and make the application of
the patch ineffective. However, incremental compilation,
i.e., incremental program analysis and code generation, may
enable fast and scalable runtime patching. With incremen-
tal program analysis, checking if the patched programP ′ is
correct, given that the original programP is correct, should
only involve an effort proportional to the size of the patch
(σ andN) and some contextC of the patch but independent
of P , as shown in Fig. 4. The size ofC should be deter-
mined by the size of the patch. Similarly, code generation
should be proportional to the size of the new programN ,
and linking should only involve considering contextC.

Figure 4. Scalability
Incrementally checking even global properties such as

overall resource consumption may also be possible by tak-
ing advantage of language properties such as, ifP is correct
(e.g., resource-compliant) and programN is in some sense

4 Workshop on Adaptive and Reconfigurable Embedded Systems (APRES’08)

compatible with contextC, thenP ′ is also correct. This
property reduces checking global correctness to checking
local compatibility. For example,C may contain an abstract
specification implicitly describing a possibly infinite setof
concrete programs for which the resulting patched program
is guaranteed to be correct, i.e., without re-checking global
correctness. Then, checking if a concrete program is com-
patible with the abstract specification is sufficient for global
correctness (but not necessary since there might be concrete
programs that are incompatible but for which the patched
program is correct anyway).

3. HTL Overview
The Hierarchical Timing Language (HTL) [7] is a co-

ordination language for distributed hard real-time applica-
tions. HTL programs specify timing properties and commu-
nication behavior of interacting real-time tasks that are po-
tentially distributed across multiple hosts but not task func-
tionality, which is assumed to be implemented in some other
language than HTL. Prior to execution, HTL programs are
compiled into E code [10], or HE code [8], which supports
separate compilation. E and HE code are interpreted in real
time by a virtual machine, which uses an EDF scheduler for
executing the tasks. The ability to compile parts of HTL
programs separately [8] and check their schedulability in-
crementally [7] is a prerequisite for incremental runtime
patching of HTL programs.

Figure 5. Tasks and communicators

Tasks and communicators. An HTL task is defined by a
sequential code procedure with no internal synchronization,
a set of input/output variables calledports, a period for ex-
ecution, and a worst-case execution time (WCET). Tasks
with different periods interact by exchanging port values
throughcommunicators, which are timed variables that can
be read and written at logical time instants according to the
communicators’ own periods. This interaction is illustrated
in Fig. 5. The periods of interacting tasks must be multiples
of the involved communicator periods. Tasks with the same
period may interact with other tasks through their ports as
long as the tasks read from have completed and the reading
tasks have not yet started executing, which gives rise to task
precedence constraints.

An HTL task has alogical execution time(LET) given
by its releaseandterminationevents, which are defined by

communicator read and write actions: the release time is
the latest time instant for a communicator read and the ter-
mination time is the earliest time instant for a communicator
write. Fig. 5 illustrates this for taskst1 andt2 and their
interaction through communicatorsc1 to c4. This task
model is a generalization of the LET model in Giotto [9], to
tasks with input and output ports interacting through com-
municators. The key advantage of the LET model is that the
relevant behavior of LET programs (functionality but also
exact I/O times) is preserved across different hardware plat-
forms and software workloads as long as there are sufficient
computational resources [9].

Figure 6. An HTL program

Program structure. Building up on the foundation of
tasks and communicators, the other structuring concepts in
HTL are modes, modules, programs, and hierarchical pro-
gram refinement. Fig. 6 gives an overview of their assembly
and execution.

A modeis a set of tasks with the same period (the mode’s
period) and an acyclic graph that expresses data flow among
input and output ports of the tasks in the mode. A mode’s
execution equals the logical execution of all its tasks un-
der communicator timing constraints (to interact with tasks
external to the mode) but also under task precedence con-
straints. For example, in Fig. 6,t2 in modem1 is only
released aftert1 has completed, even thought2’s release
time (the access toc1) is actually earlier. Amoduleis set of
modes and a set of boolean predicates calledmode switches
that are evaluated over communicators and ports. At any
time, exactly one mode executes within a module, and, at
the end of its period, execution is either switched to a dif-
ferent mode in the module or continued in the same mode,
according to the evaluation of mode switches. For example,
in Fig. 6, in moduleM2, the mode switchs3 is evaluated
at time instant 6 at the end of the execution of modem2
and changes execution to modem3. A set of modules and
a set of communicator declarations form aprogram, and a
program’s execution equals the parallel execution of all its
modules with the tasks interacting through the program’s
communicator set. For example, in Fig. 6, programP1 con-
sists of modulesM1 andM2 as well as communicatorsc1,
c2, andc3.

1. Systems 5

Hierarchical program structure is expressed usingrefine-
mentof a mode by an entire program, as shown in Fig. 6 for
modem3 and programP2. A mode being refined, called
the parent mode, may have declaredabstract tasksthat
have no implementation and simply act as schedulability-
conservative place-holders forconcrete tasksin the refine-
ment program conforming to a set of syntactic restric-
tions [7]. The refinement constraints preserve schedulabil-
ity and simplify program analysis: if the parent mode is
analyzed and asserted as schedulable, then the refinement
program is also known to be schedulable. Checking refine-
ment constraints is generally faster and more scalable than
checking schedulability and can therefore be done incre-
mentally. The former is linear in the size of the refinement
program whereas the latter may be exponential in the size
of the refined mode because of higher-level mode switching.
We have also studied refinement constraints with so-called
logical reliability of communicator updates instead of task
schedulability [3] but have not yet considered it in runtime
patching.

4. A Runtime Patching Model for HTL

Runtime patching for HTL requires a mechanism to load,
analyze, and apply patches at runtime. We propose to use a
patch supervisorprocess that monitors a running HTL pro-
gram and allows its patching. The patch supervisor is not
meant to be an HTL entity itself but one that operates on
top of it in the sense of a program rewriting other programs
in congruence with our principle that syntax and semantics
of the patched programs are preserved. The patch supervi-
sor should apply instrumentation in a way that at any time
instant the running program is a proper instance of the orig-
inal language in which it was written. Also, it should be
executed at a lower priority than the patched program, so
that the real-time performance requirements of the latter are
not compromised, and only declare a patch as ready to take
effect once all required time-consuming aspects of readying
the patch are done. Its typical cycle will be: attend to pro-
gram patch requests, perform program re-compilation, and
apply patches logically instantaneous at time instants that
ensure coherent atomic transitions between the original and
patched program.

Figure 7. An HTL program patch

Patch specification. Fig. 7 displays an HTL programP
in the form of a simplified syntax tree and a patch applied
to it yielding programP ′. A patch may consist of mul-
tiple program transformations, expressed at the syntactic,
source-code level, through rewriting of the program’s syn-
tax tree. The diamond notation represents a program trans-
formation through patching, with the original subprogram
on the left and the new subprogram on the right. The patch
shown consists of changes at the mode level for module
M1 (transformationsϕ1 to ϕ5) and at the module level for
the top-level program (ϕ6 andϕ7). Patching at the mode
level within a module can change an existing mode (ϕ1 to
ϕ3), delete a mode (ϕ4), and add a new mode (ϕ5). Patch-
ing an existing mode may change timing properties like a
mode’s period, as inϕ2, but also other aspects (e.g., within
ϕ1 andϕ3) like task precedences, communicator accesses
and WCET estimate, as well as functional aspects like task
and mode switch implementations. Patching at the mod-
ule level may remove (ϕ6) and add modules (ϕ7). Program
patching may also be recursive and apply to refinement pro-
grams. In constrast to [6], which describes a mechanism
for semantics-preserving replacement of real-time program
functionality for the Timing Definition Language (TDL), a
subset of Giotto and thus of HTL, our approach generalizes
to patching concurrent modules and, in particular, modes,
besides considering scalability aspects for patching.

Figure 8. Runtime compilation

Runtime compilation. Compilation of a patched HTL
program at runtime must validate the program syntactically
to assert the program as valid, analyze the schedulability
of the program depending on the type of transformations
applied, and re-generate and link code for the changed pro-
gram parts. Syntactic validation needs to consider only a
context composed of the modified parts and their dependen-
cies, which are induced by program refinement and commu-
nicator writes that may be performed by pre-existing mod-
ules (which could result in race conditions). Code gener-
ation for HTL may adopt a separate compilation strategy
even down to the level of modes [8]. Thus it is possible to
re-generate code only for the modified parts of a patched
HTL program.

The subprogram context for syntactic validation and
code generation for each transformation in our patching ex-
ample is illustrated by Fig. 8. Syntactic validation and code
generation is required for all changed and added functional-
ity, as shown. Assuming there are no dependencies induced
by communicator writes in the example, there is, however,
a need to account for the dependencies of program parts

6 Workshop on Adaptive and Reconfigurable Embedded Systems (APRES’08)

changed by program refinement: even though the refine-
ment program form1 does not require re-compilation, it
must nevertheless be re-checked with respect to syntactic
refinement constraints to make sure that the patched pro-
gram is still schedulable.

In general, schedulability analysis, however, may not be
scalable if the patch targets top-level specifications. If tim-
ing behavior is patched, schedulability analysis is only in-
cremental to changes if the patched program is a refine-
ment but not a top-level program since only refinement con-
straints preserve schedulability. If a top-level program is
in question, as in our example, then schedulability may be
asserted through full program analysis but with exponen-
tial time complexity in the size of the program, or poten-
tially faster through other incremental schedulability analy-
sis techniques such as in [5], assuming they can be general-
ized to cover mode switching.

Figure 9. Patched execution
Patched execution. For the patch supervisor to instru-
ment running HTL programs logically instantaneous in a
semantics-preserving way, we consider the timing and in-
tegrity effects of patching. A runtime patch at the level of
modules executing concurrently within an HTL program is
constrained by the transformations it involves: (1) modules
added by the patch must not be started before the time in-
stant that marks the beginning of the least common multiple
of all communicator periods in the module, so that the mod-
ule has a coherent time origin, (2) modules removed by the
patch must terminate execution as soon as the current mode
ends execution (the outcome of mode switch evaluation will
be ignored), and (3) modules changed by the patch must
switch to the patched behavior when execution of the cur-
rent mode ends, including the evaluation of mode switches
which must yield a mode that is defined in the patched pro-
gram, i.e., one that has not been removed.

The time instants to which patching is constrained by
(1) to (3) determine the set of possible install instants for
the patch. We assume that activating the patched program
takes logically zero time. As discussed before, all time-
consuming aspects of runtime compilation complete before
the install instant. In the sense of the various aspects sur-
veyed in [11], the runtime patching model we consider is
thereforesynchronous. If the patch involves more than one
kind of transformation, the install instant must satisfy all
of their timing constraints, i.e., be a valid synchronization
point for all transformations. This condition may be relaxed

for simultaneous module updates and removals to happen
before additions. New modules could start after all mod-
ule updates and removals have been completed. This mode
of operation can be interesting for defining more flexible
patching schemes. However, it would imply an interval of
logical time for patching, rather than a logical time instant,
and require additional schedulability analysis, as inasyn-
chronouspatching [11]. In any case, a patch supervisor has
the flexibility of applying different transformations thatmay
be part of a set of patches at different appropriate time in-
stants, so the above constraints may not be too restrictive.

Fig. 9 illustrates patched execution for our example. The
patch is applied logically at time instant 4 in line with the
constraints stated above. Time instant 4 is the least com-
mon multiple of all communicator periods (1, 2, 4 forc1,
c2, andc3 in Fig. 7), so thatM4 can be started at that time
assuming that mode execution forM1 (modified) andM3
(deleted) properly terminates. The patched execution within
moduleM1 shows changed components and sample mode
switching behavior. When patching has completed, execu-
tion is switched fromm1 (according to the specification of
old code form1) to the patched version of itself. Any other
switch would also be valid as long as the target mode is
defined in the patched program (m2, m3, or m5). A mode
switch tom4 at time instant 4 would invalidate the patching
operation since the patch specifiesm4 to be deleted.

References
[1] J. Auerbach, D. Bacon, D. Iercan, C. Kirsch, V. Rajan,

H. Röck, and R. Trummer. Java takes flight: Time-portable
real-time programming with Exotasks. InProc. LCTES, 2007.

[2] P. Caspi, N. Scaife, C. Sofronis, and S. Tripakis. Semantics-
preserving multitask implementation of synchronous pro-
grams.ACM TECS, February 2008.

[3] K. Chatterjee, A. Ghosal, D. Iercan, C. Kirsch, T. Henzinger,
C. Pinello, and A. Sangiovanni-Vincentelli. Logical reliability
of interacting real-time tasks. InProc. DATE, 2008.

[4] S. Craciunas, C. Kirsch, H. Röck, and R. Trummer. The
JAviator: A high-payload quadrotor UAV with high-level pro-
gramming capabilities. InProc. AIAA GNC, 2008.

[5] A. Easwaran, I. Shin, O. Sokolsky, and I. Lee. Incremental
schedulability analysis of hierarchical real-time components.
In Proc. EMSOFT, 2006.

[6] S. Fischmeister and K. Winkler. Non-blocking deterministic
replacement of functionality, timing, and data-flow for hard
real-time systems at runtime. InProc. ECRTS, July 2005.

[7] A. Ghosal, T. Henzinger, D. Iercan, C. Kirsch, and
A. Sangiovanni-Vincentelli. A hierarchical coordinationlan-
guage for interacting real-time tasks. InProc. EMSOFT,
2006.

[8] A. Ghosal, D. Iercan, C. Kirsch, T. Henzinger, and
A. Sangiovanni-Vincentelli. Separate compilation of hierar-
chical real-time programs into linear-bounded embedded ma-
chine code. InOnline Proc. APGES, 2007.

[9] T. Henzinger, B. Horowitz, and C. Kirsch. Giotto: A time-
triggered language for embedded programming.Proc. of the
IEEE, January 2003.

[10] T. Henzinger and C. Kirsch. The Embedded Machine: pre-
dictable, portable real-time code. InProc. PLDI, 2002.

[11] J. Real and A. Crespo. Mode change protocols for real-time
systems: A survey and a new proposal.RTS, Springer, 2004.

[12] Seascout LAUV. http://whale.fe.up.pt/seascout.

1. Systems 7

Limitations of Adaptable System Architectures for WCET Reduction

Jack Whitham and Neil Audsley
Real-Time Systems Group

Department of Computer Science
University of York, York, YO10 5DD, UK

jack@cs.york.ac.uk

Abstract
This paper identifies three major issues facing worst-

case execution time (WCET) reduction algorithms on
adaptable architectures based on research carried out for
the MCGREP-2 CPU project. The issues are exposing
more instruction level parallelism (ILP) in code, reduc-
ing loading costs for the memory and processing elements
used to reduce WCET, and making use of application-
specific hardware. Potential difficulties in each of these
areas are identified and possible solutions are proposed.

1 Introduction
Embedded systems often include some real-time func-

tionality, such as control of external machinery [1]. Real-
time tasks must operate within known time bounds (dead-
lines) in order for the overall system to be safe, and this
poses an additional requirement for software design. Com-
puting the worst-case execution time (WCET) of real-time
tasks is an important step towards assuring the safety of
the overall real-time system (RTS) [18]. WCET reduction
for a task is a closely related problem involving the allo-
cation of some memory or computing resource in order to
minimize the WCET (Figure 1).

General execution speed-up technologies such as cache
memory, deep CPU pipelines and out-of-order super-
scalar issue units [15] are good for average case execu-
tion time (ACET) reduction, but the dynamic behavior of
these components makes computing the WCET more diffi-
cult [10,24]. Therefore, even if the WCET of a task can be
reduced by such techniques, the safety of the RTS cannot
be easily assured. This motivates approaches that explic-
itly reduce the WCET of programs without introducing dy-
namic behavior, either automatically or with programmer
assistance [28]. Automatic approaches have their roots in
hardware/software co-design, i.e. partitioning tasks and
subtasks between hardware and software in order to meet
an optimization goal [2], e.g. ACET or WCET minimiza-
tion. However, because of the relative difficulty of evalu-
ating the resource consumption of candidate partitions (re-
quiring hardware synthesis [8]) and because of the differ-
ences between hardware and software languages [7], cur-
rent WCET reduction techniques avoid any need to gen-
erate hardware and instead operate by migrating subtasks
into memory units that enable faster execution. These in-

repeat: identify WC path

allocate resources

path info resource cost

select allocations to

minimise task WCET

for WCET reduction

within resource limit

real−time task

allocations mapped to

memories/computing resources

Figure 1. Generalized WCET reduction
process.

clude instruction scratchpads [17] and lockable caches [3].
In these cases, the partitioning problem is relatively simple
and can be solved by fast heuristics [21].

Some forms of adaptive system facilitate WCET reduc-
tion. The MCGREP-2 CPU [25–27] provides a writable
control store (WCS) [20] that can store subtasks encoded
as microinstructions (Figure 2). Our recent work [28]
shows that subtasks can be selected from the worst-case
execution path (WC path) of a program and translated au-
tomatically into microinstructions: this leads to greater
WCET reductions than instruction scratchpad techniques
because instruction level parallelism (ILP) can be ex-
ploited to execute the WC path in a shorter time period.
MCGREP-2 is adaptive and reconfigurable in the sense
that the control store can be updated at any time, allow-
ing an unlimited number of tasks to benefit from WC path
optimizations. Using microinstructions to implement sub-
tasks is predictable in two senses: (1) execution timings
are not data-dependent, and (2) resource consumption is
easily computed [28]. However, the speed of each subtask
is limited by the microarchitecture and the input program.

This paper explores the issues that limit WCET re-

8 Workshop on Adaptive and Reconfigurable Embedded Systems (APRES’08)

b
s

b
u
b
b
le

cn
t

co
m

p
re

ss

cr
c

d
iv

d
u
ff

e
d
n

e
x
p
in

t

fd
ct

fi
b
ca

ll

fi
r

in
se

rt
so

rt

ja
n
n
e
_c

o
m

p
le

x

jf
d
ct

in
t

m
a
tm

u
lt

n
d
e
s

n
s

 0

20

40

60

80

100

120

140

160

T
o
ta

l
G

a
in

 V
e
rs

u
s

In
st

.
S
p
.,
 p

e
rc

e
n
t

 8192 bits, 2 units
16384 bits, 2 units
24576 bits, 3 units
32768 bits, 3 units
65536 bits, 3 units

Figure 3. WCET reductions with various
MCGREP-2 configurations using various
benchmark programs.

duction within a general adaptive reconfigurable system,
based on our research for the MCGREP-2 CPU project
and its associated WCET reduction algorithms [25, 28].
We assume that WCET reduction begins with a task spec-
ified in a software language such as C, and then proceeds
through a fully automatic process described in previous
work [17,21,28] (such processes follow the general outline
of Figure 1). We consider WCET reduction algorithms
making use of scratchpads, locked caches, co-processors
and run-time reconfigurable hardware [11], such as a field
programmable gate array (FPGA).

Although WCET reductions can be achieved using the
MCGREP-2 WCS, the execution time improvements that
have been demonstrated are currently limited to about 50-
150% [25] over an instruction scratchpad [17, 21] (Figure
3). Independent of the architecture actually used to im-
plement the WCS [27], and independent of the technology
used to apply WCET reductions [28], the magnitude of the
possible reduction is limited by three major factors. These
are: (1) the ILP available within the task, (2) the cost of
loading the control store with the required information,
and (3) the speed of the general-purpose microarchitec-
ture that executes the microinstructions. These factors ap-
ply to any WCET reduction process, whether it is based
on a scratchpad, locked cache, or some form of run-time
reconfigurable hardware. The issues related to each are
examined in sections 2, 3 and 4. Section 5 concludes.

2 The ILP Limitation
The ILP available within each task is influenced by both

the source code and the compiler. WCET reduction ap-
proaches that operate by allocating instruction scratchpad
or lockable cache space [3, 17, 21] do not consider ILP in
code since conventional machine instructions are sequen-
tial. Trace scratchpad allocation approaches [28] do con-
sider ILP, as machine instructions are converted into ex-
plicitly parallel code for storage in the WCS. This sim-
plifies WCET analysis, but also implies that the degree of

WCET reduction is limited by the ILP in the task.
In many programs, the degree of ILP is limited to two or

three instructions within a single basic block, and around
twice that number if basic block boundaries can be ig-
nored through speculation [22]. This is a hard limit on
WCET reduction for general software. For ACET reduc-
tion, the limit is approached by current superscalar CPU
designs, and some of the same principles can be applied
for WCET reduction [28]. Reaching this limit is an im-
plementation challenge requiring the design of superscalar
CPU pipelines that are also amenable to timing analysis.

Obtaining WCET reductions beyond the ILP limit is a
language issue. Tasks that are vectorisable can be par-
allelised across a very large number of processing ele-
ments [22], because most subtasks are independent of each
other. However, not all programming languages allow vec-
torisable code to be declared. A limited form of auto-
matic vectorization is provided by modulo scheduling [4],
but in general a specialist language is needed. The com-
piler needs additional information about data and control
dependences in order to be able to arrange the subtasks
for vector processing. Dataflow languages provide the re-
quired features, allowing both coarse-grained [5, 9] and
fine-grained [30] reconfigurable arrays to be programmed.
More conventional languages can also support extensions
for vectorization, e.g. [12].

3 The Load Cost Limitation
Regardless of whether WCET reductions are provided

by a scratchpad, locked cache or run-time reconfigurable
hardware, a loading time cost is incurred whenever the
configuration is updated. Some WCET reduction algo-
rithms assume that loading takes place before task start-
up [21, 28], but this is restrictive because it places a limit
on the complexity of each task. This limit also applies to
WCET reduction approaches that make use of fixed co-
processors, since these are not run-time reconfigurable.
The solution is to allow loading during execution and in-
corporate it into the WCET reduction process [17], af-
ter partitioning each task into regions with local memory
maps [16]. The total loading time must be less than the
total WCET reduction that is achieved.

Loading costs for scratchpads and locked caches
are small, since burst-mode transfers can be used to
rapidly move information from large external memory into
smaller scratchpads. In a task with sufficient temporal lo-
cality on the WC path (e.g. many loops), loading time
will be significantly smaller than the WCET for both in-
struction scratchpads [17] and a WCS [25]. However, the
degree of temporal locality that is required is higher. If one
instruction can be loaded into an instruction scratchpad in
a single clock cycle, and then executed in a single clock
cycle, then that instruction only needs to be executed twice
to recover the cost of loading the scratchpad. But microin-
structions are often larger than conventional instructions,
and consequently more executions are required to recover

1. Systems 9

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������

������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

Dispatch

unit

D
eb

u
g

u
n

it

D
eb

u
g

p
o

rt
s

IR 0

IR −1

LSU

MCGREP−2 Units

D
at

a
th

at
 h

as
 b

ee
n

 l
o

ad
ed

Microprogram data

Instructions

u
co

d
e

ad
d

re
ss

D
at

a
to

 b
e

st
o

re
d

re
g

is
te

r
ad

d
re

ss

interface

Memory
External

Scratchpad

RAM and/or

INTERCONNECT 1 INTERCONNECT 0

D in B

D in A D out A

D out B

Adr A

Adr B

Address Mux

ALU

IN
T

E
R

C
O

N
N

E
C

T
 1

Reg File

Reg File

D in D

D in C D out C

D out D

Adr C

Adr D

in 0

in 1

S
ig

n
 E

x

To shared components

Control logic

Writable

control store

uPC

IN
T

E
R

C
O

N
N

E
C

T
 0

to other units

to other unitsto other units

to other units

Figure 2. MCGREP-2 CPU: one array unit (left) and top level (right). MCGREP-2 is a
simple form of coarse grained reconfigurable architecture (CGRA) in which each array unit
is a small CPU capable of executing code from a writable control store, which can be used
to reduce task WCETs.

the loading cost.
Loading can be carried out in parallel with task execu-

tion by introducing a direct memory access (DMA) con-
troller to manage the copying process. A second task
may be executed during the loading process, or the first
task may continue execution as information is loaded into
scratchpad for use in the near future. Both techniques have
been previously explored by research into overlaying [14]
and are implemented by modern CPU architectures in the
form of simultaneous multithreading (SMT) and cache fill-
ing. Predictable forms of these dynamic operations could
be used to eliminate effective loading costs in some cases.

We believe that loading costs are likely to become a
significant problem for some systems. Run-time reconfig-
urable hardware loading costs can be very large: typical
FPGA bitstream sizes are given by [30]. Run-time recon-
figurable systems may include decompression modules to
reduce the cost [11]. Consequently, a very high degree of
temporal locality is required to reduce the overall WCET
unless loading costs can be eliminated by parallel opera-
tion.

4 The General Purpose CPU Architecture
Limitation

Perhaps the most serious limitation of present WCET
reduction approaches is the assumption that a general pur-
pose architecture is used. A conventional general-purpose
CPU is assumed by instruction scratchpad and locked
cache allocation approaches [3, 17, 21]. Although the
MCGREP-2 CPU is extensible with application-specific
instruction set processor (ASIP) features [6], such as cus-
tom instructions to accelerate WC path execution, these
must be declared and applied explicitly by the program-
mer. Automatic WCET reduction algorithms for scratch-
pads only make use of standard ALU features at present.

CGRA architectures [5, 9] provide arrays that are spe-
cialized for vectorisable code. Mapping subtasks to
such architectures is one way to reduce WCET, but large

CGRAs are not suitable for general programs because in-
sufficient ILP is available. The same problem applies to
fine-grained arrays such as FPGAs, but these can pro-
vide even greater reductions because the logic gates can
be specialized to a particular task. Automatic ASIP cus-
tom instruction selection for WCET reduction has been
explored [31], and it is known that large ACET [13] and
WCET [23] reductions are possible by migrating software
into FPGA hardware, even without vectorisable code.
Since run-time reconfiguration can be used to load task-
specific hardware, customized hardware could be used in
a similar manner to an instruction scratchpad or WCS, but
with greater potential WCET reductions than either ap-
proach.

However, the search algorithms used to find the best al-
locations for WCET reduction become far more complex,
since it is not easy to calculate the resource consumption
of each allocation decision. To get an exact answer, a
complete FPGA or ASIC synthesis process must be ex-
ecuted with all chosen components in place, and this is
computationally expensive. Estimation is commonly used
instead [29, 31], but this lowers the accuracy of allocation
decisions and is likely to lead to poor utilization of space,
or backtracking in the event of an overestimate. Scratch-
pad allocation algorithms can make use of all available
space [17, 28] because exact computation of resource us-
age is very fast, and backtracking is not necessary [21].

We believe that WCET reduction using custom hard-
ware is a form of co-design problem, and therefore NP-
hard [19]. However, with appropriate restrictions and as-
sumptions, WCET reduction can nevertheless be applied
effectively using custom hardware. For example, run-time
reconfigurable modules (e.g. [11]) of fixed size could be
generated to provide WCET reductions to specific sub-
tasks: this would isolate the WCET reduction process
from the considerations of resource consumption and on-
chip communication.

10 Workshop on Adaptive and Reconfigurable Embedded Systems (APRES’08)

5 Conclusion
This paper has explored three issues that affect the de-

gree of WCET reduction available for tasks in an adaptable
architecture. Major challenges exist: specifying vectoriza-
tion in order to exploit greater ILP is important [22], as is
minimizing loading time costs [17]. Finding a way to ap-
ply WCET reduction algorithms to custom hardware may
be the most rewarding challenge, as large execution time
reductions are possible [13,23] if the technical issues of ef-
ficiently searching for the best resource allocation can be
solved. These problems have been given only partial con-
sideration by existing work. Solutions would allow em-
bedded real-time systems to carry out more operations per
time unit by explicitly reducing the WCET of each task.

References
[1] A. Burns and A. J. Wellings. Real-Time Systems and Pro-

gramming Languages. Addison Wesley, 2001.
[2] R. Ernst, J. Henkel, and T. Benner. Hardware-software

cosynthesis for microcontrollers. IEEE Des. Test, 10(4):64–
75, 1993.

[3] H. Falk, S. Plazar, and H. Theiling. Compile-time decided
instruction cache locking using worst-case execution paths.
In Proc. CODES+ISSS, pages 143–148, New York, NY,
USA, 2007. ACM Press.

[4] J. Fisher, P. Faraboschi, and C. Young. Embedded Com-
puting: A VLIW Approach to Architecture, Compilers and
Tools. Morgan Kaufmann, 2004.

[5] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe,
and R. R. Taylor. PipeRench: A reconfigurable architecture
and compiler. Computer, 33(4):70–77, 2000.

[6] R. E. Gonzalez. Xtensa — A configurable and extensible
processor. IEEE Micro, 20(2):60–70, 2000.

[7] B. Grattan, G. Stitt, and F. Vahid. Codesign-extended appli-
cations. In Proc. 10th Int. Symp. Hardware/Software Code-
sign, pages 1–6, 2002.

[8] R. K. Gupta and G. D. Micheli. Hardware-software cosyn-
thesis for digital systems. IEEE Des. Test, 10(3):29–41,
1993.

[9] R. Hartenstein, M. Herz, T. Hoffmann, and U. Nageldinger.
KressArray Xplorer: a new CAD environment to optimize
reconfigurable datapath array. In Proc. ASP-DAC, pages
163–168, New York, NY, USA, 2000. ACM Press.

[10] R. Heckmann, M. Langenbach, S. Thesing, and R. Wil-
helm. The influence of processor architecture on the design
and the results of WCET tools. Proc. IEEE, 91(7):1038–
1054, 2003.

[11] M. Hubner and J. Becker. Exploiting dynamic and partial
reconfiguration for FPGAs: toolflow, architecture and sys-
tem integration. In Proc. SBCCI, pages 1–4, New York, NY,
USA, 2006. ACM Press.

[12] Intel. Optimizing Applications with the Intel C++
and Fortran Compilers (accessed 26 April 07).
ftp://download.intel.com/software/
products/compilers/techtopics/Compiler_
Optimization_7_02.pdf, 2004.

[13] R. Lysecky, G. Stitt, and F. Vahid. Warp processors. ACM
TODAES, 11(3):659–681, 2006.

[14] R. J. Pankhurst. Operating systems: Program overlay tech-
niques. Commun. ACM, 11(2):119–125, 1968.

[15] D. A. Patterson and J. L. Hennessy. Computer organiza-
tion & design: the hardware/software interface. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1993.

[16] I. Puaut and D. Hardy. Predictable paging in real-time sys-
tems: A compiler approach. In Proc. ECRTS, pages 169–
178, Washington, DC, USA, 2007. IEEE Computer Society.

[17] I. Puaut and C. Pais. Scratchpad memories vs locked caches
in hard real-time systems: a quantitative comparison. In
Proc. DATE, pages 1484–1489, San Jose, CA, USA, 2007.
EDA Consortium.

[18] P. Puschner and A. Burns. Guest editorial: A review of
worst-case execution-time analysis. Real-Time Syst., 18(2-
3):115–128, 2000.

[19] R. Niemann and P. Marwedel. Hardware/software par-
titioning using integer programming. In Proceedings of
the European Design and Test Conference (ED & TC),
pages 473–480, Paris, France, 1996. IEEE Computer So-
ciety Press (Los Alamitos, California).

[20] R. F. Rosin, G. Frieder, and J. Richard H. Eckhouse. An
environment for research in microprogramming and emula-
tion. Commun. ACM, 15(8):748–760, 1972.

[21] V. Suhendra, T. Mitra, A. Roychoudhury, and T. Chen.
WCET Centric Data Allocation to Scratchpad Memory. In
Proc. RTSS, pages 223–232, Washington, DC, USA, 2005.
IEEE Computer Society.

[22] D. W. Wall. Limits of Instruction-Level Parallelism. Tech-
nical Report WRL-93-6, DEC Western Research Labora-
tory, 1995.

[23] M. Ward and N. Audsley. Hardware compilation of se-
quential Ada. In Proc. CASES, pages 99–107, New York,
NY, USA, 2001. ACM Press.

[24] I. Wenzel, R. Kirner, P. Puschner, and B. Rieder. Principles
of timing anomalies in superscalar processors. In Proc. Int.
Conf. Quality Software, Sep. 2005.

[25] J. Whitham. Real-time Processor Architectures for Worst
Case Execution Time Reduction. PhD thesis, 2008.

[26] J. Whitham and N. Audsley. MCGREP - A Predictable
Architecture for Embedded Real-time Systems. In Proc.
RTSS, pages 13–24, 2006.

[27] J. Whitham and N. Audsley. A self-optimising simula-
tor for a coarse-grained reconfigurable array. In Proc. UK
Embedded Forum, pages 99–109. University of Newcastle,
April 2007.

[28] J. Whitham and N. Audsley. Using trace scratchpads to re-
duce execution times in predictable real-time architectures.
In Proc. RTAS (to appear), 2008.

[29] Y. Xie and W. Wolf. Co-synthesis with custom asics. In
Proc. ASP-DAC, pages 129–134, 2000.

[30] Xilinx. Virtex-4 Family Overview. Datasheet DS112, Xil-
inx Corporation, 2007.

[31] P. Yu and T. Mitra. Satisfying real-time constraints with
custom instructions. In Proc. CODES+ISSS, pages 166–
171, 2005.

1. Systems 11

Adaptive Framework for Efficient Resource
Management in RTOS

Ameet Patil Neil Audsley
Real-Time Systems Group,

Department of Computer Science, University of York, York YO10 5DD, UK
Email:{appatil,neil}@cs.york.ac.uk

I. INTRODUCTION

Embedded systems, applications and the environment that
they are deployed in have all become increasingly complex
in recent years. Application demands for more resources and
dynamic changes in the environment make resource man-
agement in Real-Time Operating Systems (RTOS) extremely
challenging. Key approaches include specialisation or adap-
tation of the RTOSs resource management policies according
to the dynamic requirements of the applications. This paper
describes a reflection-based adaptive RTOS framework that al-
lows dynamic application driven adaptation of RTOS resource
management policies.

The context assumed by the paper is that of low-cost,
limited-resource embedded systems with modern hardware
ie. complex CPUs with support for virtual memory. Also,
when developing a general purpose RTOS, there is limited
knowledge of the potential applications that will use the
RTOS. Thus, the RTOS is built for the general-case rather
than according to application-specific requirements. Such an
RTOS implements generic resource management policies. This
paper discusses the issues related to providing application-
specific resource management in a general purpose RTOS. An
existing approach of defining an adaptive framework in the
RTOS using reflection is described along with some results of
its implementation in Linux (2.6.16 kernel). The paper also
discusses the possible future directions to the approach.

The paper is organised as follows. The next section provides
background and motivation for the approach adopted within
the paper. Section III describes the reflection-based RTOS
framework for adapting the resource management policies.
Section IV presents some experimental results of the imple-
mentation of CASP [4] - an application-specific paging mech-
anism using the reflective framework. Section V discusses the
future work to be taken up to provide better support and further
improve the existing reflective approach. Finally, conclusions
are presented in section VI.

II. BACKGROUND

Specialising or customising the hardware and the RTOS
resource management policies for every change in the ap-
plication requirements is an expensive and time consuming
process. Existing approaches use standard hardware along with
a general purpose RTOS that implements generic resource

management policies that can provide good average-case per-
formance. As a result, the performance of applications with
dynamic resource requirements is affected by the limited sup-
port provided by such generic policies. The RTOS is built for
the generic-case rather than application-specific requirements.

Several different approaches have been proposed in the past
to address this issue. Many approaches provide solution to
only a part of the problem. For example: Rivas et. al. [16]
proposed an ada-based API for application-defined scheduling
in the RTOS, but no API for changing any other module like
memory management; more recently Ruocco [17] proposed
a user-level reflection-based approach for adaptive scheduling
alone. The exokernel [10] approach also addresses the prob-
lem by allowing applications to use application-specific OS
libraries. Due to the redundant OS library code attached to
different applications, this approach is not suitable for realtime
embedded systems with limited-resources.

Summarising, current approaches do not consider applica-
tion based resource management across multiple resources.
There is a need for a general approach encompassing all the
system resources. Such an approach should be able to change
or adapt the resource management policies to meet the dy-
namic application-specific requirements. The next subsection
introduces reflection and related approaches.

A. Reflection

Reflection is a mechanism by which a program code or
application becomes self-aware, checks its progress and can
change itself or its behaviour dynamically at runtime or
statically at compile time [6]. This change can occur by
changing data structures, the program code itself, or sometimes
even the semantics of the language its written in. To facilitate
this, the application or program code has to have knowledge
about the data structures, language semantics, etc. The process
by which this information is provided to it is called Reification.

The Reflection model consists of a base-level and one or
more meta-level forming a structure called Reflective tower.
The code in the meta-level is responsible to analyse the
reified information, intercept the necessary calls from or to the
baselevel and affect any change if required. A protocol defined
so as to establish a mechanism by which the meta-level entities
introspect (analyse), intercede (Eg. by intercepting calls to or
from base-level) and affect change to the base-level is called
the Meta-Object Protocol (MOP) [15]. In reflection the meta-

12 Workshop on Adaptive and Reconfigurable Embedded Systems (APRES’08)

level code can form a causal link (two objects are said to be
causally linked to each other when a change initiated by one
affects the other [6]) with the data structures in the base-level
to affect a change directly.

The mechanism of Reflection has been widely used in
object-oriented programming, object-oriented databases, mid-
dlewares, artificial intelligence, virtual machines and OSs [11],
[13]. Reflective OSs such as ApertOS [18], Chameleon [7] and
2K [14] focus on the aspects of composition and configura-
bility of the system as a whole and not application-specific
resource management. With the use of three different custom
designed languages: Spring-C [8], SDL [9] and FERT [1],
the Spring OS [12] makes use of reflective information in
the system to bring about certain changes in the system.
More subtle fine-grained changes to the resource management
policies in an RTOS can be brought about by exchanging
resource related information between the applications and the
RTOS. The framework described in the next section lays the
foundation to such information exchange and adaptation of the
RTOS resource management policies.

III. REFLECTION-BASED RTOS FRAMEWORK

In the context of an RTOS, the process of reification
and introspection help applications and resource management
modules exchange valuable information amongst each other.
This allows interception to be used to bring about fine-grained
changes in the resource management modules. Within this pa-
per, the framework consists of a base kernel core implementing
support for reflection, in the form of an interface to system
modules and applications to reify information, introspect and
intercept the base-level [2], [3].

Unlike existing reflective approaches, the RTOS framework
uses a non-traditional method of reification such that the
control over reified information lies solely with the kernel.
This allows the kernel to maintain a priority based list of
valuable information and discard any unwanted (eg. old)
information. Fig. 1 shows the movement of information within
the framework.

Normally, in the traditional approach, the meta-level compo-
nent receives all the information reified by its base-level. This
means that whether or not the reified information is useful,
the meta-level will receive it potentially adding unnecessary
communication overhead.

In the framework, all the information that is reified, is
passed to and stored in the kernel. Each reified information is
assigned a relative importance-level depending on the source,
destination and the time the information was reified. It is stored
in the kernel until a meta-level component explicitly requests
the information or until it gets too old to be useful anymore.
The kernel moderates the flow of information between the
various reflective entities in the system.

System modules and applications can choose not to be
reflective. Furthermore, the framework allows reification of
information not only by the base-level components but by any
entity in the system. Also, the information reified by an entity
can have multiple destinations. i.e. a meta-level component is

Fig. 1. Generic Reflective OS framework

able to obtain information pertaining to its resource not only
from its base-level but from any entity in the system providing
greater freedom and flexibility in the system.

Base Kernel Core

Code
Base−level

Code
Meta−level

link

read
reified

data

causal

Install code
or
Interception
request for

transfer
intercepted

call

reify data

Reflective System module

install
code

reified
data

Application

Fig. 2. Reflective System module

A reflective system module (eg. a reflective scheduler)
makes use of the interface provided to access reified informa-
tion stored in the kernel and take intuitive steps to intercept and
change behaviour of the base-level module. On initialising, a
reflective system module would implement a generic policy at
its base-level (see fig. 2). For example: in case of a reflective
scheduler, the base level could be a fixed priority scheduling
policy. At runtime, depending on application requirements, the
meta-level component of the scheduler can then change or

1. Systems 13

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

O L M A
MATVEC

O L M A
SCAN

O L M A
FFT-I

O L M A
FFT

O L M A
MAD

N
or

m
al

is
ed

 P
ag

e-
fa

ul
ts

Minor faults
Major faults

Fig. 3. Page-fault performance of benchmarks

adapt this policy to meet the application-specific requirements.
The advantage of this approach is that the resource manage-

ment policies can evolve and adapt to the changing environ-
ment and application requirements at runtime providing the
best possible support. The next subsection describes CASP
- an application-specific paging mechanism that uses the
framework to control the existing page replacement policy.

A. CASP Mechanism

The CASP mechanism acts as a meta-level component to
the existing page replacement policy in the OS. By accessing
the information pertaining to applications memory accesses,
CASP is able to lock and release pages from the global pool.
The base-level page replacement policy operates as normal and
has no knowledge of the pages that are being locked. CASP
achieves this by using the page-isolation technique whereby
it completely removes access to a page from any of the OS
page-list(s) such that the underlying paging policy does not
know about isolated pages and can never reclaim them. Thus,
by looking at the applications memory access patterns CASP
is able to dynamically lock and release pages into the global
page pool such that pages that the application would access
always remain in memory.

The reification calls notifying an applications memory usage
and access patterns are inserted into the application source
code either manually or automatically using the developed
tool cloop. Two CASP-specific reification calls keep() and
discard() suggest CASP to lock or release particular region in
memory [4]. More detailed description of CASP can be found
in the full paper [4]. The next section shows some important
results of CASP implementation in the Linux 2.6.16 kernel.

IV. EXPERIMENTAL RESULTS OF CASP

The CASP mechanism including the framework was im-
plemented in Linux 2.6.16 kernel. Five different benchmark
applications: MAD an MPEG decoder, FFT fast fourier
transforms, FFT-I inverse of FFT, MATVEC matrix vector
multiplication and SCAN a benchmark to stress the virtual
memory subsystem to its limits were used in the experiments.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

O L M A
MATVEC

O L M A
SCAN

O L M A
FFT-I

O L M A
FFT

O L M A
MAD

N
or

m
al

is
ed

 E
xe

cu
tio

n
tim

e

User Time
System Time

Fig. 4. Execution time performance of benchmarks

For each benchmark application, three versions of the same
application were produced: (1) using CASP with manual
insertion of reification calls, (2) using CASP with automatic
insertion and (3) using manually inserted Linuxs mlock() [5]
primitives. Version (3) is the same as (1) except that CASPs
keep() and discard() are replaced by Linuxs mlock() and
munlock() primitives.

The graphs in fig. 3 and fig. 4 show the number of
page-faults and the execution times of all versions of the
benchmark applications executed individually in Linux. Each
benchmark result shows four bars: the original application
(O), the application using Linuxs mlock() primitives (L), the
application using CASP with manual hint insertion (M) and
the application using CASP with automatic hint insertion (A).
A bar is further divided into two parts for fig. 3: the top part
shows the number of minor page-faults; the bottom part shows
the number of major page-faults and for fig. 4: the top part
shows the user-time; the bottom part shows the system-time.

CASP with manual insertion generated 22.3% less major
page-faults; improving the execution time by 12.5% while
CASP with automatic insertion generated 15.13% less major
page-faults; improving execution time by 9% amongst all the
benchmark applications when executed individually.

CASP was also tested by executing a combination of two
and all benchmark applications. With manual insertion CASP
generated 15.38% and 18.06% less major page-faults and
improved performance by 28.03% and 12.30% for two and
all benchmark applications respectively.

V. LIMITATIONS AND FURTHER IMPROVEMENTS

Although the RTOS framework allows adaptation of the
resource management policies on-the-fly, there is much more
work needed to improve the current status. Following lists a
few limitations and possible improvements:

• categorisation of information: information pertaining to
one resource could also be valuable for another. Thus, a
standard approach to categorise and represent information
in a generic way is necessary.

14 Workshop on Adaptive and Reconfigurable Embedded Systems (APRES’08)

• extra memory: it requires additional memory to store
reified information in the system. The kernel is burdened
with efficient management of this information to keep the
memory usage as low as possible adding additional code
overhead as well.

• requires explicit reification: the application source needs
to explicitly reify resource requirements to the RTOS. The
accuracy of reified information is thus largely dependent
on the application programmer or the automatic tools
used.

Detailed analysis of the memory requirement for the CASP
mechanism has shown to use up to 21% additional memory.
The CASP mechanism itself helps reduce the resident memory
set size of an application by almost 34%. However, the use of
memory within the RTOS framework in general needs to be
investigated.

Currently, we are looking at more robust analysis tools that
would automatically insert reification calls into the applica-
tions either in source during compilation or in object code
during linking. Embedding reification into the programming
language by language extensions is also being looked as a
possible solution. The Spring-C [8] language already supports
similar constructs.

The cloop [4] tool currently developed analyses the appli-
cation source identifying loop-based access to large memory
regions and automatically insert reification calls. Extending the
tool for common resource usage in general is a challenging
problem. A combination of static and runtime analysis of
the application can be used to determine its resource usage.
Later, the insertion of corresponding reification calls in the
application will help the adaptation of resource management
policies at runtime.

VI. CONCLUSIONS

This paper described an adaptive reflection-based frame-
work for embedded real-time operating systems to allow
runtime adaptations of the resource management polices. The
applications and the resource management modules are able to
reflect on their performance at runtime, and change or adapt
their behaviour dynamically to reflect the current state of the
system. A paging mechanism - CASP that makes use of the
reflective framework to adapt the paging policy according to
the applications memory access patterns is described along
with the experimental results. Finally, discussion on the exist-
ing limitations of the reflective approach, the current status of
our work and the required improvements were presented.

REFERENCES

[1] A. Bondavalli and J. Stankovic and L. Strigini. Adaptable Fault Toler-
ance for Real-Time Systems. In Proceedings of the 3rd International
Workshop on Responsive Computer Systems, September 1993.

[2] Ameet Patil and Neil Audsley. An Application Adaptive Generic
Module-based Reflective Framework for Real-time Operating Systems.
In Proceedings of the 25th IEEE Work in Progress session of Real-time
Systems Symposium, Lisbon, Portugal, December 2004.

[3] Ameet Patil and Neil Audsley. Implementing Application-Specific RTOS
Policies using Reflection. In Proceedings of the 11th IEEE Real-time
and Embedded Technology and Applications Symposium, pages 438–
447, San Francisco, 2005.

[4] Ameet Patil and Neil Audsley. Efficient Page lock/release mechanism in
OS for out-of-core Embedded Applications. In Proceedings of the 13th
IEEE Real-time and Embedded Computing Systems and Applications
Symposium, pages 81–88, Daegu, Korea, August 2007.

[5] M. Beck, H. Böhme, M. Dziadzka, U. Kunitz, R. Magnus, and D. Ver-
worner. Linux Kernel Internals. Addison–Wesley, second edition, 1998.

[6] Brian Cantwell Smith. Reflection and Semantics in a Procedural
Language. PhD thesis, Massachusetts Institute of Technology, January
1982.

[7] R. W. Bryce. Chameleon, a dynamically extensible and configurable
object-oriented operating system. PhD thesis, Victoria, B.C., Canada,
Canada, 2003. Adviser-G. C. Shoja.

[8] D. Niehaus. Program Representation and Translation for Predictable
Real-Time Systems. In Proceedings of the IEEE Real-Time Systems
Symposium, pages 43–52, December 1991.

[9] D. Niehaus and J. Stankovic and K. Ramamritham. The Spring System
Description Language. Technical Report UMASS TR-93-08, University
of Massachusetts Amherst, 1993.

[10] Dawson R. Engler. The Exokernel Operating System Architecture. PhD
thesis, Massachusetts Institute Of Technology, October 1998.

[11] John A. Stankovic. Reflective Real-Time Systems. Technical Report
93-56, Univeristy of Massachusetts, 1993.

[12] John A. Stankovic and Krithi Ramamritham. The Spring Kernel: a New
Paradigm for Real-Time Operating Systems. SIGOPS Oper. Syst. Rev.,
23(3):54–71, 1989.

[13] F. Kon, F. Costa, G. Blair, and R. H. Campbell. The case for reflective
middleware. Communications ACM, 45(6):33–38, 2002.

[14] F. Kon, A. Singhai, R. H. Campbell, D. Carvalho, R. Moore, and F. J.
Ballesteros. 2K: A Reflective, Component-Based Operating System for
Rapidly Changing Environments. In ECOOP’98 Workshop on Reflective
Object-Oriented Programming and Systems, Brussels, Belgium, July
1998.

[15] J. Malenfant, M. Jaques, and F.-N. Demers. A Tutorial on Behavioral
Reflection and its Implementation. In Proceedings of the Reflection 96
Conference, Gregor Kiczales, editor, pp. 1-20, San Francisco, California,
USA, April 1996.

[16] M. A. Rivas and M. G. Harbour. Application-defined scheduling in
Ada. In IRTAW ’03: Proceedings of the 12th International Workshop
on Real-Time Ada, pages 42–51. ACM Press, 2003.

[17] S. Ruocco. User-level fine-grained adaptive real-time scheduling via
temporal reflection. In RTSS ’06: Proceedings of the 27th IEEE Inter-
national Real-Time Systems Symposium, pages 246–256, Washington,
DC, USA, 2006. IEEE Computer Society.

[18] Y. Yokote. The Apertos Reflective Operating System: The Concept
and Its Implementation. In Conference Proceedings on Object-Oriented
Programming Systems, Languages, and Applications, pages 414–434.
ACM Press, 1992.

1. Systems 15

Enhancing the Adaptivity for Multi-Core Embedded Systems with Dynamic
Performance Scaling in FPGA

 Yan Zhang Gang Quan

Dept. of CSE, Univsity of South Carolina
{zhangy,gquan}@engr.sc.edu

Abstract

Multi-core systems are usually designed to be capable
of delivering high peak performance when necessary.
However, they need to be adaptive for the sake of
improving resource usage efficiency. This is particular
critical for the embedded system due to its tightly
constrained resources and highly dynamic nature. In this
paper, our goal is to design and develop a multi-core
embedded platform in FPGA with enhanced adaptivity by
allowing the performance of each individual core be
dynamically varied. This platform is general and flexible
enough to be readily tailored for the purpose of
theoretical research and practical design of multi-core
type real-time embedded system.

1. Introduction

Recently, the computing industry is switching its gear
from pursuing the super high performance single
processor toward developing the multiple processor or
multi-core architecture to keep up with the increasingly
performance demands. The emphasis on multi-processor
or multi-core structure in industry changes the computing
landscape not only for the traditional high performance
computing arenas such as scientific applications but also
embedded applications as well [1], as embedded
applications continuingly demand more computing power.
The high performance computing system needs not only
be able to deliver high performance when needed, but
should also be adaptive and flexible enough to be capable
of accommodating the run-time dynamics to use the
resource more efficiently. This is particularly critical for
embedded platforms, which usually have tight resource
constraints, such as power/energy consumption, and
highly dynamic workload.

For embedded systems designed in FPGA, their
adaptivity can be enhanced by totally or partially
reconfiguring the reconfigurable fabric or connections on
the fly in response to the external environment. Today,
new generations of FPGA chips such as Virtex 4 can
integrate multiple built-in processors in one chip. Further,
more software cores such as MicroBlaze [8] can be
readily incorporated into the same FPGA chips. This
presents an excellent opportunity to enhance the adaptive

of multi-core based embedded systems in FPGA by
dynamically varying the supply voltages/working
frequencies, and thus performances, of these processor
cores.

Dynamic voltage/frequency scaling (DVFS) technique
has long been recognized as an effective means to
improve the efficiency of resource usage, such as
power/energy consumption. Traditionally, FGPA chips
work under one constant supply voltage and working
frequency. The new clock control module (DCM) in
today’s FPGA makes it very convenient to dynamically
adjust the working frequency for functional blocks or
processor cores in FPGA [13]. Even though current
FGPA technology does not support dynamic voltage
scaling (DVS) feature, i.e., a critical feature for saving the
power/energy consumption more effectively, we notice
that implementing such feature has been put into the
agenda by the manufacturer for the development of new
generations of FPGA chips [18].

 Our goal is to develop a customizable and extensible
multi-core platform with dynamically controllable
performance in FPGA. One immediate use for this
platform is to use it as a testbed to verify the theoretical
research results on power-aware computing on multi-core
embedded system design. While extensive theoretical
research results have been published, these results are
often based on idealized models and assumptions. They
need further experimental work to validate and evaluate
their applicability and effectiveness. While there are some
commercial multi-core products available at present, for
example, the Sony/Toshiba/IBM Cell Processor combines
standard PowerPC core with eight SIMD cores [3] and
Cisco is shipping a product with 188 cores on a single
chip [16], these products are intended for commercial use
rather than as an experimental platform. There are also
some evaluation boards that support multiple DSP
architecture, such as Tiger-PCI board [17], the scopes and
ranges of experiments are limited due to factors such as
the fixed architectures, dedicate software environment,
and high development cost. We believe that the
development of a general, flexible, low-cost, and readily
available testbed based on FGPA can greatly encourage
researchers to validate their theoretical research results in
distributed embedded computing in a more rigorous and
effective manner.

16 Workshop on Adaptive and Reconfigurable Embedded Systems (APRES’08)

In this paper, we present our preliminary work on the
design and implementation of a multi-core system with
dynamic working frequencies on Virtex 4 using Xilinx
FPGA developing tools. In Section 2, we present the
general framework of our design, together with some
design issues. Section 3 presents a proof-of-concept test
case. We conclude the paper in section 4.

2. General Framework

The hardware architecture of our proposed platform is
shown in Figure 1. All the design units can be fitted into a
single FPGA chip except the external memory. Multiple
Processing Elements (PE) are connected with
interconnection network. Each PE consists a processor
core (MicroBlaze or PowerPC), a small scratch-pad
memory, a customized clock control IP, and a customized
timer (for MB only since PPC has built-in timer already).
The scratch-pad memory is small and fast local memory
connected directly to the processor core. It is
implemented with the Block RAM on FPGA, with size
severely limited, i.e. a Virtex4 FX12 has maximal Block
RAM as 72KB. To enable large test programs and data
sizes, we divide the external memory into several private
memory sections and one shared section. Each private
memory section is associated to one processor and can
only be accessed by this processor. The shared memory
section, on the other hand, can be accessed by all
processor cores.

PE0
PE1

Private
Memory

Clock IP

Timer

μ
P

BUS

PEn

Off-Chip Memory

Memory Management Unit

Interconnection Network

FPGA

Figure 1. The hardware architecture

To dynamically control the performance of the
processors, we built a customized IP (as shown in Figure
2) that can control the clock for each processor core on
the fly. Each customized clock control IP consists of a
Digital Clock Management (DCM) unit [15-16] and a

configuration logic unit. The Xilinx’s DCM of Virtex 4
and 5, is a multi-function clock management unit which
supports dynamic configuration of clock frequencies
ranging from 32MHz-210MHz. Two parameters, M and
D, can be programmed into the DCM, and the output
frequency is determined by fout= fin *M/D. The valid
value of M is 2~32, and 1~32 for D. By setting the input
and maximal clock frequency for the PEs as 100MHz, we
have approximately 221 different new frequencies
available by choosing appropriate M and D values. Such
a large number of different frequency scales, the target
working frequency output from the theoretical model can
be modeled reasonably accurate by finding appropriate M
and D values. The dynamic clock can be varied
continuously, but the cost --switching overhead --may be
significant. The feedback approach is also possible as
long as the feedback control takes the switching overhead
into account. The bus interface of customized clock unit
can be easily configured as OPB or PLB slave.

Figure 2. Clock Control Unit

There are number of choices for processor
interconnections. The traditional bus connection (for
example, using the On-chip Peripheral Bus (OPB)) is
possible but less attractive due to the scalability concern.
An alternative is to use the logic source in FPGA to create
the Network-On-Chip (NOC) infrastructure. For example,
Schelle and Grunwald [17] implemented a switching
network as interconnection for general purpose processor
in a Virtex II-pro device. One major disadvantage of this
solution is the large amount of resources it requires.
Based on our experiment, a 4x4 mesh with 32-bit data
width would exceed the capacity of Virtex-II Pro 30
using VHDL-programmed NOC infrastructure.

In our design, we adopt the convenient point-to-point
connection mechanism, i.e., the Fast Simplex Link (FSL)
bus, provided by Xilinx. FSL is a FIFO-based connection
and can be synchronous or asynchronous. An
asynchronized communication scheme is particularly
useful in our design with different processors running at
different speeds. While Xilinx has not officially claimed
to support DFS capability for MicroBlaze processor, we
have tested FSLs with variable working frequencies. So
far, there are no serious impacts on the system correctness.
Further investigation on these impacts will be reported.
In addition, each core from Xilinx supports multiple FSL
buses. For example, a MicroBlaze has up to eight pairs of

1. Systems 17

FSL to connect up to eight different components for
duplex communication, which makes it reasonably easy
and effective to build popular multi-core topologies such
as the tree, mesh, or torus structure.

3. The proof-of-concept experiment

We implemented the proposed hardware architecture in
Figure 1 on Xilinx’s test board ML403, which includes a
Virtex 4 FX12 FPGA, with package number FF668 and
the speed scale 10. Four MicroBlaze-based PEs (PE0 –
PE3) were implemented on same the FPGA chip and
connected with FSL into a simple tree structure, with PE0
as the root node and three others as leaf nodes. The
MicroBlaze was configured to the basic, i.e. no float-
point unit, cache, integer division, to save the resource
usage. A UART is connected to PE0 for debugging
purpose. As the terminal usually fixes the baud rate, a
fixed clock is necessary for PE0. We therefore fix the
clock for PE0 at the maximal working frequency. At this
stage, we have not been able to make the external
memory to function properly for multiple processor cores
with different working frequencies. So the FSL is the
only path that the data can be moved from one processor
to another. The system resource utilization is reported in
table II.

TABLE I
SYSTEM HARDWARE UTILIZATION SUMMARY

Utilization on Device 4vfx12ff668-10
Device resource

Used Available Percentage
Flip Flops 5968 10944 54%

4 input LUTs 7386 10944 67%
DCM 4 4 100%

DSP48s 12 32 37%

Global Clocks 3 32 9%
FIFO16/RAMB16s 32 36 88%

The matrix multiplication was used as our example

application for its highly deterministic workload with
very little profiling required. In this application, a large
matrix is divided into four smaller sub-matrices. Each PE
was used to compute one sub-matrix for the final matrix,
with the PE0 also in charge of initialization and result
collection. We intentionally divided the matrices un-
evenly. So we can deliberately vary the performance of
individual PE without compromising the completion time
when all PEs always run at their peak performance. In our
case study, four different clock frequencies, i.e. 40MHz,
50MHz, 66.7MHz and 100MHz, are provided and we use
the two least significant bits of the bus to select the
desired frequency. It consumes less than 1% of the slices
when synthesized in a Virtex 4vfx12 FPGA. More clock

configurations will be implemented and studied in further
research

We first investigated several interesting parameters
with profiling. This includes the frequency transition
timing overhead and the communication speed. The
frequency switching overhead, i.e., the time required to
change the processor frequency from one to another, was
measured by inserting Xilinx’s ChipScope Integrated
Logic Analyzer (ILA) core into the design and sampling
the IP internal signals via JTAG connection. The timing
diagram is shown in Figure 3. The clk_in is the input and
clk_out is system clock. The lock signal indicates the
DCM working status: it goes low when reconfiguration
starts, and goes high when stable output is available.
Therefore, the interval when lock goes low represents the
frequency switching overhead. After sampling the lock
signal for all four different frequencies, we found that the
switching overhead is around 56μs. Though it’s not
desirable, we did not find any impacts on the system
correctness.

Figure 3. The Switching Overhead for Varying the Working
Frequencies

For the communication speed between the PEs, the

ideal bandwidth of FSL bus is one word per cycle.
However, when we tested in the software environment,
the communication cost is much greater. With our
customized timer, we measured the interval between the
start and end of data transfer and observed that it takes
approximately 18.3 cycles to complete the transferring of
one word (four byte). In addition, when running
processors at different speeds, the cycle length is
determined by the one running at the lower speed, which
seems to be reasonable.

We tested an 8x8 integer matrix multiplication
application on the developed platform. The matrix was
divided into 4 sub-matrices with size 6x6, 6x2, 2x6, and
2x2. The profiled execution times (at the highest clock
frequency) are shown in the following table.

TABLE II
RUNNING TIME FOR FIXED CLOCK

 PE0 PE1 PE2 PE3
Clock 100MHz 100MHz 100MHz 100MHz
Running
time(ns)

75,150 26,360 20,950 8,540

With clock control unit, we can propose the following
clocks to reduce the power dissipation and still complete
the task in time.

18 Workshop on Adaptive and Reconfigurable Embedded Systems (APRES’08)

TABLE III
RUNNING TIME FOR PROPOSED CLOCK

 PE0 PE1 PE2 PE3
Proposed
clock

100MHz 40MHz 40MHz 40MHz

Running
time(ns)

75,150 65,900 52,375 21,350

4. Conclusion and future work

The degree of adaptiveness, i.e., the adapativity, is
critical for multi-core system-on-chip architecture, which
has the great potential to meet the increasingly demanding
performance requirements but also needs to satisfy the
stringent resource constraints. In this paper, we discuss
our work in the design and development of a multi-core
embedded platform in FPGA with enhanced adaptivity by
enabling the performance of each individual core be
dynamically varied. This platform is general and flexible
enough to be readily used for multi-core related research
and practical design.

There are a number of directions for our future studies.
First, we failed to use the existing memory control IP to
access external memory by multiple processor cores
running at different clocks. This limit the program and
data size for the sample programs that can be validated
with this platform. We are currently seeking help from
Xilinx technical support for this problem. Second, we
need to develop the real-time operating system (RTOS)
support for the proposed platform. Currently the
processes, communication, memory are managed in a ad
hoc way, which will be extremely tedious and error-prone
for large application. A reliable RTOS support can
significantly facilitate the implementation and test of a
large scale real-time multi-core system. Third, the power
measurement is another problem that needs to be
carefully addressed. Currently Xilinx provides several
power measurement tools, such as XPower. It enables
more accurate switching activity analysis by combining
the register level switching activity file, i.e., the Value
Change Dump (VCD) files and the system mapping file,
i.e., the Native Circuit Description (NCD) file. It would
be desirable that these switching activity analysis results
can be used in a more accurate computation of power and
energy consumptions. Another problem has to do with the
size of VCD file. It takes about half an hour to run 2 ms
of simulation and generate the VCD file about 4 GB.
Some higher level power analysis tools may be needed to
improve the measurement efficiency. Fourth, we are
watching closely for the DVS features for the new
generations FPGA product. While changing the
frequencies helps to vary the performance, this has not

transformed to its real benefit, i.e., more effective
power/energy conservation.
Acknowledgment

This work is supported in part by NSF under Career
Award CNS-0545913 and grant number DUE-0633641.

References
[1] K.Asanovic et al “The Landscape of parallel computing

research: a view from Berkeley”, http://www.eecs.
berkeley.edu/Pubs/TechRpts/2005/EECS-2006-183.pdf

[2] J.Hennessy and D.Patterson, Computer Architecture: A
Quantitative Approach, 4 th edition, Morgan Kauffman,
San Francisco, 2007

[3] Chip Multi Processor Watch http://view.eecs.berkeley.
edu/wiki/Chip_Multi_Processor_Watch

[4] M.LaPedus, “To save power, embedded tries multicore”
EE times, Issue 1481, June 25, 2007 pp. 1-6T.

[5] J.Wawrzynek et al “RAMP: A Research Accelerator for
Multiple Processors”
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-
2006-158.pdf

[6] J.Becker, M. Huebner, and M. Ullmann, “Power
estimation and power measurement of Xilinx Virtex
FPGAs: Trade-offs and Limitations” Proc.16th Symposium
on Integrated Circuits and Systems Design, September
2003,pp. 283- 288

[7] J.Ou, V.Prasanna “Rapid energy estimation of
computations on FPGA based Soft Processors” Proc. IEEE
International SOC Conference, September 2004. pp.285-
288.

[8] http://www.xilinx.com/products/design_resources/proc_cen
tral/index.htm

[9] http://www.xilinx.com/ise/design_tools/
[10] http://www.xilinx.com/ise/embedded/edk.htm
[11] Xilinx’s ML403 Board User Guide

http://direct.xilinx.com/bvdocs/userguides/ug080.pdf
[12] Xilinx’s Virtex 4 User Guide,

http://direct.xilinx.com/bvdocs/userguides/ug070.pdf
[13] R.Krueger, “Dynamic Reconfiguration of functional

blocks” XCell, Xilinx, Issue 52, March 2005
[14] G.Schelle, D.Grunwald, “Onchip interconnect exploration

for multicore processors utilizating FPGAs” 2nd Workshop
on Architecture Research using FPGA Platforms, 2006

[15] A. Wolfe, “Intel Clears Up Post-Tejas Confusion,”
VARBusiness, May 17, 2004.
http://www.varbusiness.com/sections/news/breakingnews.j
html?articleId=18842588

[16] W. Eatherton, “The Push of Network Processing to the Top
of the Pyramid,” keynote address at Symposium on
Architectures for Networking and Communications Systems,
Oct. 26–28, 2005.

[17] Tiger-PCI Quad ADSP-TS101 TigerSHARC PCI board
http://www.bittware.com/products/boards/prod_desc.cfm?P
rodShrtName=TSPC

[18] Nunez-Yanez et al “Dynamic Voltage Scaling in a FPGA-
Based System-on-Chip” FPL 2007

1. Systems 19

2. Distributed Systems

Building Adaptive Embedded Systems by
Monitoring and Dynamic Loading of Application

Modules
Florian Kluge, Jörg Mische, Sascha Uhrig, Theo Ungerer

Department of Computer Science - University of Augsburg
86159 Augsburg, Germany

{kluge, mische, uhrig, ungerer}@informatik.uni-augsburg.de

Abstract— Networks of embedded systems usually lack flexi-
bility due to the static configuration of their nodes. In this paper,
we present a concept to adapt distributed embedded real-time
environments at runtime using code relocation techniques. The
main objectives of this work are to improve the availability of
services within such environments and to increase the flexibility of
the whole distributed system. The decision about reconfiguration
is based on an extensive monitoring of the hardware and software
system.

I. INTRODUCTION

Today, the number of embedded systems is constantly
growing and establishing distributed systems of Embedded
Control Units (ECUs). For example, a car can contain over
70 ECUs fulfilling most different duties. Usually these ECUs
are statically configured for specific tasks. This leads to the
deployment of many different but highly specialised ECUs
within such a system. Thus, the complete system has a high
susceptibility for failures. Simultaneously, its adaptability is
restricted to the abilities of the single ECUs.

With an intelligent management that supports the relocation
of applications between processing nodes, it would be possible
to decrease the number of ECUs in such a system, while
the dependability of the whole system would be increased.
Also, adaptability techniques were no longer restricted to
the capabilities of single nodes, but could exploit the whole
distributed system. Through the dynamic adaptability it would
be possible to switch off single nodes to save energy. In cars
this would directly decrease the CO2 emissions.

Such a management uses the runtime information of the
single nodes to adapt the whole system to the actual require-
ments. Applications that will probably fail operation in the
near future due to resource constraints (e.g. low battery, low
memory, high CPU load) should be moved to other nodes for
proper operation. If hardware devices attached to a processing
node fail operation, it might be possible to substitute their
functionality by other devices. Two precondition exist for this
approach:

1) an extensive monitoring of hard- and software parame-
ters and

2) a mechanism to relocate applications between nodes.

In this paper we describe how we employ the system moni-
toring facilities of CAROS (Connective Autonomic Real-time
Operating System)[1] to detect or predict future bottlenecks of
resources and possibilities for system optimization. With the
help of a runtime linker the system is adapted to these new
conditions and still able to keep maximum performance.

CAROS is part of the CAR-SoC (Connective Autonomic
Real-time System-on-Chip) project [2]. The base of this
project is the CarCore processor, which is binary compatible
to the Infineon TriCore architecture, a well-known automotive
processor. However, it is extended by the capability of simul-
taneous multithreading and implements a real-time capable
scheduling technique [1] based on the Guaranteed Percentage
scheduling [3]. Thereby, a thread gets a specific share of
the processing time which can be guaranteed for real-time
threads over a recurring period of time. The CarCore processor
is currently available as a SystemC simulation model. The
real-time operating system CAROS provides a comfortable
interface for application development.

We draw special benefit from the scheduling technique of
the CarCore processor which allows us to run so-called helper
threads in parallel to real-time applications without disturbing
their timing behaviour. “Helper thread” thereby is a term used
for threads running in parallel to the actual application and
supporting its operation, but they are not required for proper
operation.

This paper is organized as follows. Section II presents
related work. In section III we describe how applications and
hardware core components are monitored and which adapta-
tions are possible for specific system states. Our framework
for the migration of applications is presented in section IV. In
section V we present some performance measurements of our
implementation. Section VI concludes this paper and gives a
short overview of future prospects.

II. RELATED WORK

The concept of code migration is well-known from the area
of mobile agents. The MESSENGER project [4] provided a
virtual machine for agents written in a special language. It was
ported to the Java virtual machine as JMessengers [5], [6], now
using common Java code for the framework and as well for

2. Distributed Systems 23

the agents. Another mobile agent system was developed in the
ARA project [7]. Agents for this system are written in TCL
or C/C++. This code is compiled into the MACE bytecode
representation [8] which is interpreted at runtime.

The concept of mobile agents is similar to our aim of
“mobile applications” with two main differences. Mobile
agents are active software entities, which decide themselves
if they want to migrate. Thus, the agents have an individual
responsibility to fulfill their tasks. In our approach the runtime
environment makes the decision about migration and also
takes over the responsibility of the execution of the tasks.
Furthermore, the presented systems use managed languages
to implement the agents. In contrast, for reasons of efficiency
we want to migrate native binary code.

AUTOSAR [9] is the upcoming industrial standard for
automotive software. It aims to provide software developers
with more flexibility in the development cycle. However,
runtime reconfiguration is not yet integrated into the standard,
so an AUTOSAR ECU is still statically configured. But there
are several approaches to overcome this limitation [10], [11].
Perhaps future versions of AUTOSAR will also target the
problems of reconfiguration and adaptability in more detail.

The dynamic loading and linking of code is also a common
concept in modern operating systems (e.g. Shared Objects
under Unix/Linux or DLLs under Windows). However, these
operating systems run usually on high-performance machines
whereas we target the area of embedded systems with all their
restrictions. Also, the dynamic loading/linking in common
desktop operating systems is targeting other objectives, i.e. the
avoidance of code replications for commonly used libraries.

III. APPLICATION MONITORING

CAROS offers a wide range of monitoring points and also
the convenience to add user- or hardware-defined monitoring
points. Through the analysis of the monitoring data, the OS
is able to detect upcoming nuisances. In such a case, apt
countermeasures must be taken.

Dynamic

Memory

Management

Node

Thread/
Application

Thread/
Application

Thread/
Application

Thread/
Application

Thread/
Application

Resource

Management

Device
Drivers
Device
Drivers
Device
Drivers
Device
Drivers
Device
Drivers

Thread

Management

RT-Scheduling

Thread
Synchronisation

Physical ECU

MemoryMemoryMemory Hardware DevicesProcessor

BatteryI/O

MMMMM

MMMM

MMMM
MMMM

Runtime

Linker
ApplicationApplicationApplicationApplicationApplication

Migration

Engine

Fig. 1. Architecture of CAROS; note the monitoring points (M)

Figure 1 shows the architecture of CAROS. The OS core
is built from the three parts Thread Management, Memory
Management and Resource Management. Each of these parts
is equipped with monitoring points (marked with M), which
provide accurate information about the current system state.
The Migration Engine and the Runtime Linker are located on
top of these modules. The migration engine evaluates the mon-
itoring data and decides about the relocation of applications. If
it receives an application from another host, it uses the runtime
linker to link the application into the running system.

In the following paragraphs, we will describe the monitors
in more detail. The migration engine and the runtime linker
will be detailed in the next section.

A. Processing Time

Due to the special scheduling technique of the CarCore, the
OS only has to ensure that the sum of all real-time threads’
processing time does not exceed 100%. The timing behaviour
of the applications is guaranteed by the hardware scheduling
technique. Thus, the load of the processor can be determined
exactly at any time, supporting decisions about applications’
relocations (sending and receiving). Especially techniques for
Dynamic Voltage and Frequency Scaling (DVFS) are sup-
ported, as each scaling of frequency also needs an adaption
of the application’s share of processing time to preserve their
timing behaviour.

B. Memory

The memory management of CAROS is split into two
levels of allocation, the Node and the Thread Level. The
Node Level is able to simultaneously manage several types
of memory within one node. It allocates huge portions of
memory to the threads. The Thread Level uses these portions
to allocate memory to the applications with a predictable
timing behaviour because of its exclusive access.

The memory types on the node level usually are distin-
guished by access time and energy consumption. Applications
are attached to one type of memory. So, applications that
need low latencies and fast response times would be put
into a fast memory bank at the cost of a higher energy
consumption. The memory management not only provides
information about the overall memory consumption, but also
about the each application’s share of memory. If a memory
bank impends to be fully occupied, the OS can detect the
responsible application. Negotiations with other nodes can lead
to the relocation of an application onto another node now more
apt, i.e. having more available memory.

C. Energy - Battery

One of the most important monitors watches the battery.
If the charge level drops below a certain threshold, it is
necessary to trigger actions that do not only minimise the
energy consumption of the node, but also help to ensure
continuing proper operation of the whole system. This leads
to close interaction with other monitors for memory and
processing time. To save energy it is possible to

24 Workshop on Adaptive and Reconfigurable Embedded Systems (APRES’08)

• switch off memory banks with high power consumption,
• decrease the processor’s frequency and voltage,
• combine both of the above, or
• switch off the complete node, in the worst case.

On the other hand, a node is able to realize if its power
supply will suffice for a long time. In such a case it can offer
to take over the applications of failing nodes.

D. Other Hardware Resources

Most hardware resources are accessed through the resource
management and device drivers. CAROS urges these drivers
to provide at least minimum information about availability
and state of the devices. The drivers may also provide more
detailed information that can be used for relocation decisions.
In fact, the energy monitoring for batteries is just another
device driver that merely consists of the monitoring functions.

If a specific hardware device fails operation, a service
depending on it may possibly be restarted on another node
that can substitute the hardware functionality.

IV. THE MIGRATION FRAMEWORK

In this section, we present the OS components that are
related to the relocation of applications.

A. Application Development

We use the object-files (.o) generated by the Hightec
tricore-gcc [12] as application images. Hence, we have
developed a framework that ensures that these files have
a certain layout. Additionally to the application itself, the
developer has to provide the following:

• functions for un-/packing of the application’s data: we
give the application developer full control over the mi-
gration of the application data. The developer knows
best, what data is necessary for a successful relocation
and so also only the most necessary data is transmitted.
Thus, the usually rather restricted communication net-
work bandwidth is saved. The functions for un-/packing
the application data are integrated into the object file,
because they depend only on the application code.

• memory and processing time constraints of the applica-
tion: these will be determined through a separate WCET
analysis of the application. They are necessary for the
relocation decision and to keep the timing behaviour of
the application. Such information is kept separate from
the object file, because it may vary for different system
configurations and/or QoS levels.

Thus, a relocatable application consists of the “raw image”
produced by the compiler and of the additional timing and
memory information. The raw image cannot be executed
directly, instead it must be linked into the running system by
the Runtime Linker, which we describe next.

B. The Migration Engine and the Runtime Linker

In addition to the Raw Image and the Application Con-
straints, a relocatable applications also comprises the Migra-
tion Data. Here the application’s runtime data is stored for
migration.

Based on the monitoring data (section III), the migration
engine decides about the acceptance respectively relocation
of applications. The decision itself is made by a middleware
which is not part of this work.

If a node accepts an application from another node, the
Migration Engine receives a data packet from the application’s
source node. It disassembles the received data packet into
the raw image, the application data, and the application
constraints. The raw image is passed to the Runtime Linker,
which creates the Process Image. If necessary, the memory
constraints defined for the application are taken into account.
Dependencies to symbols (variables and functions, e.g. calls
to OS services, but also function calls within the application
module) are resolved at this point (“code relocations”). Also,
the application’s data memory is prepared. After the linking
process, the application data received along with the applica-
tion image is passed to the application’s unpack function.
The scheduling parameters for the thread slot containing the
application are set according to the given timing constraints.
Now the application is ready to run. The raw image of the
application is kept in the migration engine for later relocations
to other nodes.

If a relocation is decided, the migration engine stops the
application, its data is packed using the application’s pack
function and then it is bundled together with the raw image
and the constraint data and sent to the target node. After it has
been linked successfully, the local process image is destroyed
and the corresponding thread slot is released.

C. Real-Time Considerations

The timing behaviour of the whole relocation process is
subject to several constraints. The decision process and the
transmission of the application to another node may be real-
time capable, if the decision algorithm and the communication
network are real-time capable. The timing behaviour of the
un-/packing of the application’s data is completely at the
responsibility of the developer.

The timing of the linking process itself is a bit more
difficult. Timing problems may arise from the necessary code
relocation. In particular, we must distinguish the following
code relocation types:

• Internal: The time to resolve symbols within an applica-
tion module only depends on the application’s code itself.
It is constant over all nodes and is known in advance.

• Kernel: OS services usually are accessed through
system calls, i.e. trap routines. These trap calls are
resolved by the processor, so no code relocation is neces-
sary. If OS services are accessed through normal function
calls instead, code relocations are necessary. However, as
each node runs the same OS, the access tables for the OS
services are everywhere the same, and thus the time for

2. Distributed Systems 25

the code relocation is also the same for an application on
every node.

• External: References to symbols defined in other dynam-
ically loaded modules present a problem. The symbols
usually are stored in dynamic data structures like hashta-
bles, which cannot give timing guarantees.

Hence, if an application is restricted to the use of internal and
kernel symbols, the migration time is predictable. Therefore,
the linker should be run as a real-time helper-thread with a
guaranteed share of processing time. If references to other
modules exist, it is very hard to make any timing guarantees.
This is the case especially if several modules are accessed
through the same hashtable. Here the access times might
depend on the order these modules were linked.

Also, it is possible to do the linking in the background on the
target node while the application is still running on the source
node. Just when the linking process is finished, the application
is stopped and its data is migrated. Thus, the timing critical
region is kept much shorter and more predictable.

V. RUNTIME EVALUATION

We carried out some measurements regarding the timing
behaviour of several parts of the migration process (re-
/creation of the image, dispatching...). We used a simple
counter program (CNT) and a PID controller (PID) as example
programs. The measurement results are shown in table I.

TABLE I
RUNTIMES FOR APPLICATION MIGRATION (CLOCK CYCLES)

CNT PID
Create Image 98,647 180,008
Dispatch Application 22,305 52,996
Re-create Image 98,787 180,205
pack data 36 176
Image Size (bytes) 1,576 3,700
Data Size (bytes) 4 60

We show the runtime measured in clock cycles, running
the migration engine with maximum performance. The most
expensive part is the (re-)creation of the process image. So,
for the PID controller the performance cost of a migration is
about 230,000 clock cycles. Assuming a clock frequency of
100 MHz, this would take 2.3 ms. However, usually the linker
will be run only in the background and thus the linking will
take some more time. Through our scheduling technique the
user has full control over the linker’s timing behaviour.

We did not take the time for the transmission of the
application image into account, as it depends on the kind of
communication network that is used.

VI. CONCLUSION

A. Contributions

With the presented relocation concepts, we improve the
energy efficiency of distributed embedded systems. Through
a uniform distribution of the applications over the nodes, the
power consumption of each node is kept as low as possible. Si-
multaneously, the availability of services is increased, because

they are not bound to one node, but can be moved between
nodes.

Furthermore, we improve the flexibility of such embedded
systems. Hardware units can be built more generic, saving
development costs. The specialization of the units is done
completely by the software at runtime by configuring the
single ECUs adaptively towards the necessary tasks. Also, the
reconfiguration of ECUs at runtime is possible allowing a more
efficient use of the hardware resources.

Real-time operation is not influenced at all due to the
used scheduling technique. On the contrary, the migration
framework can be run under real-time requirements and thus
will back the real-time behaviour of the complete system.

B. Future Work

Currently, applications themselves must take care of saving
and restoring their state. In the future, we aim to extend our
migration framework such that most of this work will be done
by the migration engine. Thus, the application developer will
be relieved from the work of de-/serialization of application
data.

REFERENCES

[1] F. Kluge, J. Mische, S. Metzlaff, S. Uhrig, and T. Ungerer, “Integration
of Hard Real-Time and Organic Computing,” in ACACES 2007 Poster
Abstracts, (L’Aquila, Italy), Academia Press, Ghent (Belgium), Jul 2007.

[2] S. Uhrig, S. Maier, and T. Ungerer, “Toward a Processor Core for
Real-time Capable Autonomic Systems,” in Proceedings of the 5th
IEEE International Symposium on Signal Processing and Information
Technology, pp. 19–22, Dec. 2005.

[3] J. Kreuzinger, A. Schulz, M. Pfeffer, T. Ungerer, U. Brinkschulte, and
C. Krakowski, “Real-time Scheduling on Multithreaded Processors,” in
7th Int. Conference on Real-Time Computing Systems and Applications,
pp. 155–159, Dec. 2000.

[4] L. F. Bic, M. Fukuda, and M. B. Dillencourt, “Distributed Computing
Using Autonomous Objects,” in IEEE Computer, pp. 55–61, Aug 1996.

[5] M. Gmelin, J. Kreuzinger, M. Pfeffer, and T. Ungerer, “Agent-based
Distributed Computing with JMessengers,” in I2CS Innovative Internet
Computing Systems, pp. 131–145, Feb. 2001.

[6] U. Wolf, J. Kreuzinger, and T. Ungerer, “Synchronisation im JMessen-
gers Agentensystem,” in PARS-Workshop, München, pp. 87–96, Okt.
2001.

[7] H. Peine and T. Stolpmann, “The Architecture of the Ara Platform
for Mobile Agents,” in First International Workshop on Mobile Agents
MA’97 (R. Popescu-Zeletin and K. Rothermel, eds.), vol. 1219 of
Lecture Notes in Computer Science, (Berlin, Germany), pp. 50–61,
Springer Verlag, Apr. 1997.

[8] T. Stolpmann, “MACE (Mobile Agent Code Environment) - Eine
abstrakte Maschine als Basis mobiler Anwendungen,” Diploma Thesis,
Universität Kaiserslautern, Aug 1995.

[9] “AUTOSAR AUTomotive Open System ARchitecture.”
http://www.autosar.org/.

[10] R. Anthony, A. Rettberg, D.-J. Chen, I. Jahnich, G. de Boer, and
C. Ekelin, “Towards a Dynamically Reconfigurable Automotive Control
System Architecture,” in Embedded System Design: Topics, Techniques
and Trends, IFIP TC10 Working Conference: International Embedded
Systems Symposium (IESS), May 30 - June 1, 2007, Irvine, CA, USA
(A. Rettberg, M. C. Zanella, R. Dömer, A. Gerstlauer, and F.-J. Rammig,
eds.), pp. 71–84, Springer, 2007.

[11] W. Trumler, M. Helbig, A. Pietzowski, B. Satzger, and T. Ungerer, “Self-
Configuration and Self-Healing in AUTOSAR,” in 14th Asia Pacific
Automotive Engineering Conference, (Hollywood, California, USA),
SAE International, Aug 2007.

[12] HighTec EDV-Systeme GmbH, “Website.” http://www.hightec-rt.com/.

26 Workshop on Adaptive and Reconfigurable Embedded Systems (APRES’08)

A Programmable Arbitration Layer for Adaptive
Real-Time Systems

Sebastian Fischmeister
Dep. of Electrical and Computer Engineering

University of Waterloo, Canada
sfischme@uwaterloo.ca

Robert Trausmuth
Department of Computer Science
University of Applied Sciences

Wiener Neustadt, Austria
trausmuth@fhwn.ac.at

Abstract— Adaptive real-time systems can respond to changes
in the environment and thus allow for an extended range of oper-
ations and for improved efficiency in the use of system resources.
Building such adaptive real-time systems requires flexibility at
each layer in the system stack. In this paper, we introduce and
discuss our on-going effort to build a programmable arbitration
layer. It builds on the Network Code language and enables the
developer to program application-specific arbitration mechanisms
which optimize bandwidth or encodes specific properties such
as data redundancy, collision-free communication, and temporal
isolation.

I. INTRODUCTION

Adaptive systems can respond to environmental changes in-
cluding hardware/software defects, resource changes, and non-
continual feature usage [1]. As such, adaptive systems can
extend the area of operations and improve efficiency [15]
in the use of system resources. However, adaptability also
incurs overhead in terms of system complexity and resource
requirements. Consequently, adaptive systems must be diligently
planned, designed, analyzed, and built to find the right tradeoffs
between too much and too little flexibility.

Building such adaptive real-time systems requires flexibility
at each layer in the system stack. In this paper, we concentrate
on the communication system and the arbitration layer. Our
notion of flexibility in this context means that the developer
can tailor the arbitration mechanism to the specific needs of the
application.

Previous work [8] introduced a software layer, which allows
developers to program application-specific arbitration mecha-
nisms. This software layer can run inside the network-card
driver, on top of an existing hardware arbitration algorithm such
as the Controller Area Network [4], or on top of the operating
system in the application software. However, wherever it runs,
it requires expensive computational resources [12] and causes
jitter (see Section III). So the question is: Can we build a
programmable (i.e., flexible) arbitration layer with restricted
capabilities so it provides comparable performance but with
sufficient generality so it allows building adaptive systems?

This work breaks this question into several pieces and ad-
dresses them individually. First, Section II discusses what such
a programmable arbitration layer would look like and builds on
previous work [8]. It describes the model for managing message
queues and access to the communication medium. Second,
Section III shows a head-to-head comparison of the system, one
implemented on top of the network card and one implemented
in programmable hardware. This provides insight into the jitter
introduced by a kernel, albeit the relative low level (i.e., inside
the kernel and the network driver) of the software layer. Finally,
Section IV examines the last part of the question and explains
how the developer can use this programmable arbitration layer
to encode different communication phases typically present in
adaptive real-time systems.

II. SYSTEM OVERVIEW

The objective of the proposed system is to provide a pro-
grammable arbitration layer for adaptive real-time systems. This
arbitration layer must meet the following requirements:

• Real-time Capabilities: A communication system for a
real-time system requires a real-time capable arbitration
mechanism located in the data-link layer of the communi-
cation stack. The ’real-time capable’ arbitration mechanism
guarantees non-trivial upper bounds on the transmission
delays of individual message requests. For example, ran-
domized arbitration provides no such bounds while a
simple round-robin method does.

• Medium Access Control: Access control grants write access
for the medium to nodes. The arbitration layer must
provide the single interface through which nodes access
the network, otherwise, the systems cannot prevent inter-
ference and provide temporal guarantees.

• Queue Management: In complex systems, multiple tasks
concurrently communicate with each other in multiple
sessions. The arbitration layer must provide ports and
queues to differentiate among sessions.

• Quality of service (QoS): Individual traffic has varying im-
portance to the system. QoS functionality assures that the

2. Distributed Systems 27

developer can adjust the arbitration layer to the application
demands.

Computation tasks

Transceiver

Bus

best effort
(avg. wait.

time)

guaranteed
(worst case)

guaranteed, single
(worst case)

NC queue
arbitration

NC data
control

NC bus arbitration

Fig. 1. Overview of the queues and controls.

For matters of programmability, we chose the Network Code
language [8], [6] for the arbitration layer. Network Code rep-
resents a domain-specific language for programming commu-
nication schedules and arbitration mechanisms for real-time
communication. Network Code programs of a certain structure
remain verifiable [8], analyzeable [2], and composable [3].

Network Code provides two distinct types of QoS: best effort
and guaranteed. Messages sent using the best effort quality class
have no bounded communication delay, as the transmission can
fail infinitely often for various reasons including getting blocked
by guaranteed traffic or collisions. Messages sent using the
guaranteed quality class have bounded communication delays.
We can apply static verification [8] and analysis [2] to compute
bounds as long as the traffic follows a predefined temporal
pattern.

Network Code also provides data control functionality for
buffers. This functionality allows the developer to create mes-
sages from these buffers and transmit them on the network.
The developer can use this to replicate buffers across multiple
nodes following a specific temporal pattern. For example, given
that a specific buffer holds the sensor readings: The developer
can write a Network Code program that transmits the sensor
readings to all nodes every ten milliseconds. Replicated buffers
can act as input for control-flow decisions in the program. The
conditional branching instruction if() allows the developer to
code alternatives. So for example, if the last sensor reading lies
below a threshold, then the sensor will suspend the updates for
some time.

Figure 1 shows an overview of the programmable arbitration
layer used to implement Network Code, and how it interacts
with the queues and the computation tasks. For further details,
see the language specification [6] and the prototype software
implementation [8].

III. RATIONALS AND SYSTEM DESIGN

The previous section provided an overview of Network Code
and the programmable arbitration layer. However, it leaves
open the question whether we can build such a system with
comparable performance to the original arbitration mechanism
of the particular medium.

Previous work [8] demonstrates and measures a software
implementation of this system using 100Mbit/s Ethernet. The
measurements show that the software implementation provides
less throughput by a factor of 4.23 compared to the theoretic
limit and 3.52 compared to the empirically evaluated limit.
Interrupts and variance in the execution times across the system
stack causes jitter which leads to these throughput reductions.
Recent jitter measurements support this reasoning. For example,
Figure 2 shows a box plot for the execution time of the send()
instruction. While the mean lies significantly below 500ns,
sometimes, the execution time of the same instruction increases
by two orders of magnitude. This forces developers into using
very conservative estimates when calculating communication
bounds.

Execution Time for send()

500 1000 2000 5000 10000 20000 50000

Fig. 2. Execution times for sending [ns].

To minimize jitter and system influences, we reimplemented
the system using programmable hardware. Historically, ini-
tial work on the topic of real-time communication proposed
customized hardware [5], [13], [14] that provided guarantees
used for the analysis. At the time of that research, custom
hardware cost too much to manufacture and to allow reasonable
experiments. However, recent advances in FPGAs allow us now
to create custom hardware at a cheap price. In our case, we built
an application-specific processor that resides directly above the
layer 1 of the networking stack. Figure 3 provides an overview
of the FPGA architecture and shows how we implemented
the individual language primitives with their control and data
flow. For sake of brevity and focus, we skip details of the
implementation.

We implemented the system on a XILINX Virtex IV FX12
running at 100 MHz. The clock resolution of the Network
Code processor equals 10 microseconds. Given that transmitting
merely the Ethernet packet with payload requires approximately
8 microseconds to transmit, we can recreate any raw Ethernet
traffic with a timing resolution of 10 microseconds.

28 Workshop on Adaptive and Reconfigurable Embedded Systems (APRES’08)

OS driver

Msg data Msg config
Host processor
interface

if() receive() create()

send()future()

NC program

Controller

auto rcv

channel
One per

(default 8)

Application

A
ct

iv
e,

if
N

C
P

st
op

pe
d

or
in

so
ft

m
od

e.

Internal
intput
FIFO

output
Internal

FIFO

Output FIFOInput FIFO
MAC interface

Fig. 3. Block diagram of the Network Code Processor.

IV. COMMUNICATION PHASES

Real-time systems usually fulfill a specific purpose. This
purpose comprises high-level goals such as maintaining stability
of a plant in various circumstances. To achieve its goals, the
system implements different operation modes, which provide
functionality for solving problems within well-defined scopes.

Application modes form one class of modes which provides
functionality for application-specific needs. One application can
consists of multiple modes; For example, an airplane control
system implements application modes for taking off, cruising,
and landing (see [11]). In adaptive systems, each application
mode may comprise several sub-modes of which each offers
similar functionality with a varying level of quality in the
result [1].

Service modes make another class of modes. Service modes
provide no application-specific functionality, but offer basic
services typically needed in a distributed real-time application.
Examples of such modes include a membership service, a
reconfiguration service, and debugging facilities.

In the following, we show how Network Code allows us to
realize the communication behavior of these different modes.
Although we realize only one particular approach for each, this
exercise shows how Network Code can express the communi-
cation schedule of adaptive real-time systems.

A. Application Modes

Application modes realize application-specific functionality
within well-defined scopes. In terms of communication behav-
ior, these modes contain mixes of guaranteed and best-effort
communication. Guaranteed communication usually follows a
predefined temporal pattern (strictly periodic or sporadic) and
its temporal behavior is subject to worst-case analysis. Best-
effort communication usually shows aperiodic arrival patterns
and augments the core real-time functionality of the system.

Network Code allows for both types of traffic, and encodes it
in different system modes. Figure 1 already indicates, that the

v1

g1

ack
g2

v′
1

v′′
1

¬g3

g3

¬(g1 ∨ g2)

mode ∈ {replicate, ack, none}
g1 := mode = none
g2 := mode = ack
g3 := v1 = v′

1

Fig. 4. Communication schedule with branches.

proposed system uses different queues for best-effort and guar-
anteed traffic. Network Code provides primitives for controlling,
transmitting from, and receiving into these queues. Guaranteed
traffic uses the protected mode (also called hard mode). In this
mode, all transmissions originate from the guaranteed queues,
which the computational tasks can only access using send() and
receive() instructions. Best-effort traffic uses the unprotected
mode (also called soft mode). This mode hands off control from
Network Code-based arbitration to the native arbitration of the
communication medium.

1) Guaranteed Traffic: Systems such as TTP[10], FTT-
CAN [7], and TTCAN [9] demonstrate that table-based arbi-
tration provides real-time capabilities and can deliver bounded
communication delays. Network Code can express any arbitrary
table-based arbitration specification and more. Network Code
can unify multiple sub-modes encoding different QoS levels
into one arbitration mechanism (as in contrast to providing
multiple tables or recomputing the schedule on the fly). The
conditional branching function provided in the language enables
the developer to specify the communication behavior of differ-
ent application modes in one program.

Consider the following example: in a distributed control sys-
tem, one sensor periodically reports its sensor readings (variable
v1) on a shared medium. The system offers different levels of
QoS for reliability. Figure 4 provides a visual representation of
the resulting schedule for this example. Each vertex represents
a transmission of a particular value. Edges specify possible
transitions between vertexes, and guards on edges enable and
disable these edges. Specifically in this example, the developer
offers three levels of QoS: unreliable, receipt acknowledgement,
and temporal replication. Each round, the sensor communicates
its reading v1. All further communication depends on the current
selected QoS for reliability. Consider that the system in this
run requires a high degree of reliability and uses temporal
replication with triple modular redundancy. In this mode, the
guard ¬(g1 ∨ g2) holds and enables the edge from v1 to
v′
1. Depending on whether the contents of v1 equals v′

1, the
guard g3 will enable or disable the edge connecting v′

1 to v′′
1 .

Let’s assume that v1 = v′
1: after transmitting v′

1, the schedule
proceeds to an empty vertex, which represents an empty slot.

2. Distributed Systems 29

2) Best-Effort Traffic: The developer can use the unprotected
mode and best-effort traffic in two ways: exclusive medium
access and shared access. During exlcusive medium access, at
most one node uses the unprotected mode while the other nodes
remain in the protected mode and schedule no transmission.
This guarantees a single node exclusive access to the network
and it can transmit without interference from other nodes.
During shared medium access, more than one node uses the
unprotected mode. So, nodes can interfere with each other as
they try to transmit simultaneously. The communication delay
analysis [2] differs for both methods.

Listings 1 and 2 demonstrate the use of these two concepts.
Note, that we use one tick as safety gap between mode changes.
For the first five ticks (0-5), Node 1 has exclusive access to the
medium in the unprotected mode. For the next five ticks (5-
10), Node 2 has exclusive access. Finally, for the last five ticks,
both nodes run in the unprotected mode and access the network
concurrently.

1 L0 : mode (unprotected)
wait (4)

3 mode (protected)
wait (6)

5 mode (unprotected)
f u t u r e (5 , L0)

7 h a l t ()

Listing 1. Node 1.

1 L1 : mode (protected)
wait (5)

3 mode (unprotected)
f u t u r e (1 0 , L1)

5 h a l t ()

Listing 2. Node 2.

B. Membership Services

Dynamic and dependable real-time systems usually provide
membership information to a central controller. This informa-
tion includes data about present nodes and their status and
allows the controller to attest the general state of the running
application. A membership service provides such functionality
and typically consists of three sub-services: a joining, a heart-
beat, and a leaving mechanism.

The joining mechanism enables new nodes to announce their
presence and join the application. The system start-up phase
requires such a joining mechanism, because one node after the
other will join the application as they become online. There
exist different approaches to realizing such a mechanism and
Listings 3 and 4 show an unsophisticated but working one. This
example uses two distinct channel identifiers. The inviting node

h1
g1

h2

g2

h3

g3

gα

g12

g13

g14

g23

g24

gx := ismember(x)
gxy := ismember(x) ∧ ismember(y)
gα := ∀i ∈ [1, 3] : ¬ismember(i)

Fig. 5. Heartbeat with three registered nodes.

transmits an invite message on channel zero and new nodes
reply to this message on channel one. Upon receiving the invite
message, a new node has ten ticks to reply. As Listing 4 shows,
a new node initially stays in a tight loop until it receives an
invite packet on channel zero whereto it responds. The inviting
node receives all replies into a buffer called InviteReplies. A
computation task at the inviting node then processes the contents
of this buffer and integrates the new node into the application.

1 L0 : mode (hard)
xsend (0 , 0 , invite , 10)

3 wait (1 1)
L1 : i f ((EMPTYCHANNEL 1) , L2)

5 r e c e i v e (1 ,InviteReplies)
L2 : nop ()

Listing 3. Join request by the inviting node.

L5 : i f ((EMPTYCHANNEL 0) , L5) / / tight loop
2 xsend (1 , 0 , myID , 10)

wait (1 0)

Listing 4. A node waiting for the invite.

A heartbeat mechanism allows a controller to keep an up-to-
date list of joined nodes and their status. In some systems, nodes
piggyback the heartbeat on data messages or use frame pack-
ing, whereas others maintain a specific periodically-transmitted
heartbeat message. Network Code can encode both scenarios,
because the heartbeat message has equivalent properties as guar-
anteed application-specific traffic (see Section IV-A). Figure 5
shows a schedule that transmits the heartbeat messages hx as
necessary. For example, if node n2 has not yet registered with
the application, then g2 and g12 do not hold and the schedule
will not consider the heartbeat message h2.

The leaving mechanism allows nodes to gracefully exit the
current application. Similarly to the heartbeat message, the

30 Workshop on Adaptive and Reconfigurable Embedded Systems (APRES’08)

leaving mechanism requires no special attention, because it has
similar properties as the guaranteed traffic for registered nodes.

C. Reconfiguration Operation

Adaptive systems usually require means for reconfigura-
tion [1]. System functionality such as admission control and
schedule computation happen inside the computation layers and
are out of the scope of this paper. Here, we only investigate the
communication needs involved in a reconfiguration mechanism.
Section IV-A already discussed one form of reconfiguration:
how the developer can program different QoS levels for guar-
anteed traffic. This section demonstrates, how Network Code
allows the developer to realize the communication part of a
reconfiguration mechanism beyond QoS changes.

The event chain for such a reconfiguration mechanism com-
prises: the change request, the change reply, the new schedule
distribution, and the new schedule implementation. The concrete
mechanism depends on the requirements; our example uses
best-effort for change requests and guaranteed traffic for the
other elements. Listing 5 shows the Network Code program
for the controller. Nodes transmit change requests during the
best effort period in the first four ticks. A computational task
processes these packets (either immediately or at some later
point), and eventually sets the variable NEWSCHEDULE to one.
After the best-effort section, the controller communicates the
system status. This status includes the NEWSCHEDULE variable
and updates its value on all nodes. If a new schedule becomes
available, the controller continues at label L1 and distributes the
new schedule.

1 L0 : mode (unprotected)
wait (4)

3 mode (protected)
wait (1)

5 xsend (0 , 0 ,STATUS , 2)
wait (2)

7 i f ((= NEWSCHEDULE 1) , L1)
/ / proceed with normal operation

9 . . .
goto (L2)

11 L1 : xsend (0 , 0 ,NEWSCHEDULEDATA , 1 0)
wait (1 0)

13 L2 : nop ()

Listing 5. Controller (reconfiguration)

V. CONCLUSIONS

Adaptive real-time systems can respond to changes in the
environment and thus allow for an extended range of operations
and for improved efficiency in the use of system resources. An
important element of such an adaptive system is an expressive,
freely programmable arbitration layer. Such a layer allows the

developer to tailor the arbitration mechanism and its level of
adaptivity to the application needs.

Network Code provides a programming model for stateful
communication schedules and will enable a programmable arbi-
tration layer for adaptive systems if: (1) the resulting system can
provide sufficient throughput and (2) the language can express
elements commonly used in adaptive distributed real-time sys-
tems. In this work, we demonstrate that we have achieved both
goals. The implemented FPGA prototype provides a resolution
of ten microseconds and provides comparable speed to raw
100MBit/s Ethernet. The presented programs show how we
can use Network Code to express elements of an adaptive
communication behavior.

Future work continues along two directions: On the systems
work, we will create a template library for Network Code
programs and improve the tool chain. On the experiments,
we will investigate the impact of rouge traffic on real-time
networks to estimate the necessity of real-time communication
frameworks for modern wired Ethernet systems.

REFERENCES

[1] L. Almeida, M. Anand, S. Fischmeister, and I. Lee. A Dynamic Schedul-
ing Approach to Designing Flexible Safety-Critical Systems. In Proc.
of the 7th Annual ACM Conference on Embedded Software (EmSoft’07),
Salzburg, Austria, October 2007.

[2] M. Anand, S. Fischmeister, and I. Lee. An Analysis Framework for
Network-Code Programs. In Proc. of the 6th Annual ACM Conference
on Embedded Software (EmSoft’06), pages 122–131, Seoul, South Korea,
October 2006.

[3] M. Anand, S. Fischmeister, and I. Lee. Composition Techniques for Tree
Communication Schedules. In Proc. of the 19th Euromicro Conference
on Real-Time Systems (ECRTS), pages 235–246, Pisa, Italy, July 2007.

[4] Bosch. CAN Specification, Version 2. Robert Bosch GmbH, September
1991.

[5] R. Court. Real-time ethernet. Comput. Commun., 15(3):198–201, 1992.
[6] S. Fischmeister et al. Network Code Language Specification. Technical

report, University of Pennsylvania, 2007.
[7] J. Ferreira, P. Pedreiras, L. Almeida, and J.A. Fonseca. The FTT-CAN

protocol for flexibility in safety-critical systems. IEEE Micro, 22(4):46–
55, July-Aug. 2002.

[8] S. Fischmeister, O. Sokolsky, and I. Lee. A Verifiable Language for Pro-
gramming Communication Schedules. IEEE Transactions on Computers,
56(11):1505–1519, November 2007.

[9] T. Führer, B. Müller, W. Dieterle, F. Hartwich, R. Hugel, and M. Walther.
Time Triggered Communications on CAN (Time Triggered CAN -
TTCAN). In Proceedings 7th International CAN Conference, Amsterdam,
Netherlands, 2000.

[10] H. Kopetz. Real-time Systems: Design Principles for Distributed Embed-
ded Applications. Kluwer Academic Publishers, 1997.

[11] Jane Liu. Real-Time Systems. Prentice-Hall, New Jersey, 2000.
[12] J. Loeser and H. Härtig. Real Time on Ethernet using off-the-shelf

Hardware. In n Proc. of the 1st Intl Workshop on Real-Time LANs in
the Internet Age (RTLIA 2002), 2002.

[13] Nicholas Malcolm and Wei Zhao. The timed-token protocol for real-time
communications. Computer, 27(1):35–41, 1994.

[14] Kang Shin and Chao-Ju Hou. Analytic evaluation of contention protocols
used in distributed real-time systems. Real-Time Syst., 9(1):69–107, 1995.

[15] E.A. Strunk, E.A. Strunk, and J.C. Knight. Dependability through Assured
Reconfiguration in Embedded System Software. IEEE Transactions on
Dependable and Secure Computing, 3(3):172–187, 2006.

2. Distributed Systems 31

ViRe: Virtual Reconfiguration Framework for
Embedded Processing in Distributed Image Sensors

Rahul Balani, Akhilesh Singhania, Chih-Chieh Han and Mani Srivastava
University of California at Los Angeles

Los Angeles, CA 90095, USA

Abstract—Image processing applications introduce new chal-
lenges to the design of sensor network systems via non-trivial
in-network computation. As embedded processing becomes more
complex, in-situ reconfiguration is seen as the key enabling
technology to maintain and manage such systems. In dynamic
event-driven heterogeneous sensor networks, reconfiguration also
encompasses autonomous re-partitioning of applications across
multiple tiers to provide a low-power responsive system by
efficiently coping with variations in run-time resource usage
and availability. Hence, we aim to provide an efficient low-
power macro-programming environment that supports multi-
dimensional software reconfiguration of heterogeneous imaging
networks.

Working towards this initiative, we present the ViRe frame-
work for mote-class devices based on data-centric application
composition and execution. Applications, modeled as dataflow
graphs, are composed from a library of pre-defined and reusable
image processing elements. Concise scripts capture the wiring
information and are used to install applications in the network,
while execution on the nodes is performed via processor native
code to minimize overhead. A lean run-time engine tightly
monitors application execution to provide an efficient, robust and
scalable support for complex reconfigurable embedded image
processing. Thus, the system is able to lower application re-
partitioning overhead and minimize loss of work during software
reconfiguration.

Index Terms — Sensor Networks, Differential partitioning,
Reconfiguration, Dataflow

I. MOTIVATION

Image sensors demonstrate vital importance in understand-
ing and characterization of diverse environments. Applications
involving these sensors pose new challenges to the design of
sensor network systems, particularly in the context of recently
developed low-power, but resource-constrained, image sensing
platforms such as Cyclops [1] and AER Imager [2]. In-network
sensor information processing takes on a particularly important
role with image sensors, because to save communication
bandwidth and energy, image sensor nodes must process the
images in-network to extract relevant events or features before
transmission. Prior work, comprising of mere filter chains,
linear dataflow graphs or SQL aggregate functions, is not
enough to affect adequate data reduction. Rather, significantly
richer and complex recursive algorithms are needed to com-
press image frames, or to detect features or events of interest.
Another reason for the recursive nature of the computation is
that the high cost of image acquisition itself usually motivates
application structures where a feedback control loop controls
when to acquire the next image frame based on history. Thus,

typical image processing algorithms require system software
support for efficient and reliable functioning when embedded
in resource-constrained sensor nodes.

Clearly, the ability to reconfigure application-specific em-
bedded sensor processing on the nodes at run-time, for pur-
poses of re-tasking and environment-specific tuning, without
sacrificing the efficiency of processing, is important for effec-
tive operation and maintenance of complex sensor networks.
This recognition has led to emergence of systems such as Con-
tiki [3], SOS [4], TENET [5], VanGo [6], and Maté [7] where
run-time retasking and reconfiguration of application-specific
processing at the node are directly supported. However, these
prior systems are either too low-level (e.g. Contiki and SOS)
and thus do not provide support for higher level programming
abstractions common to image sensing, or significantly restrict
the complexity or efficiency of application-specific processing
and flexibility of reconfiguration (e.g. TENET, VanGo, and
Maté) and thus unable to support the requirements of recon-
figurable embedded image processing.

However, in a dynamic event-driven multi-tier heteroge-
neous sensor network, software reconfiguration is not re-
stricted to simple parameter and logic updates, but involves
dynamic re-partitioning of the data processing pipeline across
different tiers. It is required in dense high data-rate networks
that exhibit a clear trade-off between local computation and
transmission of data in terms of both latency and energy.
For instance, processing data locally at a certain sensor node
may reduce energy consumption by reducing data transmission
across the network, but may increase overall time (latency)
required to obtain the result at the base station due to lengthy
computation. This trade-off is unique to each node as the
network latency experienced at that node is not only affected
by its proximity to the intermediate or final data sink, but also
by status of its local transmission queue and network traffic
at higher tiers. Thus, to support often conflicting goals of low
latency and low power, it is necessary to monitor the above
factors at run-time and migrate computation appropriately,
resulting in different configurations of the same end-to-end
pipeline at different nodes. Henceforth, this dynamic migration
of components of a data processing pipeline, to support
application re-partitioning, is referred to as task migration in
this text.

Prior work [8][5] has essentially focused on providing an
efficient, robust and scalable macro-programming environment
for heterogeneous sensor networks, but consistently ignored

32 Workshop on Adaptive and Reconfigurable Embedded Systems (APRES’08)

the complex dynamics of an event-driven network and soft-
ware reconfiguration in the broader sense of run-time re-
partitioning of applications. Hence, we propose to build an ef-
ficient, robust and reconfigurable macro-programming frame-
work for heterogeneous sensor networks that autonomously
monitors dynamic network context and supports application re-
partitioning via task migration to achieve user-specified goals.

II. INTRODUCTION

As the first step in achieving our objective, we present
the ViRe (Virtual Reconfiguration) framework for mote-class
devices that constitute the lowest tier of a heterogeneous sensor
network (figure 1). Motivated by results from our previous
work [9], it explores a different point in the design space
of retaskable and reconfigurable embedded sensor processing.
It exposes a visual modular wiring diagram abstraction that
is commonly used to express image processing algorithms.
The modules encapsulate image processing functions, while
the wiring is used to express dataflow which may be non-
linear and with feedback loops (figure 3). ViRe permits wiring,
module code, and module parameters to be incrementally
reconfigured.

Application
Configuration

BASE STATION

Routing
Table

Saved
Config

Parameter
Wiring
Header

Token Dispatch
[Execute]

Logic and Parameter update

Configuration
Interpreter

IS

UB

MS

LM

.

.

.

.

.

Elements

Wiring Engine SENSOR
NODE

Application Composer

Platform
specific

Token Capture
API

Fig. 1: ViRe Framework

Main idea behind this representation is to separate ap-
plication instantiation on the nodes, via wiring information
captured in concise scripts, from execution and data exchange
performed in processor native code via dynamic linking at
load-time. It has multiple advantages: (i) Execution overhead
is kept low while update costs are reduced dramatically, (ii)
Work done on prior data is conserved through unobtrusive
application of incremental updates, referred to as hot-swap,
and (iii) Migration overhead is reduced significantly as only
a part of the wiring script is required to be transferred across
the network during application re-partitioning.

Target sensor nodes interpret the script, generated by the ap-
plication composer, to install or update the application through
the resident run-time wiring engine. Basic communication

and scheduling abstraction of the engine, a token, provides
for efficient management of image data through cooperative
memory sharing at run-time. ViRe optimizes the handling of
image data since copying an entire sample (image frame), or
worse a full block of multiple samples, between processing
functions would be prohibitively expensive requiring multiple
reads and writes of large, and typically off-chip, frame-buffer
memory [1].

The Token Dispatch mechanism in the wiring engine ensures
that execution follows correct data-flow semantics by coordi-
nating the passage of tokens between elements. This coordi-
nation provides explicit control to the engine over application
functioning and promotes concise element implementation,
thus attributing to the reduced update cost. It is exploited
to enable recovery from execution errors, protect against
race conditions due to feedback, facilitate a safe hot-swap
during graph update and minimize transfer of state during task
migration.

Application execution begins when new input data is gen-
erated by the source element. An element is fired whenever
its ready to accept new input on a port and a token is
placed on that port. Depth-first traversal is followed where
the constituting elements run to completion unless they yield,
either waiting for inputs on multiple ports or for allowing the
engine to schedule other tokens. Consequently, token queues
are maintained on graph edges by the engine, instead of the
elements, to promote concise module implementations. Thus,
an application can be mapped to a pipeline architecture for
analysis of its asynchronous behavior and various flow-control
strategies at run-time.

The ViRe framework is currently implemented on top of
SOS operating system [4] for the cyclops platform [1]. Cyclops
is built as an imager sensor board for mote class devices like
the Mica motes. Besides other components, it consists of a
CMOS imager, an AVR AtMega 128L micro-controller, and
60 KB of external SRAM that is mainly used for buffering
images.

III. WIRING ENGINE: DESIGN

Supporting complex and reconfigurable data-flow repre-
sentation on the sensor nodes introduces several challenges,
including how to link the elements dynamically at run-time to
support multiple fan-ins and fan-outs, and efficient exchange of
data; how to avoid race conditions due to feedback in recursive
image processing algorithms; and how to detect errors in the
system to provide reliable functioning. In addition, handling
high rate data requires efficient sample processing and memory
utilization during execution. The ViRe run-time addresses all
these challenges to provide a reliable system for reconfigurable
embedded image processing with minimal memory and exe-
cution overhead.

A. Application Installation: Configuration Interpreter

Intelligent application installation is necessary to support
fast execution with minimal memory overhead. The wiring en-
gine uses a concise routing table, supported by a clear element

2. Distributed Systems 33

BA 0

C 5

3

D X

[0]

[0]

[0]

[1]

2

D[1]

D[0]

Rec.

C[0]

1

B[0]

1

(ii) Routing Table

Data
Type

Port
ID GIDData

Type
input

()
Input port

control block

Output port
control block

(iii) A graph element

(i) A sample application

Fig. 2: A sample application graph, its corresponding routing
table and element design showing its input and output control
blocks.

design as shown in figure 2(iii), to represent the graph edges.
The routing table is constructed from the configuration script
and consists of a group of output port records representing the
corresponding fan-out of each element port. A record is used
whenever an element places a token on its port to facilitate
data transfer. The ViRe engine accesses the record through an
application-specific unique identifier (GID) that acts as a direct
index into the routing table and is assigned to each output port
at installation/load time. This is an inexpensive constant time
access that helps achieve low overhead during data exchange
as discussed in section II. Finally, to protect against run-time
failures, the data types associated with input and output ports
are used at application initialization to validate their dynamic
linking.

B. Application Execution: Token Dispatch and Token Capture
API

Execution of image processing algorithms in ViRe frame-
work consists of application specific computation and com-
munication between graph elements. Communication between
elements involves transfer of data wrapped in a token struc-
ture [10]. It simplifies management of data by providing
support for tracking its read-write permissions, ownership
and platform specific type. This information is used by the
token capture API to allow elements to create tokens and
cooperatively share memory by releasing and capturing them.

The token dispatch mechanism coordinates the exchange
of data between graph elements to facilitate efficient com-
munication. Access to an input port of a destination element
is enabled via a synchronous function call that provides the
input token to the element and returns its current status to the
engine. This implicit interaction enables the engine to tightly
monitor application execution, maintain token queues for the
elements when they are busy processing other tokens, and
detect and recover from run-time errors. Thus, an output port
record is constructed through dynamic linking [4] of multiple

callee functions (input ports) to a single caller (output port)
and storing the pointers for fast run-time access.

Synchronous data exchange is chosen over asynchronous
message passing for execution and memory efficiency, and
enabling the engine to control application execution. During
execution, it results in a complete traversal of the sub-graph
rooted at the output port, referred to as one output port
iteration. Hence, to avoid race conditions due to feedback in
the same iteration, the element is marked busy, and all input
tokens destined towards it are queued.

C. Application Reconfiguration

The wiring engine supports logic and parameter reconfigu-
ration on the embedded target, as well as task migration in
a tiered sensor network. Logic reconfiguration involves (i)
major updates that include significant modifications to the
graph edges and elements such that the application, or its
implementation, changes as a whole, or (ii) minor updates that
include small changes to the graph like addition or removal of
a wire or an element. Installing a major update removes the
current application completely and initializes a new application
as described in section III-A. The rest of this section focuses
on the support for applying minor updates through hot-swap
and reducing state transfer during task migration.

A mechanism supporting hot-swap should minimize loss
of work on previously processed tokens and respect data
dependencies between elements. Partially processed data, that
may be relevant after update, should not be discarded. Data
loss is only possible when an active element is replaced during
the update leading to loss of token(s) being processed by the
element at that time.

Typically, task migration across network involves code
and state migration. Code size is already minimized through
concise wiring representation as discussed earlier. The state of
the element, which needs to be migrated across the network,
should be minimized to reduce migration overhead. We can
observe that local state of the element is minimum when it
is not active as it does not contain information on partially
processed token(s).

Thus, the engine hot-swaps updates or migrates tasks only
when none of the involved elements are active. But, it is
possible that the involved elements, though not active, may
contain application pertinent state. Currently, the state of the
old unused elements is discarded, i.e. not migrated to the new
elements that may have replaced them. Therefore, hot-swap
and task migration are suggested to include only the elements
that never contain application pertinent state. However, in
future versions, we propose to extend this mechanism to
migrate old state across such incremental graph replacements
and element migrations.

IV. EVALUATION

This section provides a brief evaluation of the ViRe frame-
work in terms of its update costs and execution overhead on
a resource constrained micro-controller like AVR Atmega128.

34 Workshop on Adaptive and Reconfigurable Embedded Systems (APRES’08)

IS Tx
IS: Image Source Tx: Transmit

UB: Update Background MS: Matrix Subtract
AB: Average Background SE: Select

LM: Locate Maximum CT: Check Threshold

IS

UB
MS

AB

LM

CT
SE

IS

UB
MS

AB

LM

CT
SE

(i) Image Capture

(ii) Object Detection

(iii) Object Capture

Tx

Tx

Fig. 3: Application Graphs

Using the successive versions of surveillance application (fig-
ure 3) discussed in [10], we demonstrate that the system
reduces logic reconfiguration cost of the application by at least
an order of magnitude as compared to native implementation
in SOS. This is attributed to concise wiring representation and
aggressive reduction in the size of image processing modules
by promoting simplicity in their design.

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 1 1.5 2 2.5 3

Ex
ec

ut
io

n
Co

st
 (C

PU
 C

yc
le

s)

Fanout

Token Dispatch Cost

Flash
RAM

Fig. 4: Communication cost (Token dispatch) at an output port
as a function of its fanout when the routing table is stored in
RAM vs Flash memory

Moreover, this dramatic decrease in update cost incurs a
low execution overhead (table I) ranging from mere 240
µs to 5.8 ms depending on the structure of the application
graph. Table II shows the concise memory footprint of the
ViRe framework along with installed applications. A thorough
analysis of the execution framework [10] helped in identifying
and removing communication bottlenecks, thus causing an
average 50% reduction in the above overhead at a small
expense of increased memory consumption (table I, column
Exec. Opt.). Figure 4 establishes that the communication cost
associated with the framework is closely tied to the graph
topology i.e. the number of output ports and their fan-out. Our
work in [10] further demonstrates that this cost is independent
of the size of data exchanged between elements.

Applications Exec. time ViRe Overhead
w/out ViRe Mem. Opt. Exec. Opt.

Image capture 82 µs 240 µs 80 µs
Object Detect 136 ms 5.6 ms 3.2 ms

Object Capture 136.2 ms 5.8 ms 3.3 ms

TABLE I: Total execution time
Memory optimized and Execution optimized versions of ViRe

Allocation Type Component Memory (bytes)
Static Wiring Engine 36

Semi-Dynamic

Graph Elements (RAM) 41
Routing Table IC - 6

(Mem. Opt. - Flash) OD - 57
(Exec. Opt. - RAM) OC - 60

TABLE II: Memory Allocation
IC - Image Capture, OD - Object Detect, OC - Object Capture

V. FUTURE PLANS

Finally, we believe that ViRe overhead will be negligible
on processors like Intel/Marvell X-scale, popularly used in
higher tiers of sensor network deployments, due to a richer
instruction set, faster clock and larger memory. Next, we
plan to extend this framework to a heterogeneous multi-tier
network and implement distributed network monitoring to
investigate the impact of network conditions on autonomous
application partitioning that aims to balance low latency goals
with minimal energy consumption. Preliminary results from
a similar high data-rate network [11] show that the latency
can be decreased by as much as 50% through intelligent
application partitioning. Later, we will extend it to include the
effect of energy availability in an energy-harvesting network.

REFERENCES

[1] M. Rahimi, R. Baer, O. Iroezi, J. Garcia, J. Warrior, and M. Srivastava,
“Cyclops: in situ image sensing and interpretation in wireless sensor
networks,” EmNets, pp. 192–204, 2005.

[2] T. Teixeira, E. Culurciello, J. Park, D. Lymberopoulos, A. Barton-
Sweeney, and A. Savvides, “Address-event imagers for sensor networks:
evaluation and modeling,” IPSN, pp. 458–466, 2006.

[3] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki-a lightweight and
flexible operating system for tiny networked sensors,” EMNETS, 2004.

[4] C. Han, R. Rengaswamy, R. Shea, E. Kohler, and M. Srivastava, “Sos:
A dynamic operating system for sensor networks,” Mobisys, 2005.

[5] O. Gnawali, K. Jang, J. Paek, M. Vieira, R. Govindan, B. Greenstein,
A. Joki, D. Estrin, and E. Kohler, “The tenet architecture for tiered
sensor networks,” Sensys, pp. 153–166, 2006.

[6] B. Greenstein, C. Mar, A. Pesterev, S. Farshchi, E. Kohler, J. Judy, and
D. Estrin, “Capturing high-frequency phenomena using a bandwidth-
limited sensor network,” Sensys, pp. 279–292, 2006.

[7] P. Levis and D. Culler, “Maté: a tiny virtual machine for sensor
networks,” SIGOPS, vol. 36, no. 5, pp. 85–95, 2002.

[8] A. Awan, S. Jagannathan, and A. Grama, “Macroprogramming heteroge-
neous sensor networks using cosmos,” ACM SIGOPS Operating Systems
Review, vol. 41, no. 3, 2007.

[9] R. Balani, C. Han, R. Rengaswamy, I. Tsigkogiannis, and M. Srivastava,
“Multi-level software reconfiguration for sensor networks,” EmSoft, pp.
112–121, 2006.

[10] R. Balani, A. Singhania, C. Han, R. Rengaswamy, and M. Srivastava,
“Vire: Virtual reconfiguration framework for embedded processing in
distributed image sensors,” NESL, UCLA, Tech. Rep., June – October
2007.

[11] M. Allen, L. Girod, R. Newton, D. Blumstein, and D. Estrin, “Voxnet:
An Interactive, Rapidly-Deployable Acoustic Monitoring Platform,”
SPOTS, 2008.

2. Distributed Systems 35

Trade-off Analysis of Communication Protocols for
Wireless Sensor Networks

Jérôme Rousselot, Amre El-Hoiydi, Jean-Dominique Decotignie
Centre Suisse d’Electronique et Microtechnique SA

Jaquet-Droz 1
2002 Neuchâtel

Switzerland

Abstract—Embedded systems must react and adapt to changes in
their environment. Wireless sensor networks, which must guar-
antee network connectivity and offer low latency services while
keeping energy consumption at a minimum in an unpredictable
environment, are a typical example.

Each layer of their communications stack offers some tunable
parameters. Most sensor networks deployments define these
parameters at design time, thereby forcing the network to remain
always at the same operating point.

Instead, this work aims to identify a set of operating points
between which the application could switch depending on its
current state. Two protocol stacks are being implemented in a
network simulator. The first uses existing state of the art ultra low
power protocols and the second one approximates optimal latency
and power consumption. Simulation runs allow the evaluation of
two criteria: energy consumption and end-to-end latency.

Preliminary results are given for the optimal stack. It is shown
that the transmit power of a popular ZigBee transceiver does
not allow trading energy consumption against end-to-end latency
in the considered configurations, albeit it might be possible
with other transceivers. These results validate the methodology
adopted in this work and allow to expect more practical results
from the trade-off analysis of the ultra low power stack once its
implementation is finished.

I. INTRODUCTION

Wireless sensor networks must often operate several years
on battery. Their power consumption, generally dominated by
the use of a radio transceiver, is a critical factor for correct
operation. In the last few years, several low-power medium
access control (MAC) protocols have been proposed. Energy-
aware routing has also been studied extensively, and some
transport protocols have been specifically developed for sensor
networks.

These advances have made energy consumption less of
an issue, and it is now realistic to envision wireless sensor
networks reaching the end of their deployment with significant
remaining energy. It is thus tempting to allow temporary more
aggressive energy usage when the application requires it, e.g.
when a fire detection network identifies an emergency situa-
tion. Many properties could benefit from an increase in power
consumption. End-to-end latency, network connectivity and

The work presented in this paper was supported (in part) by the National
Competence Center in Research on Mobile Information and Communication
Systems NCCR-MICS, a center supported by the Swiss National Science
Foundation under grant number 5005-67322.

link quality are only a few examples. This work in progress
aims to identify the potential trade-offs of a communications
stack for wireless sensor networks.

A stack approximating optimal performance at low data
rates has been defined and fully implemented in a network
simulator. It uses a detailed model of an IEEE 802.15.4 radio
transceiver, a carrier sense multiple access (CSMA) MAC
protocol compatible with the non-beacon enabled mode of
IEEE 802.15.4, and routes pre-computed offline with Dijk-
stra’s algorithm for the all-shortest-paths-to-source problem.
Another, more realistic stack, is composed of the same model
of radio transceiver, of the ultra low-power WiseMac protocol
and of the distributed routing protocol NSafeLinks. This paper
presents intermediate results on the trade-off potential of the
optimal stack.

This paper is organized as follows: section II gives an
overview of communication protocols for wireless sensor
networks. Section III presents the methodology adopted to find
these trade-offs and explains the architecture of the two stacks.
Section IV analyzes the results obtained thus far and section
V concludes the paper.

II. RELATED WORK

This section briefly describes the requirements of sensor
networks deployments for the lowest layers of the commu-
nication protocols stack (Physical, Data Link and Network)
and identifies for each of these layers the most common
parameters.

A. Physical Layer

At the lowest layer, wireless communications pose the
challenges of an unreliable communication channel and of
variable connectivity. Low-power narrow band radios are
widely available on the market, and many share a common set
of characteristics as defined in the IEEE 802.15.4 [1] standard
and are certified interoperable by the ZigBee Alliance [2].
They can often be configured to change the bit rate or the
transmit power, influencing bit error rate, power consumption
and network connectivity.

Other physical layers such as Ultra Wideband Impulse
Radio [3] are in development and promise lower power
consumption, robustness to multipath propagation and to multi
user interference, and accurate ranging. Transmit power and
bit rate can, here also, be configured.

36 Workshop on Adaptive and Reconfigurable Embedded Systems (APRES’08)

B. Link Layer

Several medium access control protocols for sensor net-
works have been proposed during the last years. Their main
objective is to reduce the power consumption caused by
the radio transceiver. They are divided in two categories:
scheduled access protocols and contention based protocols.

The first category regroups protocols which establish a Time
Division Multiple Access schedule. This can be done using a
central coordinator as in the IEEE 802.15.4 beacon-enabled
mode or in a distributed fashion as in L-Mac [4], Flama [5]
and Trama [6]. They usually define a superframe structure
and communications slots whose durations are key parameters
for transmission delay and reactivity to changes in network
connectivity.

The second category allows nodes to access the medium
using probabilistic mechanisms. Some such as S-Mac [7],
T-Mac [8] and SCP-Mac [9] are based on a synchronous
sleep mechanism. Others such as B-Mac [10], CSMA-PS [11],
WiseMac [12], CSMA-MPS [13], X-Mac [14] and SyncWUF
[15] are based on asynchronous sleep mechanism and wake-up
preambles.

The performance of all contention based protocols, either
synchronous or asynchronous, is heavily influenced by their
wake-up interval. This parameter is the maximal time during
which a node is inaccessible, and the choice of its value
influences both latency and power consumption.

C. Network Layer

Wireless sensor networks pose significant challenges for
routing [16]:
• the possibly large number of nodes makes the addressing

scheme itself an issue ;
• specific traffic patterns such as convergecast must be con-

sidered while still allowing peer-to-peer communications
;

• fault tolerance must be built in the protocol because of the
unreliability of the physical layer and because the large
number of nodes and long deployment times increase the
probability of a node failure ;

• load balancing between nodes to prevent early node
failure due to an empty battery ;

• timeliness requirements may vary greatly from one ap-
plication to the other.

Routing protocols for sensor networks can be regrouped in
three categories : flat, hierarchical and location-based routing.
In flat networks, all nodes are considered equal and are
assigned the same functions (SPIN [17], Directed Diffusion
[18], Energy Aware Routing [19], NSafeLinks [20]). Hierar-
chical networks select some of the nodes to act as gateways
or cluster heads, rotating this function among several nodes
to balance the power consumption (LEACH [21], PEGASIS
[22]). Location based routing rely on positioning information
to decide which route to use (GEAR [23]).

This work focuses on data collection applications. In this
case, all traffic converges to a sink node (convergecast). Each
protocol has often a long list of parameters. Size of neighbours
table, timers, and metrics all influence performance.

III. METHODOLOGY

This work aims to evaluate the potential for trade-off in
wireless sensor networks data collection applications by using
the network simulator Omnet++ [24]. This section describes
the simulation models used and explains the current state of
the work.

Regarding the application, network nodes regularly generate
data packets. The time intervals between the generation of two
packets from the same node follows an exponential distribution
of parameter λ: P [ti < x] = 1 − e−λx, where ti is the time
between packets i and i + 1, and the mean is equal to 1

λ .
An ultra low power stack can be defined from the building

blocks described in section II. At the physical layer, a ZigBee
compatible chip like the Texas Instruments CC 2420 radio
transceiver [25] is a popular choice. WiseMac is a high
performance low power MAC protocol which has been tested
in many deployments. NSafeLinks is a distributed routing
protocol providing N redundant routes from each node to
the sink, thereby offering load balancing and robustness to
failures.

For benchmarking purposes, it is interesting to define a
second stack to approximate optimal performance both in
terms of latency and of power consumption. This can be done
by using the same radio model to take into account hardware-
induced delays, a CSMA/CA MAC protocol (compatible with
the IEEE 802.15.4 non-beacon enabled mode) which allows
almost immediate transmissions in low data rate conditions,
and the use of routes pre-computed offline so that they
minimize retransmissions, packet losses and the number of
hops to the sink.

Routes are computed offline using a Matlab script. The
problem is formulated as an all-shortest-paths-to-sink problem
which can be solved using Dijkstra’s algorithm. The weights
of the paths between two nodes are computed as follows.
Since the latency and energy cost of a link are related to the
average number of retransmissions of a packet until successful
reception and acknowledgement, the link cost is defined as

CDA =
1

PSDPSA

where PSD and PSA are the probabilities of successful data
and acknowledgement transmissions.

The probability of a successful transmission of a packet of
n bits is PS = (1 − Pb)n where Pb is the bit error rate. The
bit error rate as a function of SNIR is given in [1]:

Pb =
8
15

1
16

16∑

k=2

(−1)k
16∑

k

e20SNIR 1
k 1

And the SNIR is obtained as follows:

SNIR =
PT

LP

N0WF

where PT is the transmitted power, LP the pathloss, W the
signal bandwidth, F the noise figure and N0 = 1.38∗10−23 ∗
290 the noise density. For a TI CC 2420 transceiver, W and F
take respectively the values 2 ∗ 106 and 15.3 dB.

The end-to-end delay for each packet and the total number
of packets sent by each node are recorded for each simulation

2. Distributed Systems 37

run. This allows to compute the average end-to-end delay and
the total number of packets transmitted. Multiplying this last
number with the energy needed to send and receive one packet
gives the total consumed energy in the network. This energy is
the duration of the 35 bytes packet (20 bytes payload) at 250
kbps multiplied with the power consumption of the TI CC240
radio chip at the selected transmit power (the maximum output
power of the CC2420 chip is 0 dBm. A current consumption of
34 mA has been considered for a hypothetical 10 dBm output
power). As idle listening and overhearing costs are excluded,
this measure corresponds to the energy cost of a contention
MAC protocol with an ideal wake-up scheme.

IV. EVALUATION

The parameter of interest is the transmit power of an
IEEE 802.15.4 compatible Texas Instruments CC 2420 radio
transceiver. 21 values, uniformly distributed between -10 dBm
and +10 dBm, are considered. The two considered metrics are
the mean end-to-end delay between all nodes and the sink and
the total energy consumption of the network.

Simulations have been run for five different random posi-
tions of 120 nodes distributed on a terrain of 300 x 300 meters.
Each combination of random configuration and transmit power
implies changes in network connectivity, and thus a specific
routing tree. Each node generates 100 packets and the mean
time between two packets is set to 60 seconds. The end-to-end
delay for each packet is recorded as well as the total number
of packets sent by each node. The average of the end-to-end
delay is made over all packets and the total of the number of
transmitted packets is made over all nodes. Thank to automatic
repeat requests, all generated packets are finally received at the
sink. The link level packet success rate varies between 95 %
and 100% with varying transmit power over all simulations.

Figure 1. Total energy required for transmitting 100 packets from each node
to the sink.

Figure 1 shows the total energy required to forward all gen-
erated packets to the sink and Figure 2 shows the average end-
to-end latency experienced by those packets. Every different
random position of the nodes results in different curves (thin

grey lines). The thick black lines represent the average over
all random positions.

Figure 2. Average end-to-end latency between all nodes to the sink.

From the curves in Figures 1 and 2, it is clear that with the
CC2420 chip, there is no trade-off to make (at least in low
traffic situation) with the choice of the transmit power. The
maximum output power provides the best results both in terms
of consumed energy and in terms of latency. The potential
advantage of using multiple hops to reduce the consumed
energy is not present with the CC2420 because of its high
base current consumption (8 mA in transmit mode and 18
mA in receive mode). If this radio would have a base current
consumption of 2 mA both in receive and transmit mode, the
latency versus energy curve would be as illustrated in Figure
3. In this case, latency and energy could be traded.

Figure 3. Trade-off analysis for an hypothetical radio.

The simulations used in this section to explore the latency
versus energy trade-off with variable transmit power were all
made with a low traffic. In high traffic conditions the use of a
high transmit power increases the problem of interferences
which can cause collisions, thereby increasing the need of

38 Workshop on Adaptive and Reconfigurable Embedded Systems (APRES’08)

retransmissions and ultimately the power consumption. Even
with the CC2420 radio chip, it can be of interest to choose
a transmission power below the maximum permitted by the
chip to limit interferences.

V. CONCLUSION

This work in progress studies the impact of a change in
transmit power of a popular TI CC 2420 radio transceiver,
using ideal low power MAC and routing protocols, on com-
munications latency and network power consumption.

It is shown that there is no such trade-off in this particular
case, and that by considering an hypothetical transceiver with
slightly different characteristics, an interesting trade-off could
be exploited. This result validates the methodology adopted
by this work in progress.

The next step will be the study of a realistic ultra low
power stack consisting of a TI CC 2420 radio transceiver,
WiseMac and NSafeLinks. In addition to transmit power,
the impact of the periodic wake-up interval of WiseMac, of
the number of redundant routes of NSafeLinks, and of the
maximum number of retransmissions will be evaluated. Other
deployments scenarios will also be considered, in particular
high density networks.

In addition to latency and power consumption, the percent-
age of traffic correctly reaching its destination (goodput) will
also be considered.

Extending the scope of this work to more scenarios, more
parameters and additional metrics can only increase the like-
lihood of identifying valuable trade-offs.

REFERENCES

[1] IEEE Std 802.15.4-2006, IEEE Standard for Information technology-
Telecommunications and information exchange between systems-Local
and metropolitan area networks-Specific requirements- Part 15.4: Wire-
less Medium Access Control (MAC) and Physical Layer (PHY) Specifi-
cations for Low-Rate Wireless Personal Area Networks (LR-WPANs).

[2] ZigBee Alliance, http://www.zigbee.org.
[3] M. Z. Win and R. A. Scholtz, “Impulse radio: How it works,” IEEE

Communications Letters, vol. 2, no. 2, pp. 36–37, February 1998.
[4] L. van Hoesel and P. Havinga, “A lightweight medium access protocol

(lmac) for wireless sensor networks,” in Proceedings of the 1st Interna-
tional Workshop on Networked Sensing Systems (INSS 2004), 2003.

[5] V. Rajendran, J. J. Garcia-Luna-Aceves, and K. Obraczka, “Energy-
efficient, application-aware medium access for sensor networks,” in
Proceedings of the 2nd IEEE International Conference on Mobile Adhoc
And Sensor Systems (MASS 2005), 2005.

[6] V. Rajendran, K. Obraczka, and J. J. Garcia-Luna-Aceves, “Energy-
efficient, collision-free medium access control for wireless sensor net-
works,” Wireless Networks, vol. 12, no. 1, pp. 63–78, 2006.

[7] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient mac protocol
for wireless sensor networks,” in Proceedings of the Twenty-First Annual
Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM), vol. 3, 2002, pp. 1567–1576.

[8] T. van Dam and K. Langendoen, “An adaptive energy-efficient mac
protocol for wireless sensor networks,” in Proceedings of the 1st
international conference on Embedded networked sensor systems, 2003,
pp. 171–180.

[9] W. Ye, F. Silva, and J. Heidemann, “Ultra-low duty cycle mac with
scheduled channel polling,” in Proceedings of the 4th international
conference on Embedded networked sensor systems, 2006, pp. 321–334.

[10] J. Polastre, J. Hill, and D. Culler, “Versatile low power media access
for wireless sensor networks,” in Proceedings of the 2nd international
conference on Embedded networked sensor systems, 2004, pp. 95–107.

[11] A. El-Hoiydi, “Spatial tdma and csma with preamble sampling for low
power ad hoc wireless sensor networks,” in Proceedings of the Seventh
IEEE International Symposium on Computers and Communications
(ISCC 2002), 2002, pp. 685– 692.

[12] A. El-Hoiydi and J.-D. Decotignie, “Wisemac: An ultra low power mac
protocol for multi-hop wireless sensor networks,” in Proceedings of the
1st International Workshop on Algorithmic Aspects of Wireless Sensor
Networks, 2004.

[13] S. Mahlknecht and M. Böck, “Csma-mps: a minimum preamble sam-
pling mac protocol for low power wireless sensor networks,” in Pro-
ceedings of the 2004 IEEE International Workshop on Factory Commu-
nication Systems, 2004, pp. 73–80.

[14] M. Buettner, G. Yee, E. Anderson, and R. Han, “X-mac: a short preamble
mac protocol for duty-cycled wireless sensor networks,” in Proceedings
of the 4th international conference on Embedded networked sensor
systems, 2006, pp. 307–320.

[15] X. Shi and G. Stromberg, “Syncwuf: An ultra low-power mac protocol
for wireless sensor networks,” IEEE Transactions on Mobile Computing,
vol. 6, no. 1, pp. 115–125, 2007.

[16] J. N. Al-Karaki and A. E. Kamal, “Routing techniques in wireless sensor
networks: a survey,” IEEE Wireless Communications, vol. 11, no. 6, p. 6,
2004.

[17] J. Kulik and W. R. Heinzelman, “Negotiation-based protocols for dis-
seminating information in wireless sensor networks,” Wireless Networks,
vol. 8, pp. 169–185, 2002.

[18] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion:
A scalable and robust communication paradigm for sensor networks,”
2000.

[19] R. C. Shah and J. Rabaey, “Energy aware routing for low energy ad hoc
sensor networks,” in IEEE WCNC, 2002.

[20] T. Ikikardes, M. Hofbauer, A. Kaelin, and M. May, “A robust, responsive,
distributed tree-based routing algorithm guaranteeing n valid links per
node in wireless ad-hoc networks,” in Proceedings of the IEEE Inter-
national Symposium on Computers and Communications (ISCC 2007),
2007.

[21] . B. H. Heinzelman W., Kulk J., “Energy-efficient communication
protocols for wireless microsensor networks,” January 2000, lEACH.

[22] S. Lindsey and C. S. Raghavendra, “Pegasis: Power-efficient gathering
in sensor information systems,” in Proceedings of the IEEE Aerospace
Conference, vol. 3, no. 9-16, 2002, pp. 1125–30.

[23] Y. Yu, R. Govindan, and D. Estrin, “Geographical and energy aware
routing: A recursive data dissemination protocol for wireless sensor
networks,” Tech. Rep., 2001.

[24] A. Varga, Omnet++ Discrete Event Simulation System,
http://www.omnetpp.org.

[25] Texas Instruments 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF
Transceiver, 2007, http://www.ti.com.

2. Distributed Systems 39

3. Scheduling

A GA-Based Approach to Dynamic Reconfiguration of Real-TimeSystems∗

Marco A. C. Simões
Bahia State University
ACSO/UNEB, Brazil
msimoes@uneb.br

George Lima
Federal University of

Bahia - LaSiD/UFBA, Brazil
gmlima@ufba.br

Eduardo Camponogara
Federal University of

Santa Catarina (DAS/UFSC), Brazil
camponog@das.ufsc.br

Abstract

Modern real-time systems have become increasingly
complex since they have been required to operate in modern
architectures and environments with high level of temporal
uncertainty, where the actual execution demand is deter-
mined only during execution and is valid only for a given
period of time. Thus such systems require both temporal
isolation and dynamic reconfiguration. In this paper we
deal with both these requirements. By assuming that the
system is structured such that there are several modes of
operation to be chosen at runtime, we formulate a reconfig-
uration problem. Temporal isolation is ensured by CBS. A
solution to the reconfiguration problem is based on Genetic
Algorithms, which provide the graceful adaption of the sys-
tem so that it copes with new demands of the environment.
The proposed solution is evaluated by simulation and the
results found show the suitability of the approach.

1 Introduction

The design of real-time systems has become increas-
ingly complex. Modern hardware and software architec-
tures and/or the support to open environments, for exam-
ple, make it difficult or even impossible to estimate task
worst-case execution times accurately [13]. A usual way
of dealing with this problem is by providingtemporal iso-
lation in the system. Indeed, if a certain task runs more than
what was expected, the effect of this timing fault should not
propagate to other application tasks. There are several ap-
proaches to temporal isolation and for EDF-scheduled sys-
tems the Constant Bandwidth Server (CBS) has received
special attention recently [1, 9, 5, 4].

Although temporal isolation is an important aspect, for
certain kinds of modern applications, the system should also
provide support fordynamic reconfiguration. Indeed, mod-
ern systems may be structured so that their tasks have one or

∗This work is funded by CNPq (grant number: 475851/2006-4) and
CAPES/PROCAD (AST project)

more modes of operation. For example, a control task can
execute one among several control functions and/or with
one among several sampling periods previously set. In other
words, a task that has more than one operation mode may
have alternative pieces of code to execute or alternative re-
lease periods. Assuming that each operation mode gives a
different benefit for the system, the problem is then to se-
lect, at runtime, the set of task modes that maximizes the
system benefit subject to the system schedulability.

Applications such as autonomous mobile robots, which
embed several complex functions into off-the-shelf com-
plex hardware components, are among those that require
support to both temporal isolation and dynamic reconfigu-
ration. For example, the robot computer vision subsystem
may experiment different operational modes due to environ-
ment changes. Light conditions, obstacles, vision angle and
other unpredictable environmental characteristics may gen-
erate strong variation on execution times of vision subsys-
tem tasks. Also, modifications in the robot goals during its
lifetime may well require dynamic reconfiguration. Further
timing faults in one of the system components, even dur-
ing reconfiguration, should not jeopardize the system per-
formance as a whole.

Some approaches to dynamic reconfiguration have been
proposed. For example, Feedback Scheduling (FS) [11],
based on control theory, treats the system scheduling as a
control plant and uses a controller to adjust the scheduling
parameters at runtime. This approach offers no temporal
isolation. FS-CBS [14] uses FS. It is assumed that the sys-
tem is composed of Model Predictive Control (MPC) tasks
served by CBS. Although this approach provides temporal
isolation, its applicability is restricted to MPC tasks. Fur-
ther, FS-CBS does not deal with reconfiguration of server
periods. Other approaches aim at providing server capacity
sharing mechanisms [4, 5, 9]. However, they do not provide
dynamic reconfiguration. If a system has no idle time, for
example, there is no slack time to be shared.

In this paper we deal with dynamic reconfiguration in a
new and challenging scenario, as will be seen in Section 2.
Temporal isolation is ensured by the use of CBS. Differ-

3. Scheduling 43

ent server modes are previously defined, each one giving a
benefit for the system. Dynamically reconfiguring the sys-
tem is then seen as choosing the operation modes of each
server so that the system benefit is maximized. Clearly, this
is a reasonably complex optimization problem, which may
require too much computational resources to be solved on-
line. However, as will be explained in Section 3, instead of
searching for the optimal solution, the approach provided
here is capable of progressively reconfiguring the system
toward the optimal solution. To do that, we use Genetic Al-
gorithms (GA). The results of experiments, given in Section
4, highlight the suitability of the described approach for the
kind of system we are considering. Final comments on this
work and on the challenges it brings about are given in Sec-
tion 5.

2 System Model and Problem Definition

We are considering a system with one processor sup-
porting n Constant Bandwidth Servers (CBS) [1]S =
{S1, S2, ..., Sn} that are scheduled by the Earliest Deadline
First algorithm (EDF) [10]. Each serverSi ∈ S hasκ(i) ≥
1 operation modes and we denoteKi = {1, 2, . . . , κ(i)}.
The k-th operation mode ofSi is denoted by the tuple
(Qik, Tik), whereQik represents the server mode capac-
ity andTik is its period. Thus, each serverSi operating in
modek has a maximum processor utilizationUik = Qik

Tik
. In

other words, the system allocates, to each task served bySi,
a constant bandwidth defined byUik so that temporal iso-
lation is ensured [1]. As the system is scheduled by EDF,
it is possible to use 100% of processor resources. Clearly,
by the CBS schedulability properties [1], if the parameters
Qik andTik are appropriately set for each server, tasks meet
their deadlines or have an acceptable lateness (in case of soft
tasks) provided that there are no timing faults.

We assume that the system may require that prede-
fined values ofQik and Tik are assigned to each server
Si at runtime so that the system can adapt or switch it-
self to attend to new demands by means of dynamic re-
configuration. This is performed by a system call, say
reconfig(U1k1

, v1, U2k2
, v2, . . . , Unkn

, vn), whereUiki
is

the new desired processor utilization for serverSi andvi is
the associated benefit to this new configuration. Thus, if the
system can allocate at leastUiki

for serverSi, there will be
a benefitvi for the system. Without loss of generality, we
assume that the benefit function associated toSi running in
modek is defined by

Aik(Uiki
, ui, vi) =

min(ui, Uiki
)

Uiki

vi , (1)

whereui represents the processor utilization effectively al-
located toSi. Other benefit functions are possible and we

do not impose any restriction on them. Interesting discus-
sion on benefit functions can be found elsewhere [3] and is
beyond the scope of this paper. The benefitsvi are defined
by the application when it uses thereconfig system call.

The execution ofreconfig solves the optimization
problemR defined as follows:

R : f = Maximize
∑

Si∈S

∑

k∈Ki

Aikxik (2a)

∑

Si∈S

∑

k∈Ki

Uikxik ≤ 1 (2b)

Uik =
Qik

Tik

(2c)
∑

k∈Ki

xik = 1, Si ∈ S (2d)

xik ∈ {0, 1}, Si ∈ S, k ∈ Ki (2e)

Equation (2a) defines the objective function, which is
based on equation (1). Variablexik, defined by equation
(2e), represents the choice of one of theκ(i) server opera-
tion modes ofSi. Only one configuration must be selected
byreconfig, which is ensured by equation (2d). Restric-
tion (2b) guarantees the schedulability ofS according to the
EDF policy.

It is not difficult to see that the classical knapsack prob-
lem can be reduced toR and so it is aNP−Hard problem.
One can solveR by using some standard optimization tech-
niques. In particular, we have used dynamic programming
to get optimal results, which will be used to assess our GA-
based reconfiguration approach, as will be seen in Section
4. There is a recursive formulation forR which leads to
a solution via dynamic programming, which is not shown
here for the sake of space.

3 GA-Based Dynamic Reconfiguration

In this section we explain how the reconfiguration pro-
cedure was set up. The parameters of the procedure were
empirically adjusted using an example of 10 servers with
15 operation modes each. The fitness function is given by
equation (2a). The individuals (represented by their chro-
mosomes) that have the highest value returned by the fitness
function represent an optimal solution for the problem. In
the context of problemR, a solution can be defined by a list
(k1, k2, . . . , kn), whereki ∈ Ki. Let κ∗ = maxn

i=1
κ(i).

Thus, a binary encoding [12] can be used so thatdn log
2
κ∗e

bits are needed to represent a possible solution (an individ-
ual). For example, a system with 10 servers each of which
with 15 operation modes would require a 40-bit chromo-
some.

At the start of thereconfig procedure, we set the
initial population by randomly generating5n individuals.

44 Workshop on Adaptive and Reconfigurable Embedded Systems (APRES’08)

These initial parameters are based on the De Jong’s test
suite [8] with a few adjustments. At each iteration of the al-
gorithm a new population is generated from the current pop-
ulation. To do that, the operations of selection, crossover,
mutation and migration are performed:

Selection. First, the individuals are ordered according to
their fitness values. Two of them (the best fit ones)
are selected by elitism [8] and copied to the new pop-
ulation. Selection probability values are assigned to
the othern − 2 individuals by the stochastic uniform
method [2] according to their fitness values.

Crossover. The crossover operation is carried out
⌊

5n−2

4

⌋

times to generate 50% of remaining offsprings. Each
operation combines two individuals of the current pop-
ulation, generating two new offsprings to be added in
the new population.

Mutation. This operation is carried out for
⌊

5n−2

2

⌋

se-
lected individuals, following some usual recomenda-
tions [12]. Each selected individual can have its bits
changed with a probability of 0.1 per bit. The new
generated individuals after mutation are added to the
new population.

Migration. We have divided our population into two sub-
populations of5n

2
individuals each. Then the 20%

best-fit individuals from each subpopulation are cloned
and they replace the 20% worst-fit individuals of the
other subpopulation. This migration operation [6]
takes place every 10 generations.

4 Assessment

We implemented the GA-based reconfiguration using
Matlab/Simulink and the TrueTime toolbox [7]. We sim-
ulated 100 systems and the results presented below corre-
spond to the average values found for these systems. Each
simulated system had 10 servers with 15 operation modes
each. The server parameters were randomly generated as
follows. First, the values ofUik andQik for all Si ∈ S

were generated according to a uniform distribution in the
interval (0, 0.2] and [10, 100], respectively. Time is mea-
sured in time units (tu).

The first evaluated parameter was the average perfor-
mance ratio (APR) achieved by the proposed approach.
APR is defined here as1

m

∑m

j=1

Vj

OPTj
, wherem = 100 is

the number of simulated systems,Vj is the value achieved
by the proposed approach as for the simulated systemj and
OPTj is its optimum value given by a dynamic program-
ming based solution (as said before, not shown here). As
can be seen from Table 1, the APR achieved by the proposed
approach gives very good results, which lies very close to

Generations APR Std. Dev. Av. Exec. Time (tu)

10 0.74 0.02 73.13

25 0.76 0.02 162.45

50 0.77 0.02 311.97

100 0.78 0.01 610.22

250 0.79 0.01 1505.70

500 0.79 0.01 3001.63

1000 0.79 0.01 6016.20

Table 1. Performance ratio.

80% to the optimum value. It is interesting to note that the
performance ratio does not change significantly as a func-
tion of the number of generations used to reconfigure the
system, indicating a rapid convergence of the reconfigura-
tion mechanism. As can be observed, satisfatory solutions
can be found using as few as 10 generations at the expense
of about 73 tu.

We have set up a simulation experiment as follows. A
specific server with a single mode, given by(20, 100), was
added to the system and reserved for carrying out the recon-
figuration. This means that the other 10 servers have now
80% of processor resources available. During the simula-
tion, the average performance ratio was measured for 100
simulated systems. The time interval of observation cor-
responds to the first 100 activations of the reconfiguration
server after the time thereconfig system call is called.
Each reconfiguration server instance manages to deal with
3.44 generations on average. The average values for all sys-
tems are shown in Figure 1. As can be seen, there is a
fast convergence of the reconfiguration mechanism. More
than 72% to the optimum is achieved after the third in-
stance of the reconfiguration server while 76% is reached
after its 15th instance. However, the reconfiguration pro-
cedure tends to converge to some local optimum. As we
managed to set up the GA parameters so that the global op-
timum was reached for some specific simulated systems, we
believe that the local optimum convergence is due to the fact
that the GA parameters used are not suitable for all simu-
lated systems, since they were generated at random. This
suggests that a more systematic approach to setting up such
parameters is needed.

It is important to emphasize the adaptive nature of the
proposed approach. While each reconfiguration instance is
able to manage only a few generations, it is producing par-
tial results. For example, when the third instance of the
server finishes executing, it gives 72% of APR. This partial
solution can be immediatelly used and is progressively im-
proved as long as the reconfiguration server is running. In
the case of this simulation, 80 time units on average were
needed to process the three first instances of the server. The
15th instance finishes after 1190 time units. It is also worth
mentioning that we did not address the problem of mode

3. Scheduling 45

0 20 40 60 80 100

68
70

72
74

76
78

Configuration Server Instances

A
ve

ra
ge

 P
er

fo
rm

an
ce

 R
at

io
(%

)

Figure 1. Average performance ratio growth.

change necessary to pass from one configuration to another.

5 Conclusions

We have described an approach to dynamic reconfigu-
ration of real-time systems structured as a set of Constant
Bandwidth Servers each of which can operate in one of the
previously defined modes. Using a specific objective func-
tion, we have formulated a specific reconfiguration prob-
lem. We have shown that approximate solutions to this
problem can be found in an effective way by using Genetic
Algorithms. The described approach is evaluated by sim-
ulation and the results found have indicated the suitability
of the described approach. For example, the proposed ap-
proach can be used for gradually adapting the system to en-
vironment changes. This is particularly interesting to deal
with modern real-time systems operating in environments
with high level of uncertainty.

Most parameters used in the reconfiguration approach
were defined empirically. It would be interesting to derive
mechanisms to adjust such parameters in a mechanized way
by using, for instance, Neural Networks. More complex ob-
jective functions can also be investigated. For example, one
may be interested in considering parameters such as late-
ness, deadline miss ratio, etc., which will give rise to multi-
objective optimization problems. Another challenging goal
would be to design self-adjustable scheduling policies so
that the system itself decides when to carry out reconfigura-
tions. Certainly, these and other research topics can use the
proposed approach as a starting point.

References

[1] L. Abeni and G. Buttazzo. Integrating multimedia ap-
plications in hard real-time systems.Real Time Sys-
tems Symposium(RTSS), The 19th IEEE, pages 4–13,
1998.

[2] J. E. Baker. Reducing bias and inefficiency in the se-
lection algorithm. In J. J. Grefenstette, editor,Genetic

Algorithms and Their Applications: Proceedings of
the Second International Conference on Genetic Al-
gorithms. Erlbaum, 1987.

[3] A. Burns, D. Prasad, A. Bondavalli, F. Di Gi-
andomenico, K. Ramamritham, J. Stankovic, and
L. Stringini. The meaning and role of value in schedul-
ing flexible real-time systems.Journal of Systems Ar-
chitecture, 46:305–325, 2000.

[4] M. Caccamo, G. Buttazzo, and Lui Sha. Capac-
ity sharing for overrun control.Real-Time Systems
Symposium, 2000. Proceedings. The 21st IEEE, pages
295–304, 2000.

[5] M. Caccamo, G.C. Buttazzo, and D.C. Thomas. Ef-
ficient reclaiming in reservation-based real-time sys-
tems with variable execution times.IEEE Transac-
tions on Computers, 54(2):198–213, Feb. 2005.

[6] E. Cantu-Paz. Migration policies, selection pres-
sure, and parallel evolutionary algorithms.J. Heurist,
7:311–334, 1999.

[7] A. Cervin, D. Henriksson, B. Lincoln, J. Eker, and
K.-E. Arzen. How does control timing affect perfor-
mance? analysis and simulation of timing using jitter-
bug and truetime.Control Systems Magazine, IEEE,
23(3):16–30, June 2003.

[8] K. A. De Jong.An Analysis of the Behavior of a Class
of Genetic Adaptive Systems. PhD thesis, University
of Michigan, 1975.

[9] Caixue Lin and Scott A. Brandt. Improving soft
real-time performance through better slack reclaim-
ing. Real-Time Systems Symposium, 2005. RTSS 2005.
26th IEEE International, 0:410–421, 2005.

[10] C. L. Liu and James W. Layland. Scheduling algo-
rithms for multiprogramming in a hard-real-time en-
vironment.Journal of the ACM, 20(1):46–61, 1973.

[11] Chenyang Lu, John A. Stankovic, Sang H. Son, and
Gang Tao. Feedback control real-time scheduling:
Framework, modeling, and algorithms.Real-Time
Syst., 23(1-2):85–126, 2002.

[12] Melanie Mitchell. An Introduction to Genetic Algo-
rithms. MIT Press, 1998.

[13] Xiaorui Wang.Adaptive Quality of Service Control in
Distributed Real-Time Embedded Systems. PhD the-
sis, Washington University, August 2006.

[14] Pingfang Zhou, Jianying Xie, and Xiaolong Deng.
Optimal feedback scheduling of model predictive con-
trollers. Journal of Control Theory and Applications,
4(2):175–180, Feb 2006.

46 Workshop on Adaptive and Reconfigurable Embedded Systems (APRES’08)

CPU Utilization Control Based on Adaptive Critic Design
 Jianguo Yao1,2, Xue Liu1

jianguo@cs.mcgill.ca, xueliu@cs.mcgill.ca
1School of Computer Science, McGill University, Montreal, QC H3A2A7, CANADA

2 School of Astronautics, Northwest Polytechnical University, Xi’an, Shaanxi 710072, P.R.CHINA

 Most embedded systems have stringent real-time temporal requirements. Controlling the CPU utilizations under the schedulability
bounds at individual nodes is an effective and efficient way to ensure real-time temporal guarantee. Recently, researchers have
proposed solutions which employ model predictive control to maintain the desired CPU utilization. However, task execution times can
vary greatly during run-time for most modern embedded applications. Although existing approaches can handle a limited amount of
execution time uncertainties, the performance deteriorates when the variations are large. In this paper, we present an adaptive control
approach to handle large model uncertainties. Our adaptive control approach is based on adaptive critic design. A comparative study
via simulation is conducted to demonstrate the effectiveness of the new approach. Results show that the system based on adaptive critic
design achieve better performance guarantee when large model uncertainties exist.

I. INTRODUCTION
Real-time embedded systems are becoming essential

component of computing and they are playing an important
role in people’s everyday lives. Examples of such systems
include avionics mission computing, autonomous aerial
surveillance, and disaster recovery systems. These systems
execute tasks and deliver services conforming to temporal
constraints [1]. One of the most effective ways to ensure
temporal guarantee in real-time embedded systems is to
control the CPU utilization under the schedulability bounds on
individual nodes. Traditionally, real-time embedded systems
work in open-loop fashions. The scheduling decision relies on
accurate characterizations of the platform and the workload
(such as worst case execution times). However, in many
practical applications, parameters such as task execution times
may be highly dynamic. A key challenge faced by such
applications is providing real-time guarantees while the
workload cannot be accurately characterized a priori. In the
past few years, researchers began to apply feedback control
techniques to solve this challenge. In these control-theoretic
approaches, system CPU utilizations are maintained under the
CPU schedulability bounds through dynamic resource
allocations in response to load variations [2], [4], [5]. CPU
utilization control targets are usually set near the
schedulability bounds so as to fully utilize the CPU resources
and at the same time guaranteeing real-time deadlines to be
met.

Most of the previous works on CPU utilization control in
real-time embedded systems were focused on using Model
Predictive Control (MPC) algorithms. Detailed discussions of
how to apply MPC in utilization control for real-time
embedded systems were presented in [2], [4], [5]. In these
approaches, centralized or decentralized MPC controllers
were designed based on approximated models of the
underlying systems and the tasks running on top of them. It
was shown that these approaches can handle successfully
when limited workload uncertainties or variations are
presented in the underlying systems. However, as we will
show, when the uncertainties and variations are large, MPC-
based approaches’ performance deteriorates.

In order to better control the performance for these systems,
adaptive feedback control design is needed. In this paper, we
present a new CPU utilization control approach based on
Adaptive Critic Design (ACD) to deal with large workload
variations. It is worth noting that this pilot study only
discusses centralized control problem. However, our approach
can be extended to decentralized control in terms of
composition method of distribute system as discussed in [5].

The remainder of this paper is organized as follows. Section
II describes the problem statement on utilization control.
Section III describes a general architecture of adaptive critic
design (ACD). Section IV presents the detailed descriptions
of the control system design based on ACD. Section V
presents the simulation and evaluation results. Finally, we
conclude the paper in Section VI.

II. PROBLEM STATEMENT
We employ CPU utilization model as discussed in [2]

() (1) (1)x k x k Bu k= − + − , (1)
where 1nx ×∈ represents the CPU utilization vector on the n
nodes; 1mu ×∈ represents the change to task rates for the m
tasks running on the system; n mB ×∈ is the unknown input
matrix, which is related to parameters of estimated execution
time and the corresponding gain on it. B is described as

B GF= , (2)
where G is a gain matrix suggesting the ratio between the
actual utilization and its estimation, which itself is unknown.
F is the subtask allocation matrix, which is available. It
represents which tasks are running on which nodes.

Suppose the goal of control system is to track the constant
reference command dx , where dx represents the CPU
utilization target vector. Let us denote the error between the
measured CPU utilization and target utilization as

() () ()de k x k x k= − . So the control goal is to minimize e(k).
Typically, we can choose the control law as follows

1(1) (1) (1)u k B e kβ −− = − − , (3)
where β is a design matrix which ensures that the tracking
error is bounded. Note we can not get matrix B accurately
since we do not have the exact information of the gain matrix
G due to the varying excursion time. As a result, applying the

3. Scheduling 47

model-based controller design method such as MPC, the
control performance may deteriorate when large uncertainties
exist. However, we can approximate the value of

1(1) (1)B e kβ −− − using adaptive learning design assuming it
is a smooth function, hence we can get the control input. In
the following, we will discuss the model-free adaptive critic
design controller design.

III. A GENERAL ARCHITECTURE OF ADAPTIVE CRITIC DESIGN
(ACD)

Adaptive Critic Design (ACD) is a powerful method to
solve approximated optimal control problem of nonlinear and
uncertain plant. It is based on the combination of Dynamic
Programming (DP) and Reinforcement Learning (RL). In the
ACD architecture, there are three modules: the utility function,
the critic network and the action network, where the utility
function indicates instant cost reward, the critic network
approximates the cost-to-go function describing the
performance of the system, and the action network gives
optimal action by minimizing the output of critic network.

Fig. 1 shows a general architecture of ACD. Plant is a
computing system with multiple inputs and multiple outputs
(MIMO), which is influenced by many uncertainties, such as
time delay, varying execution time and noise; ref is the
reference command signal expected by the good system
performance. The critic network tunes its parameters through
reinforcement learning algorithm and the action network is
adjusted by the output of critic network.

Action Network

Computing
System

Critic Network

ref

x(t)

u(t)

Plant

ACD-based controller

Utility
Function

Fig. 1. A General Architecture of Adaptive Critic Design

IV. ONLINE ADAPTIVE CRITIC DESIGN
In order to ensure that the system tracks the reference

command with small error, we present an adaptive control
algorithm based on the online ACD. The algorithm with one
input is presented in [3], and in our research, we extend it to
multiple inputs. The detailed ACD-based control algorithm is
described in this section.
A. Utility Function

Utility function embodies the control objective. To achieve
this goal, we represent the utility function by a step function,
where “-1” suggests the trial has failed because the tracking
error is larger than the threshold, and “0” suggests the trial has
succeeded because the tracking error is smaller. It is defined
as follows

0, for all ()
() , 1,2, ,

1, else
ie k Th

U k i n
<⎧

= =⎨−⎩
, (4)

where () () ()i i die k x k x k= − is the tracking error of the
thi element in ()x k , dix represents reference of the

thi element in the reference command vector () n
dx k ∈ ,

and Th is the threshold selected by the designer.
B. The Critic Network

The critic network approximates the cost-to-go function
()J k indicating system performance. We define ()J k as

1() (1) (2) ()NJ k U k U k U k Nα α −= + + + + + + , (5)
where α is the discount factor, 0 1α< < , and N is the final
time step.

Dynamic Programming is employed to formulate optimal
control problem. The Bellman Equation is given by

() (1) (1)J k U k J kα= + + + . (6)
We define the error of critic network as

() () [(1) ()]ce k J k J k U kα= − − − . (7)
In the critic network, the goal is to minimize the following

function
21() ()

2c cE k e k= . (8)

Then we apply neural network to approximate the cost-to-go
function ()J k

(2) (1)ˆ ˆ() () (() ())c cJ k W k W k s kφ= , (9)
where [,]T T T m ns x u += ∈ is the input vector of critic

network, and ()(1)ˆ () hN m n
cW k × +∈ and (2)ˆ () hN

cW k ∈ are the
weight matrices in the critic network; hN is the number of
hidden nodes in both critic network and action network; and
the function ()xφ is defined as

1 exp()
1 exp

x

xxφ
−

−

−
=

+
. (10)

To minimize Equation (8), weight matrix (1)ˆ
cW is updated as

follows
(1) (1) (1)ˆ ˆ ˆ(1) () ()c c cW k W k W k+ = + ∆ , (11)

(1)
(1)

()ˆ () () ˆ ()
c

c c
c

E k
W k l k

W k

⎡ ⎤∂
∆ = −⎢ ⎥

∂∆⎢ ⎥⎣ ⎦
, (12)

where cl is a positive learning rate of critic network.
Calculating the partial derivative in Equation (12), we get,

(1) (1)

(2) (1)

ˆ ˆ(1) ()
ˆ ˆ() (() ()) (),

c c

c c c c

W k W k

l e k W W k s k s kα φ

+ =

′−
 (13)

where φ′ is the derivative of function φ .

Similar to that of weight matrix (1)ˆ
cW , the weight matrix

(2)ˆ
cW is updated by

(2) (2) (2)ˆ ˆ ˆ(1) () ()c c cW k W k W k+ = + ∆ , (14)

(2)
(2)

()ˆ () () ˆ ()
c

c c
c

E k
W k l k

W k

⎡ ⎤∂
∆ = −⎢ ⎥

∂∆⎢ ⎥⎣ ⎦
. (15)

Calculating the partial derivative in Equation (15), we get,

48 Workshop on Adaptive and Reconfigurable Embedded Systems (APRES’08)

(2) (1) (2)ˆ ˆ ˆ(1) () () ()c c c c cW k W k l e k W sα φ+ = − . (16)
C. The Action Network

Define the error of the action network as
() ()a ce k J k U= − , (17)

where cU is set to 0 because the signal “0” represents
“success” in the utilization function.

In the action network, the objective is to minimize the
following function

21() ()
2a aE k e k= . (18)

We design the action output ()u k using neural network. The
equation is as follows

(2) (1)
max

ˆ ˆ() () (() ())a au k u W k W k x kφ φ⎡ ⎤= ⎣ ⎦ , (19)

where maxu is the maximum magnitude of input vector,
(1) (2)ˆ ˆ() , ()h hN n m N

a aW k W k× ×∈ ∈ are the weight matrices in
the action network.

To minimize the Equation (18), the update law of weight
matrix (1)ˆ

aW is given by
(1) (1) (1)ˆ ˆ ˆ(1) () ()a a aW k W k W k+ = + ∆ , (20)

(1)
(1)

()ˆ () () ˆ ()
a

a a
a

E k
W k l k

W k

⎡ ⎤∂
∆ = −⎢ ⎥

∂∆⎢ ⎥⎣ ⎦
, (21)

where al is a positive learning rate for action network.
Substitute Equation (19) into Equation (9) , we get

(2) (11) (12)

(2) (11)

(12) (2) (1)
max

ˆ ˆ ˆ() () [() () () ()]
ˆ ˆ() { () ()
ˆ ˆ ˆ() () (() ()) },

c c c

c c

c a a

J k W k W k x k W k u k

W k W k x k

W k u W k W k x k

φ

φ

φ φ

= +

=

⎡ ⎤+ ⎣ ⎦

 (22)

where (1) (11) (12)ˆ ˆ ˆ() [(), ()]c c cW k W k W k= ; (11)ˆ () hN n
cW k ×∈ and

(12)ˆ () hN m
cW k ×∈ are weight matrices corresponding to ()x k

and ()u k respectively..
Calculating the partial derivative in Equation (21), we get

(1) (1)
(1)

(1)
(1)

(1) (2)

(1) (12) (2)
max

(1) (2) (1)

() ()ˆ ˆ(1) () ˆ() ()
()ˆ () () ˆ ()

ˆ ˆ() () ()
ˆ ˆ ˆ[() ()] () { ()
ˆ ˆ ˆ[() ()]} () [() ()] (

a
a a a

a

a a a
a

a a a c

c c a

a a a

E k J kW k W k l
J k W k

J kW k l e k
W k

W k l e k W k

W k s k W k u W k

W k x k W k W k x k x

φ φ

φ φ

∂ ∂
+ = −

∂ ∂
∂

= −
∂

= − ⋅

′ ′ ⋅

′).k

 (23)

Similar to the update law of weight matrix (1)ˆ
aW , the update

law of (2)ˆ
aW is given by

(2) (2) (2)ˆ ˆ ˆ(1) () (),a a aW k W k W k+ = + ∆ (24)

(2)
(2)

()ˆ () () ˆ ()
a

a a
a

E k
W k l k

W k

⎡ ⎤∂
∆ = −⎢ ⎥

∂∆⎢ ⎥⎣ ⎦
. (25)

Calculating the partial derivative in Equation (25), we get

(2) (2)
(2)

(2)
(2)

(2) (2) (1)

(12) (2) (1)
max

(1)

() ()ˆ ˆ(1) () ˆ() ()
()ˆ () () ˆ ()

ˆ ˆ ˆ() () () [() ()]
ˆ ˆ ˆ() { () [() ()]}

ˆ[() ()].

a
a a a

a

a a a
a

a a a c c

c a a

a

E k J kW k W k l
J k W k

J kW k l e k
W k

W k l e k W k W k s k

W k u W k W k x k

W k x k

φ

φ φ

φ

∂ ∂
+ = −

∂ ∂
∂

= −
∂

′= − ⋅

′

 (26)

D. Stability Analysis
The detailed stability analysis is presented in [3].

V. SIMULATION AND EVALUATION
We conducted simulation studies to evaluate the

performance of ACD-based adaptive controller in CPU
utilization control. In order to show the effectiveness of the
proposed approach, we compared the control performance
between ACD-based controller and MPC-based controller.
The results are reported in this section.
A. Simulator and Experimental Setup

The simulation is conducted in Matlab. The simulator
consists of four major modules. The first is the Utility
Function Module. In this module, the utility function is
obtained, and it suggests the action taken in the last sample
whether is good or not. The second is the Critic Network
Module. In this module, there are two functions: calculating
the approximated cost-to-go function and updating the weight
matrices in the critic network. The third is the Action Network
Module, which comprises two parts. One is to calculate the
action signal, and the other is to update the weight matrices in
the action network. The last Module is the Plant Module. Its
function is to conduct the action obtained from the Action
Network Module and to get new state of the system.

Fig. 2 shows the architecture of control system applied to a
simple computing system presented in [2]. In this system, we
have two processors and three periodic tasks. Task 1 locates in
Processor 1 (P1) which is denoted by T11 and Task 3 denoted
by T32 is in Processor 2 (P2). Task 2 is divided into two
subtasks T21 and T22, which are in P1 and P2 respectively. T21
and T22 have the same task rate.

T11

T21 T22

T31

Utilization
Monitor

Rate
Modulator

ACD
based

Controller

P1 P2

Ref

Computing system
Fig. 2. Centralized Controller based on Adaptive Critic Design

Supposing ()ir k is the invocation rate of Task i in the
(k+1)th sampling period., it has constraints as follows

min, max,() , 1,2,3i i iR r k R i≤ ≤ = , (27)

3. Scheduling 49

where min,iR is the minimum task rate of task i and max,iR is
the maximum.

We choose the input vector

[]1 2 3(1) (1) (1) (1) Tu k r k r k r k− = ∆ − ∆ − ∆ − , (28)
where ()ir k∆ is the change of the task rate ()ir k , whose
constraints are determined by the constraints of ()ir k .
According to the Inequation (27), we have input constraints as

max, min,() , 1, 2,3i i ir k R R i∆ ≤ − = . (29)
B. Parameter Setting

The bound of CPU utilization is chosen based on the
method suggested in [2]. Supposing max,ix is the maximum
value of utilization in CPU i. It can be calculated by the
following equation

1/
max, (2 1), 1, 2im

i ix m i= − = , (30)
where im is the number of subtasks in CPU i, and in this
experiment 1 2 2m m= = , so that we know that max, 0.828ix = ,

1, 2i = and the utilization is subject to

max,0 ()i ix k x< < . (31)
Parameter matrix F in Equation (1) is suggested in [2], and

we set the gain matrix G to imply whether or not there is
model uncertainty. In MPC design, we assume gain matrix

[1,0;0,1]G = , i.e. the actual CPU utilizations will be the same
as the estimated ones and there is no model uncertainty. To
test the system performance under model uncertainty, we
choose [0.5,0;0,0.5]G = in the simulation, i.e. the actual
CPU utilizations are a half of the estimations.

Table 1. The parameters of ACD-based controller
parameter α Th (0)cl (0)al

value 0.92 0.2 0.3 0.003
parameter ()cl f ()al f hN -

value 0.01 0.003 9 -

The parameters of ACD-based controller are shown in
Table 1, where (0)cl is the initial learning rate of critic
network; (0)al is the initial learning rate of action network.

()cl f is the final learning rate for critic network; the middle
learning rate ()cl k decreases every three samples until it
reaches ()cl f . ()al f is the final learning rate of action
network; the changing of middle learning rate ()al k is similar
to that of ()cl k .
C. Evaluation Results

We compared the control performance of two approaches:
MPC-based controller and ACD-based controller.

Fig. 3 compares the time responses of CPU utilization
based on two controllers applied to the computing system with
model uncertainty, where (a) and (b) are based on ACD-based
controller and MPC-based controller respectively.

Using the aggregate of squared errors between the
utilization target and the actual measured utilization on each
CPU over the duration of the experiment in the steady state,
we can compare the performance of the two schemes. The

smaller the aggregate error, the better the control performance.
Table 2 summarizes the results. In these results, the aggregate
errors are calculated for the interval from time t=200 to
t=1000.

(a) (b)

Fig. 3. CPU utilization control with noise and model uncertainty
Table 2. The aggregate errors under ACD and MPC

 ACD MPC
CPU1 0.0069 0.0196
CPU2 0.0087 0.0156

Our experiment results demonstrate the advantage of ACD-
based controller in guaranteeing the CPU utilization.
Compared with MPC-based controller, the ACD-based
controller can ensure better system performance in large
model uncertainty.

VI. CONCLUSIONS
In this paper, we focus on the CPU utilization control

problem to guarantee the performance of real-time embedded
systems. In these systems, execution time may vary greatly, so
an adaptive control approach is needed to adjust the CPU
utilization to ensure real-time guarantee. Model-based
controllers such as model predict control can handle small
model uncertainty problems. To deal with the large model
uncertainty problem, we employ adaptive critic design (ACD)
based controller. A simulation based on a simple plant is
conducted. The results suggest that the proposed ACD-based
controller can achieve better performance than MPC-based
controller for the CPU utilization with large execution time
uncertainty.

ACKNOWLEDGMENT
This work was supported in part by an NSERC discovery

grant and a National Study-Abroad Scholarship of P.R.China
under Grant No. [2007] 3020.

REFERENCES
[1] J. Liu, Real-Time Systems: Prentice Hall PTR 2000.
[2] C. Lu, X. Wang, and K. X., "Feedback utilization control in distributed

real-time systems with end-to-end tasks," Parallel and Distributed
Systems, IEEE Transactions on, vol. 16, no. 6, pp. 550-561, 2005.

[3] J. Si and Y Wang, "Online learning control by association and
reinforcement," IEEE Transactions on Neural Networks, vol. 12, no. 2,
pp. 264-276, 2001.

[4] X. Wang, Y. Chen, C. Lu, and X. Koutsoukos, "FC-ORB: A robust
distributed real-time embedded middleware with end-to-end utilization
control," Journal of Systems and Software, vol. 80, no. 7, pp. 938-950,
2007.

[5] X. Wang, D. Jia, C. Lu, and X.A.K.X. Koutsoukos, "DEUCON:
Decentralized End-to-End Utilization Control for Distributed Real-
Time Systems," IEEE Transactions on Parallel and Distributed
Systems, vol. 18, no. 7, pp. 996-1009, 2007.

50 Workshop on Adaptive and Reconfigurable Embedded Systems (APRES’08)

A hierarchical approach for reconfigurable and adaptive embedded systems∗

Moris Behnam, Thomas Nolte, Insik Shin
Mälardalen Real-Time Research Centre

Mälardalen University, Västerås, SWEDEN

Abstract

Adaptive and reconfigurable embedded systems have
been gaining an increasing interest in the past year from
both academics and industry. This paper presents our work
on hierarchical scheduling frameworks (HSF) intended as
a backbone architecture facilitating the implementation of
operating system support for adaptability and reconfigura-
bility.

1 Introduction

The work presented in this paper is motivated by the
needs of adaptability and reconfigurability in multiple em-
bedded systems domains. In this paper we target mainly the
automotive domain; however the approach is also suitable
to other application domains such as robotics. We present
our work based on the hierarchical scheduling framework
(HSF) [15, 16] as backbone architecture for applications
with high requirements on adaptation and reconfiguration.

Automotive software systems are traditionally rather
static in terms of their provided functionality, how they are
configured, and where they are physically located. How-
ever, recent trends indicate an increased interest towards
dynamic automotive systems [2]. Due to high requirements
on safety, predesigned modes are created to cover for all
possible usage and failure scenarios. At the same time,
cost, weight and complexity motivated trends investigate
the possibility of integrating more and more software on
fewer electronic control units (ECU) [17], which, in turn,
potentially increases the risk of single point of failure sce-
narios. Having fewer ECUs means that failure of one ECU
has the potential to bring several functions down, functions
that used to be distributed over multiple ECUs.

For safety critical systems, in the case of failure, certain
functionality must always be provided. Firstly, if a failure
occurs while driving the car it must be possible to bring the
car to a safe state. A scenario of a car being uncontrollable

∗The work in this paper is supported by the Swedish Foundationfor
Strategic Research (SSF), via the research programme PROGRESS.

due to a software failure would be unacceptable. Secondly,
if possible, it is desirable if the car under failure provides a
limited limp back home functionality, i.e., a set of functions
allowing the driver to bring the car to repair, even if parts of
the system have failed.

From an adaptability and configurability point of view,
if one part of the system fails due to, e.g., an accident/crash
with the car or due to some internal failure, functionality
can be migrated to other nodes, bringing the car to a safe
state. This can be provided by either static predesigned
modes or by a more dynamic adaptation and reconfigura-
tion functionality with the possibility of coping with more
complex scenarios.

Robotics is another targeted domain, and we distinguish
robotics used for automation from robotics used in the field.

Robotics used for automation is typically found along
assembly lines, and they have high requirements on up-
time. If an assembly line would be stopped, this can cause
large costs to the manufacturer. In other words, changing,
maintaining and adding functionality to the assembly line
should not require the whole system to be stalled. The sys-
tem should provide the possibility of online reconfiguration,
tuning and monitoring, in order to minimize downtime.

Field robotics often relies on sensors in order to react on
its (sometimes) dynamic environment. These sensors trig-
ger different functionality and actions to be taken depending
on the current situation.

Modes can be designed for specific purposes as a re-
action to the robot’s environment. For example, a trac-
ing robot searching for a specific target can be in different
modes depending on if it is lost or if it knows where it is
going. Also, the trigger of specific sensors might trigger a
more sensitive motion control, whereas normal behaviour
would be less sensitive.

These modes can be offline designed, in the case when
all possible modes can be predicted and managed before-
hand. Dealing with more complex scenarios, the design can
be more dynamic as a result of using online modes.

In summary, looking at the abovementioned application
domains, there is a great potential for protocols, mechanism
and architectures providing adaptability and reconfigurabil-
ity as a first class citizen.

3. Scheduling 51

In the following sections, the HSF is presented and how
it provides operating system support for adaptability includ-
ing policies and algorithms for resource reconfiguration. Fi-
nally, our ongoing work on admission control functions is
presented, and the paper is concluded.

2 The hierarchical scheduling framework

2.1 What is HSF?

The hierarchical scheduling framework (HSF) has been
introduced to support hierarchical resource sharing among
applications under different scheduling services. The hier-
archical scheduling framework can be generally represented
as a tree of nodes, where each node represents an applica-
tion with its own scheduler for scheduling internal work-
loads (e.g., threads), and resources are allocated from a par-
ent node to its children nodes.

From a general point of view, it is desirable that a hi-
erarchical scheduling framework can support the following
properties; (1)independency: i.e., that the fulfilment of tem-
poral requirements (schedulability) of a subsystem can be
analyzed independently of other subsystems as there will
be no unpredictable interference among subsystems. (2)
abstraction: i.e., that a subsystem imposes minimal tempo-
ral requirements on its environments in order to guarantee
functional and extra-functional correctness. (3)universal-
ity: i.e., that any scheduler can be used within a subsystem,
allowing for the most appropriate scheduler to be used for a
specific function. (4)flexibility: i.e., it should enable adap-
tation and reconfiguration of its subsystems, implementing
operating system support for adaptability including policies
and algorithms for resource reconfiguration.

2.2 What are the benefits?

The HSF has been constructed withmodularityas a main
criterion. Component based design has been widely ac-
cepted as a methodology for designing and developing com-
plex systems through systematic abstraction and composi-
tion. The HSF provides means for decomposing a complex
system into well-defined parts, calledsubsystems, and for
interfacesspecifying the relevant properties of these sub-
systems precisely, such that subsystems can be indepen-
dently developed and assembled in different environments.
The HSF provides a means for composing subsystems into
a subsystem assembly, orcomposite, according to the prop-
erties specified by their interfaces, facilitating the reuse of
subsystems. A challenging problem in composing subsys-
tems is to support the principle ofcomposabilitysuch that
properties established at the subsystem level also hold at
the composite level. The HSF can be effectively useful in
supporting composability on timing properties in the de-
sign and analysis of real-time systems, since it allows the

system-level timing property to be established by combin-
ing the subsystem-level timing properties (specified by in-
dividual subsystem interfaces).

The HSF can be used to support multiple applications
while guaranteeing independent execution of those applica-
tions. This can be correctly achieved when the system pro-
videspartitioning, where the applications may be separated
functionally for fault containment and for compositional
verification, validation and certification. The HSF pro-
vides such a partitioning, preventing one partitioned func-
tion from causing a failure of another partitioned function
in the time domain.

The HSF is particularly useful in the domain of open en-
vironments, where applications may be developed and vali-
dated independently in different environments. For exam-
ple, the HSF allows an application to be developed with
its own scheduling algorithm internal to the application and
then later included in a system that has a different meta-
level scheduler for scheduling applications.

2.3 Enabling adaptability and reconfigurability

The HSF is very useful when it comes to the implemen-
tation of operating system support for adaptability and re-
configurability needed in dynamic open systems, where ap-
plications (one or more subsystems) may be allowed to join
and/or leave the system during runtime. In allowing such
functionality, a properadmission control(AC) must be pro-
vided. Also, the HSF allows for a convenient implementa-
tion of quality of service management policies, allowing for
a dynamic allocation of resources to subsystems.

2.4 Related work on HSFs

Over the years, there has been a growing attention to
HSFs for real-time systems. Since Deng and Liu [6] pro-
posed a two-level HSF for open systems, several stud-
ies have followed proposing its schedulability analysis [8,
9]. Various processor reource models, such as bounded-
delay [12] and periodic [10, 15], have been proposed for
multi-level HSFs, and schedulability analysis techniques
have been developed for the proposed processor mod-
els [1, 5, 7, 10, 14]. The work in this paper extends [15, 16].

3 Admission control

The admission control (AC) applies one or more algo-
rithms to determine if a new application (consisting of one
or multiple subsystems) can be allowed to join the system
and start execution (admission) without violating the re-
quirements of the already existing applications (or the re-
quirements of the whole system). The decision of the AC
depends on the state of the system resources and the re-
sources required by the new application asking for admis-
sion. If there are enough resources available in the system,

52 Workshop on Adaptive and Reconfigurable Embedded Systems (APRES’08)

the application will be admitted; otherwise the application
will be rejected.

In general, since the AC uses online algorithms the
complexity and overhead of implementing these algorithms
should be very low for several reasons, such as maintaining
scalability of the AC and minimizing its interference on the
system. Hence, one objective in designing the AC concerns
keeping the input to these algorithms as simple as possi-
ble, e.g., the resource requirement for each individual task
could be abstracted to the subsystem level. Another objec-
tive concerns minimizing interference between the AC and
the system online, making it desirable to perform as much
work as possible offline.

3.1 Resources

The resourcesconsidered by the AC may include, but
are not limited to,CPU resources,memoryresources,net-
work resource andenergyresources. Initially, we have been
focusing on CPU and network resources, and are now also
looking at memory resources.

CPU resources When using the HSF, traditional schedu-
lability algorithms can be used in order to check the CPU
resources, e.g., by using the global schedulability test in
the HSF [15, 16]. This algorithm depends on the type of
system level scheduler used, e.g., EDF, FPS, etc. The AC
checks the schedulability condition of the system including
the new subsystem. If the system is still schedulable, the
new subsystem will pass this test; otherwise the new appli-
cation will be rejected. In using this test, it is guaranteed
that all hard real time requirements will be met. The input
to the algorithm is the subsystem interface (subsystem bud-
get and period) of each running subsystem together with the
interface of the new subsystem. Note that these parameters
are evaluated and determined during the development of the
subsystem (offline).

Memory resources When allowing for a new application
to enter the system, the AC should guarantee that there is
sufficient memory space to be used by all subsystems. Oth-
erwise, unexpected problems may happen during run time.
In a similar way as for CPU resources, the maximum mem-
ory space required by each subsystem is evaluated during
its development. In the AC test, a simple algorithm can be
used to check if there is enough memory space available
in the system, by checking if the summation of the maxi-
mum memory space for all subsystems is less than or equal
to the memory space provided by the platform. Such an
algorithm is very simple; however, the accuracy of the re-
sult is not high as all applications will not likely need their
specified maximum memory space at the same time. Higher
efficiency can be achieved by the usage of algorithms such
as the approximated algorithm presented in [4].

Energy resources Most of the modern processors sup-
port changing the frequency and voltage of the CPU dur-

ing runtime, in controlling the CPU’s power consumption.
The HSF can use this feature to select the lowest fre-
quency/voltage that guarantees the hard real time require-
ments of the system. Decreasing the frequency of a pro-
cessor will increase the worst-case execution time (WCET)
of its tasks. In doing this, more CPU resources should be
allocated to subsystems in order to ensure that all hard real
time tasks will meet their deadlines. Looking at the HSF,
if predefined levels of frequencies are used, we can find a
subsystem interface for each frequency level for all subsys-
tems. Then, during runtime, the AC will make sure that
the processor is working with the lowest frequency keeping
the schedulability of the current set of subsystems. When
it is required to add a new subsystem, the AC will check
the schedulability condition with the current processor fre-
quency; if the system is deemed not schedulable, then the
AC will try with higher frequencies. When a subsystem is
removed from the system, the AC will try to reduce the fre-
quency of the CPU in order to reduce its power consump-
tion.

Network resources This type of resource is important in
distributed systems where there typically exist communica-
tions between nodes in the network. The network resource
is different from the other resources previously describedin
the sense that the network resource is shared by all nodes,
while the other resources are local to each node. When the
AC is faced with a request for adding a subsystem, it should
check if the communications requirements will be met, i.e.,
check if all important messages will be delivered in proper
time [13]. Selecting an algorithm that checks this resource
is more complex as there are many different requirements,
communication protocols, network types, etc. Covering all
these aspects might not be necessary but as an illustration
consider a simple algorithm which relies on the commu-
nication bandwidth. During the development of each sub-
system, their maximum communication bandwidth require-
ments should be evaluated such that the AC can use it in
order to check if the summation of required bandwidth for
all subsystems is less than 100%.

3.2 Admission control in distributed systems

Implementing the AC in distributed systems is more
complex than doing so for a single CPU. The main reason
for this is that the information needed by the AC algorithms
must be consistent. For example, when using the network
resources, awareness of all network users must be main-
tained by the AC, and these users are typically located on
many nodes throughout the distributed system. Commonly,
information on the current state is kept at one place, manag-
ing the information needed by the AC. Also, when an appli-
cation consists of more than one subsystem, and these sub-
systems are located at different nodes, all these subsystems
should pass the AC tests before admitting the application.

3. Scheduling 53

In designing the AC we have identified 3 different ap-
proaches based on where the AC test will be implemented.

• A specialMaster Node (MA) will implement the AC
tests of all resources in the system. Only the MA
will have information about resources in the system.
Hence, consistency is not a problem, it is easy to de-
termine the order between AC requests, and the AC
does not have to contact multiple nodes in getting the
current system state as only a single AC request to the
MA is needed. On the downside the MA is a single
system level point of failure.

• All Nodes (AN) will implement the AC tests of all re-
sources in the system. Each node should have the con-
sistent information of all resources that are used by the
system. Hence, in this fully distributed approach the
AC test can be performed without having to commu-
nicate with other nodes. Also, the approach is toler-
ant to failures. On the downside, consistency must be
maintained between all nodes, and ordering is more
complex compared with MA. Also, more memory is
needed in maintaining all resource state replicas.

• There will beOne Node (ON)implementing the AC
test of each resource in the system. Each node will
maintain information about the resources that is re-
sponsible for. Hence, there will be no issues with
respect to data consistencies between replicas of the
same information, but a single AC request might have
to communicate with a number of nodes in order to
get a valid system state. Also, ordering among AC re-
quests must be solved, and each resource owner will
be a single resource level point of failure.

As a first step, we consider the MA approach that we
believe possess strong properties in terms of flexibility, pro-
moting the evaluation of multiple algorithms. Also, this ap-
proach fits very well with the HSF.

4 Summary

To summarise we are currently active in 3 areas related to
the motivation of this paper. Firstly, we have done work in
the area of synchronization algorithms for HSFs [3]. When
multiple subsystems are sharing the same CPU it is likely
that they also share logical resources that must be protected
by the usage of a proper synchronization protocol. Sec-
ondly, we are implementing the HSF on a commercial op-
erating system on an application given by one of our indus-
trial partners. This implementation will have an important
role in evaluating the efficiency of the HSF itself, as well
as the AC approaches presented in this paper. Thirdly, we
are designing the admission control and quality of service
manager. These will also be implemented in the HSF im-
plementation. In summary we believe that the result of these

three areas will provide important knowledge towards adap-
tive and reconfigurable systems; results that have both high
industrial relevance as well as academic relevance.

Acknowledgements

The authors wish to express their gratitude to the anony-
mous reviewers for their helpful comments.

References

[1] L. Almeida and P. Pedreiras. Scheduling within temporal
partitions: response-time analysis and server design. InEM-
SOFT ’04, 2004.

[2] R. Anthony, A. Leonhardi, C. Ekelin, D. Chen, M. Törngren,
G. de Boer, I. Jahnich, S. Burton, O. Redell, A. Weber, and
V. Vollmer. A future dynamically reconfigurable automotive
software system. InElektronik im Kraftfahrzeug, June 2007.

[3] M. Behnam, I. Shin, T. Nolte, and M. Nolin. Sirap: A
synchronization protocol for hierarchical resource sharing in
real-time open systems. InEMSOFT’07, 2007.

[4] M. Bohlin, K. Hänninen, J. Mäki-Turja, J. Carlson, and
M. Nolin. Safe shared stack bounds in systems with offsets
and precedences. Technical Report, Mälardalen University,
January 2008.

[5] R. I. Davis and A. Burns. Hierarchical fixed priority pre-
emptive scheduling. InRTSS, 2005.

[6] Z. Deng and J. W.-S. Liu. Scheduling real-time applications
in an open environment. InRTSS ’97, 1997.

[7] X. A. Feng and A. K. Mok. A model of hierarchical real-
time virtual resources. InRTSS, 2002.

[8] T.-W. Kuo and C.-H. Li. A fixed-priority-driven open envi-
ronment for real-time applications. InRTSS, 1999.

[9] G. Lipari and S. Baruah. Efficient scheduling of real-time
multi-task applications in dynamic systems. InRTAS ’00,
2000.

[10] G. Lipari and E. Bini. Resource partitioning among real-
time applications. InECRTS, 2003.

[11] G. Lipari, J. Carpenter, and S. Baruah. A framework for
achieving inter-application isolation in multiprogrammed
hard-real-time environments. InRTSS ’00, 2000.

[12] A. Mok, X. Feng, and D. Chen. Resource partition for real-
time systems. InRTAS ’01, 2001.

[13] T. Nolte. Share-Driven Scheduling of Embedded Networks.
PhD thesis, Department of Computer and Science and Elec-
tronics, Mälardalen University, Sweden, May 2006.

[14] S. Saewong, R. R. Rajkumar, J. P. Lehoczky, and M. H.
Klein. Analysis of hierar hical fixed-priority scheduling.In
ECRTS ’02, 2002.

[15] I. Shin and I. Lee. Periodic resource model for composi-
tional real-time guarantees. InRTSS ’03, 2003.

[16] I. Shin and I. Lee. Compositional real-time scheduling
framework. InRTSS ’04, 2004.

[17] G. Spiegelberg. The impact of new gateways and busses -
are these the answers for furhter innovations?, Podiums Dis-
cussion at the Embedded Systems Week, Salzburg, Austria,
October 2007.

54 Workshop on Adaptive and Reconfigurable Embedded Systems (APRES’08)

Suitability of Dynamic Load Balancing in
Resource-Constrained Embedded Systems:
An Overview of Challenges and Limitations

Magnus Persson
magnper@md.kth.se

Tahir Naseer Qureshi
tnqu@md.kth.se

Martin Törngren
martin@md.kth.se

Department of Machine Design, KTH (The Royal Institute of Technology), Stockholm, Sweden.

Abstract
In this paper, we discuss the challenges and limitations of
applying load balancing to networked and resource
constrained embedded systems. The paper proposes a
problem formulation and a checklist for guiding design and
implementation of load balancing in such systems.

Keywords
Load balancing, distributed systems, networked embedded
systems

1 INTRODUCTION
With the advancement of technology, networked embedded
systems are becoming increasingly common, more
computationally and communication intensive and complex.
Current design techniques are dominated by static and worst-case
designs. This leads to underutilization of resources which causes
an increase in product costs but also difficulties in exploiting
software and computer systems flexibility. As a consequence,
reconfiguration at runtime, i.e. dynamic reconfiguration, implying
techniques to change the structural (e.g. allocation) and/or
behavioral configuration (e.g. priorities), is increasingly
considered in networked real-time embedded systems [1].
This trend is exemplified by the DySCAS1 project [2], which
develops an automotive middleware. In [3], the DySCAS
consortium describes the project use cases, including load
balancing, and in [4], the need for further investigation of the
problem was identified.
Typically, many of the simpler ECUs (electronic control unit) in
a car are only 8-bit, have kilobytes of memory, and communicate
over a CAN bus which has a maximum bandwidth of 1 Mbit/s. In
addition they run very simple real time operating systems (RTOS)
or even more simplistic run time environments.
During the work of exploring approaches to dynamic
reconfiguration for these systems, a number of questions
regarding dynamic load balancing in resource-constrained
embedded systems have been raised, such as the limitations of its
use; implementation challenges; and which approaches are most
suitable for embedded systems. In this paper, we explore some of
these issues. A more extensive survey is given in [6].

1 The abbreviation stands for “Dynamically Self-Configuring

Automotive Systems”.

2 INTRODUCING LOAD BALANCING
Task allocation is the assignment of a set of tasks to a set of nodes
in a networked system. Load distribution is a specialization of
task allocation, where resource usage (loads) at the different
nodes is taken into consideration. Load balancing is a further
specialization, where the allocation is fully or partially optimized
based on one or several resource usage metrics. These metrics
convey some type of evenness or fairness of resource usage at
different nodes. Even though this paper focuses on load
balancing, its results are also relevant to load distribution in
general.
There is a major difference between static and dynamic load
balancing. Static load balancing is done at system design time (or
possibly configuration time) and allocations are then kept fixed
through-out the life time of the system. Dynamic load balancing is
done during system startup or runtime, possibly taking different
aspects of application behavior into consideration. When the task
set or available resources in the network changes, dynamic load
balancing is re-executed, potentially changing the task assignment
during runtime.
Load balancing can be applied to several different types of
resources. Without doubt, the most common one is CPU usage,
but some systems also at least partly take other scarce resources
into account; e.g. memory or network bandwidth.
The purposes of implementing load balancing in different systems
are diverse. Generally, the main reason is often performance
(average throughput) maximization. Parallel execution of a work
task on several nodes, a common approach for performance
improvement, by itself implies some scheme of load distribution.
Runtime load distribution is sometimes also implemented in
systems with the main goal to provide e.g. flexibility, robustness
or reliability. Common to these is that task assignment before
deployment is problematic to implement. The main optimization
goal in these systems is to provide certain level of service and
maintain performance guarantees.
One final example objective for implementing load balancing is
energy efficiency – by distributing processor loads equally, clock
frequencies (and thus energy consumption) of processors can be
minimized, or the number of nodes could even be reduced.
Load balancing is related to techniques for quality of service
(QoS) where QoS usually refers to reservation and control
mechanisms for different resources such as network traffic to
provide a guaranteed level of data flow in a network. However,
QoS and load balancing are rarely studied together [6]. We

3. Scheduling 55

consider load balancing as a technique that could be incorporated
as one part of a QoS scheme.
In traditional computer engineering, a number of systems have
been designed that deal with load balancing. Most of them were
developed in an ad-hoc fashion. Examples include simple
schemes, e.g. round-robin, of which a number of variations are
described in [7]. In [8] the idea of diffusion is described. In [8] a
hierarchical approach is also described. Finally, as done in Mosix
[9], local cost functions can be used.

2.1 Load balancing viewed as a control problem
One way to understand dynamic load balancing is the viewpoint
of control system engineering, as shown in figure 1, illustrating
sensing, feedback, actuation and feedforward components. Note
that all parts of the figure are not explicitly part of all load
balancing approaches. For example, set-points are often only
implicit, and many approaches do not have any feed-forward part,
or the feedforward part only consists of simple scheme for
admission control.

Figure 1: Load balancing from the control perspective

In feedback-based approaches, load balancing is performed in
response to observations (sensing) of load changes on a particular
network node or due to changes in average load on the entire
network. Delays and disturbances in the feedback information
lead to longer controller response times. This can result in poor
efficiency and a non-robust controller, and can be eliminated to
some extent by the use of feedforward control which uses an
approximate system model to be able to predict the actual systems
state prior to computing the control signals (in this case
allocations). A specific case of feedforward control is admission
control, where acceptance or denial of new tasks are the only
possible outcomes. In traditional feed-forward control, some sort
of prediction is made based on a model of the computer system in
order to compute a suitable allocation [16, 18].
A challenge for control of modern computing systems is that they
are hard to predict due to their hardware architecture, timing of
external events, and component interdependencies, which makes
mathematical modeling and analyzing of them non-trivial. This
implies that feedback techniques generally would be more
applicable since feed-forward requires system models.
Stability is another important issue in designing a controller. An
example of an unstable load balancing algorithm would be e.g.
one which makes a task repeatedly move between two nodes,
because the algorithm sees the other allocation as preferable in
both cases. There are several ad-hoc ways to stop such problems –
one is to allow movement only after the application has run at its
current node a minimum time. Another is to add hysteresis to the
algorithm, preventing changes resulting in only minor

improvements. Unlike traditional control approaches, stability of
load balancing approaches is seldom proven formally.
There exist a few optimization based algorithms without explicit
use of control systems theory. The difference between these
approaches lies in the method to choose source and the receiver
nodes [10,11]. Model predictive control has also been used where
the concept of local and global controllers is employed for
individual nodes and the complete system respectively. The usual
target is the CPU utilization and deadline miss ratio [12] but a few
techniques have also focused on end-to-end utilization [13]. Some
of the approaches also focus on systems with I/O intensive
applications [14] or with shared memory [15].

3 KEY DESIGN AND IMPLEMENTATION ISSUES
As described in section 2, there exist a lot of load balancing
algorithms proposed for different systems. However, every
algorithm has some issues and trade-offs involved which are
discussed below.

3.1 Real-time requirements
Many networked embedded systems are also real-time systems.
Unfortunately, most load balancing algorithms do not take timing
properties of the algorithms into consideration; and the dynamic
reallocation of tasks to nodes makes the problems of predicting
task response times considerably harder. In essence, real-time
properties are not typically a consideration of a dynamically load
balancing systems, which makes them less suitable for systems or
tasks with hard real-time requirements.
Reconfiguration caused by load balancing can be required on
occurrence of an event, such as failure of some kind, increased or
decreased load, or connection of a new node in network providing
new potential services.
As shown in figure 2, the reaction delay τr for a reconfiguration is
caused by time required for sensing τse which can be event
triggered or time triggered, decision making or control
mechanism τde, and finally reconfiguration or task migration τre
which includes state and code transfer, followed by the startup at
the new node.

Figure 2: Timing properties from an event to final outcome of

reconfiguration
If task migration due to load balancing is to be beneficial, it is
self-evident that the following constraint needs to be true:

desired
rredese

actual
r τττττ ≤++=

where τr
desired represents a system time constraint on the migration.

Additionally, resource usage at the new node needs to be, in some
manner, more efficient at the new node.
During design and implementation of load balancing, several
additional issues have to be considered. The issues in the
following sections have been identified as most important. In all
of them, management of scarce resources is the common factor.

56 Workshop on Adaptive and Reconfigurable Embedded Systems (APRES’08)

3.2 Conflicts with other mechanisms
The relation of approaches like QoS and QoC with load balancing
is not well established. Even if QoS typically only assumes soft
real-time requirements, it is usually not combined with load
balancing. For some cases, admission control for new tasks is
used, to ensure that the number of tasks to be load balanced is not
excessive, preventing overload in the system as a whole.
If dynamic load balancing and quality of service are combined in
the same system, there is a possibility for conflicts between them
if not carefully coordinated. As an example, if overload is
detected on one node in a system, this can potentially be solved in
different ways – either by lowering QoS for one of the tasks
running on the node, or by moving one task to another node
through load balancing. In the case of load balancing, even if the
resources on the new node are sufficient, performance may still be
badly degraded (e.g. by communication delays if tight
communication with the old node is needed). Perhaps
performance would have been better, even with a degraded QoS,
if the application would have been kept at the old node?

3.3 Design issues
One of the very basic design issues is the problem definition and
requirements formulation. It is very easy to claim that load
balancing is to be performed in a certain system without really
defining what type of load balancing is to be performed. Precise
formulation of requirements including the choice between static
and dynamic load balancing, resources and overheads to be
considered and the selection of rebalancing execution method is
often neglected. Moreover, the purpose to perform load balancing
is often ambiguous. It can be for performance improvement or to
ensure some other property of the system. Many load balancing
approaches improve only average performance and don’t give any
minimum performance guarantees, but it is seldom fully clear
during requirements formulation if this is acceptable in a specific
embedded system.
Similar issues show up due to implicit assumptions on the
underlying hardware architecture. An algorithm intended to be
used for multiprocessor computers with shared memory will
probably not be suitable for network of computers and vice versa.
Also, the performance of each part of the system differs a lot
between ‘small-scale’ and larger systems.

3.3.1 Performance overheads
Adding dynamic load balancing to an existing system causes
performance overheads. The types of resources usually
considered are CPU utilization, memory and network. Causes for
CPU overheads and memory usage are the computations required
for load balancing, storage of software states and other relevant
data, causing higher resource usage. Network overheads occur
due to data movements and message passing between different
processing nodes. Network overheads can be seen both in
increased network traffic, and in delays caused by load balancing,
e.g. when moving a task to another node.
Large overheads are undesirable – it is important to remember
that load balancing can only improve system performance if there
is a node with less resource usage that the task can be transferred
to, and if none is available, load balancing is only an unnecessary
overhead and will only make the system perform worse.

3.4 Detection and sensing issues
Dynamic load balancing is possible both through event-triggering
and time-triggering. In the case of time-triggering, deciding on
intervals for sampling, execution and actuation of load balancing
is important. In event-triggered systems, the threshold for event
detection is a similar parameter. Too frequent triggering will lead
to bigger overheads, whereas too infrequent triggering will lead to
bad performance of the load balancing algorithm.

3.4.1 Required information and parameters
Different load balancing algorithms require different input
parameters. Common examples are execution time, queue length,
task arrival and departure rates, delays in processing of a task,
miss ratios, incoming requests and service time. Using a higher
number of parameters makes it possible to build a better and more
generic algorithm; there is however also a risk that a complex
algorithm simply is too complex for systems with low processing
power.

3.5 Decision and control issues
The decision and control issues are relatively well covered in the
existing load balancing approaches. Basically, four questions as
described in [19] need to be answered: When is task migration
triggered, which task is to be migrated, to where will it migrate,
and who makes the decision? As these questions are relatively
well answered in the currently existing literature, we will not
further investigate it in this paper.

3.6 Actuation issues
One well known practical problem from fault-tolerant computer
systems related to dynamic load balancing is the state transfer. It
can also be considered as a design issue. When the allocation of
tasks to processors changes, the tasks reassigned to other
processors need to be moved somehow. A pre-requisite is to
identify the minimum system information required when
switching/continuing processing on another node. If the code is
not previously deployed on the new node, this includes the
program code. In some load balancing approaches, especially
where task life-time is typically short (e.g. web servers), this
problem is avoided by only doing assignment of new tasks.
If the state transfer problem is not avoided, several types of data
might have to be moved – application data (variables etc.),
executable code, and implicit application state (program counter,
processor registers, open files, and other metadata typically
managed by the operating system) are possible candidates. The
most powerful way to do it is process migration [17], this is
however also the most complicated way.
Several other approaches also exist; remote invocation of tasks is
one such example, or custom protocols can be used between the
new and old instance of the application. In the context of
resource-constrained systems, the overheads (e.g. amount of
network traffic, time for transfer) caused by the state transfer are
important to consider. Specifically, movement of code makes the
problem harder, as many operating systems in small embedded
systems only support static loading. It is possible to avoid this
problem by deploying the code to additional nodes already at
design time; however, this requires additional memory.
Related to the issue of task migration is also the size of the
distribution units, or the granularity of the entities that are
balanced. Common choices include processes, groups of
processes, or incoming requests to the system. This granularity

3. Scheduling 57

will impact the result of the load balancing. However, choosing
too small distribution units might impact system scalability.

4 CONCLUSIONS
For future implementations of load balancing in resource-
constrained embedded systems, we propose the following
checklist to be gone through at system design time to check if the
suggested variant of load balancing is suitable:

• The design problem should be clearly defined., including:
o The main purpose of using of load balancing.
o The type of resources to be balanced.
o Decision to allow runtime movement of tasks and the

method to be used.
o Size of distribution units.

• When choosing a specific load balancing algorithm, its
performance overhead should be thoroughly evaluated.

• Real-time requirements on the system and real-time
performance of the load balancing algorithm should be
examined and compared in detail.

Due to real-time and dependability requirements, most of the
current approaches to load balancing are not suitable in hard real-
time systems. To deploy load balancing in such systems further
research is needed. One approach is to develop load balancing
algorithms that explicitly take hard real-time requirements into
consideration e.g. through QoS or QoC mechanisms, or to build
systems where hard real-time is ensured in the traditional way,
and load balancing is only applied to other tasks.
The conflict and tradeoff between QoS and load balancing, as
described in section 5.4, is not yet a well understood problem and
needs further investigation, e.g. through simulation followed by
analytical work. Integrating QoS and load balancing techniques
requires a well defined architecture and design/analysis of the
interactions. DySCAS [2] is studying this integration for
automotive systems.
A further challenge in applying dynamic load balancing to
embedded systems is that of performance. Some of the algorithms
are so simple that they clearly will perform well even in
embedded systems, but that is not all to it. In addition, a very
simplistic algorithm may not be efficient enough to fulfill the
performance requirements for the load balancing algorithm. The
actuation of the rebalancing should also be efficiently performed.
Clearly, some approaches to actuation, such as process migration,
are only relevant to more powerful systems.

5 ACKNOWLEDGEMENT
This work was funded within the DYSCAS project part of the 6th
framework program “Information Society Technologies” of the
European Commission. Project number: FP6-IST-2006-034904.

6 REFERENCES
[1] K-E. Årzén, A. Cervin, T. Abdelzahler, H. Hjalmarsson,
A. Robertsson, Roadmap on Control of RealTime Computing
System, EU/IST FP6 ARTIST NoE, Control for Embedded
Systems Cluster
[2] DySCAS project webpage, http://www.dyscas.org
[3] DySCAS Consortium, deliverable D1.2 Scenario and
System Requirements, 2007

[4] I. Jahnich, A. Rettberg, Towards Dynamic Load Balancing
for Distributed Embedded Automotive Systems, at International
Embedded Systems Symposium, Irvine, CA, USA, May 29 – June
1 2007
[5] G. Buttazzo, M. Velasco, P. Marti, Quality-of-Control
Management in Overloaded Real-Time Systems, IEEE Trans. on
Computers, Vol. 56, Issue 2, pp, 253-266, Feb. 2007
[6] M. Persson, T. Naseer Qureshi: Survey on Dynamic Load
Balancing in Distributed Computer Systems, Internal Technical
Report, KTH, 2008
[7] V. Kumar and A. Grama: Scalable Load Balancing
Techniques for Parallel Computers, in Journals of Parallel and
distributed computers, vol. 22, p. 60, 1994
[8] M. Willebeek-LeMair and A. Reeves, Strategies for
Dynamic Load Balancing on Highly Parallel Computers. IEEE
Trans. on Parallel and Distributed Systems, vol 4, pp 979-993,
2004
[9] Mosix project webpage, http://www.mosix.org
[10] N. Widell, Migration Algorithms for Automated Load
Balancing, Proceedings, Parallel and Distributed Computing and
Systems, Boston, 2004
[11] T. Schenekenburger and G. Rackl. Implementing dynamic
load distribution strategies with Orbix, Proceedings, IEEE
Information Survivability Conference, SC, 2000
[12] S. Lin and G. Manimaran, Douple-loop feedback-based
scheduling approach for distributed real-time systems, in Proc.
Conference on High Performance Computing (HiPC), pp. 268-
278, Hyderabad, India, Dec. 2003
[13] C. Lu, X. Wang, and X. Koutsoukos, End-to-End
Utilization Control in Distributed Real-Time Systems, the 24th
IEEE International Conference on Distributed Computing
Systems (ICDCS 2004), Tokyo, Japan, March 2004.
[14] X. Qin, H. Jiang, Y. Zhu, and D. Swanson, A Dynamic Load
Balancing Scheme for I/O-Intensive Applications in Distributed
Systems, Proceedings of the 32nd International Conference on
Parallel Processing Workshops (ICPP Workshop 2003), Oct. 6-9,
2003
[15] Y-T. Liu, T-Y. Liang, C-T. Huang, C-K. Shieh, Memory
Resource Considerations in the Load Balancing of Software DSM
Systems, Proc. of the 2003 ICPP Workshops on CRTPC, p. 71-78.
[16] K–M. Yu, S. J.-W. Wu, T-P. Hong, A load balancing
algorithm using prediction, Proceedings of the 2nd AIZU
International Symposium on Parallel Algorithms / Architecture
Synthesis, p.159, March 17-21, 1997
[17] D. Milojicic, F. Douglis, Y. Paindaveine, R. Wheeler,
S. Zhou, Process Migration. In: ACM computing surveys, vol.
32, pp. 241-299, 2000.
[18] W-O. Yoon, Jin-Ha, S-B. Choi, Dynamic Load Balancing
Algorithm using Execution Time Prediction on Cluster Systems,
Proc. 2002 Int. Technical Conference on Circuits/Systems,
Computers and Communications, vol. 1, pp. 176-179, July 2002.
[19] F. Douglis and J. Ousterhout, Transparent Process
Migration: Design Alternatives and the Sprite Implementation,
Software – Practice and Experience, vol. 21, pp. 757-785, 1991

58 Workshop on Adaptive and Reconfigurable Embedded Systems (APRES’08)

4. Design and Modeling

Abstract—User-centered assistive and automation devices
(UCAAD) must be flexible (i.e., configurable, customizable and
adaptive). We are concerned with how to model, architecture
and build flexible UCAAD and how to ensure such a device
never causes any harm and works acceptably well as it adapts to
user’s condition and needs. This paper presents our approaches,
progress to date and future plans.

I. INTRODUCTION
This paper describes our work on technologies for building

low-cost, high-quality user-centric automation and assistive
devices and services, sometimes called UCAAD for short
here. The devices are targeted for elderly individuals, as well
as people who are chronically ill or functionally limited.
Some are primarily devices of convenience designed to
enhance the quality of life and self-reliance of their users.
Many UCAAD can also serve as point-of-care tools when
care becomes necessary. Examples include smart devices and
assistive robots described in [1-6]. Aging global population
has led increasing demands for these devices, and technology
advances have made a broad spectrum of them viable.

By a UCAAD being user-centric, we mean specifically that
its purpose is to compensate for the user’s skills and
weaknesses and that its service can adapt according to the
user’s condition and needs. As an example, a smart walker
may initially be used to enhance of the user’s physical
dexterity but can adapt to provide the user with stability and
mobility. The control exerted on the legs or hands of the user
by a rehabilitation device designed to help the user relearn
walking or grasping adapts as the user learns and improves
and hence requires less help. While users of machine-centric
devices (e.g., autopilot or factory automation tools) have
essentially no choice but to rely on their devices and hence
are willing to be rigorously trained, typical user-centric
devices are for discretionary use [7]. It is not practical to
require their users more than minimal (or any at all) training.

In addition to being adaptable, a UCAAD must be easily
configurable and customizable, not only by technicians but
also by users themselves. Here, we refer to configurability,
customizability and adaptability collectively as flexibility.
How to model, architecture and build the devices so that they
are flexible is one of the important problems in building
UCAAD. Another problem is how to make sure that the

J. W. S. Liu is with Institute of Information Science, Academia Sinica, 128
Academia Road, Section 2, Nankang, Taipei, Taiwan 115 (Phone:
+886-919-36-4433; email: janeliu@iis.sinica.edu.tw)

C. S. Shih, T. W. Kuo, S. Y. Chang, Y. F. Lu and M. K. Ouyang are with
Department of Computer Science and Information Engineering, National
Taiwan University, Taipei, Taiwan. (Email: {cshih, ktw, r94049, d93023 and
d94032}@csie.ntu.edu.tw).

symbiotic system [8] consisting of the user and device works
as desired. This problem arises from the fact that most of our
devices are semi-automatic: Rather than doing everything
automatically for the user, the device may rely on the user to
perform some mission-critical functions, and some functions
may migrate between the device and the user as the device
adapts to changes in user’s need and ability. We want to make
sure that the system (user and device) stays safe and sound,
meaning that it never does any harm and all unavoidable
errors are either recoverable or tolerable. This problem is
made more challenging by the fact that not only the users may
be untrained but also their skills vary widely among the user
population and for an individual user over time.

Our focus has been on these problems. A major thrust has
been directed towards system architecture, components,
platform and tool that support the workflow approach [9] to
building flexible automation and assistive devices. Our work
on safe and sound UCAAD focuses on an aspect that is
unique for semiautomatic devices like UCAAD: One way to
keep the system safe and sound is to instrument the device so
it can effectively monitor user actions and prevent the user(s)
from causing unsafe operations and intolerable faults. For this,
we need techniques and tools.

Following this introduction, Sections II and III gives an
overview of our work and thoughts on these problems: They
present our approaches in the context of closely related work.
Section 4 is a brief summary.

II. WORKFLOW APPROACH TO FLEXIBILITY
We have adopted the workflow paradigm [9] as a way to

make flexibility a primary consideration in the model,
architecture and design of UCAAD and the framework for
their development and evaluation. The workflow approach
has been widely used in enterprise computing systems, where
automated business processes are defined in terms of
workflow graphs. A workflow graph looks like a task graph
[10]: Both types of graphs are directed. Each node represents
an activity, called a job or task in real-time systems literature.
Each directed edge represents a transition from one activity to
another. Workflow graphs are executable. Sequencing and
synchronization between activities are carried out by a
workflow engine on behalf of the application process(s)
which provides executables to implement the activities in the
graphs. Today, there are standard process definition language
and execution languages (e.g., [11, 12]), as well as matured
engines and tools for defining, building and executing
workflow applications (e.g., [13, 14]). They enable business
process domain experts with little or no information
technology expertise to tailor complex business processes to

Flexible User – Centric Automation and Assistive devices
J. W. S. Liu, C. S. Shih, T. W. Kuo, S. Y. Chang, Y. F. Lu and M. K. Ouyang

4. Design and Modeling 61

individual enterprises and across diverse enterprises
worldwide.

A. Workflow-Based Embedded System Architecture
Modern engines can handle not only automated process but

also activities triggered by external events and can treat
manual activities by users and automated activities by
hardware and software in an integrated way. Using such an
engine, we can build embedded device families based on an
architecture illustrated by Fig. 1(a): Only a small part of a
device with this architecture is hardwired. Most of it is built
from activities and workflows components. The embedded
engine integrates the components by executing them and
arbitrating their resource contentions as specified by the
workflow graphs.

A workflow-based application can be easily configured
and customized by changing the workflow graphs in it and by
invoking different components for activities in the graphs. As
an example, Fig. 2 shows a workflow-based implementation
of two service robots: an automated vacuum cleaner in (a) and
a medication transporter in (b). The table at the bottom lists
basic activities, i.e., activities provided by the engine,
including start, end, while, wait for event, and so on [14]. The
dotted box on the left encircles components and user(s) that
generate interrupts and asynchronous events. The box in the
middle shows workflows triggered by events. They
implement edge maneuver, contact maneuver, and track
maneuver behaviors. Being relatively independent of robot
hardware, the activities in this box may run on a computer.
The dotted box on the right encircles robot hardware specific
components, activities (behaviors) that generate commands to
move the robot. Wait for the move in the middle box is the
activity that coordinates the behaviors and moves the robot
accordingly.

We note that the devices contain the same (configurable)
activities. Their workflows, hence the graphs defining them,
differ, however. We can also implement a Sumo toy using the
workflow graphs in Fig. 2(a) but different activities (e.g., by
using Back and hit instead of Back and random move for
contact maneuver).

B. Executable Operational Specification
In addition to using workflows as components of

UCAAD, we use workflows for two other purposes. Fig. 1(b)
illustrates a common usage: using workflows for integration
of embedded devices together and with support
infrastructures. An example is the framework for integrating
smart medication dispensers at the end-user level of the tool
chain for medication use process with upper level tools [17].

Fig. 1(c) shows a simulation environment designed to
support the design, development and evaluation of devices
based on SISARL component model [16]. According to this
model, a device has a resource (structural) view specification
and an operational (behavior) view specification. The former
tells us how the device is built. Existing component models
typically support this view. SISARL component description
language for this purpose is a variation of nesC language [18].
It allows us to specify components used to build the device

and interconnections of the components. The preprocessor
selects components and links them accordingly and translates
the specification into standard C code.

SISARL simulation environment

Simulation tools

Verification
& test suites,
benchmarks

Component
library

Workflow
framework

Engine

D
efinition &

build tools

(c)

Operational view of new device

(a)

Embedded
workflow engine

Embedded
device

(b)

Workflow
engine

Workflow components

Fig.1. Workflow-based architectures and tools

Environment Interaction Workflows Robot Components

Edge maneuverEdge maneuverEdge maneuver

Sense edgeSense edgeEdgeEdge

20Hz

ContactContactContact

10Hz

TrackTrackTrack

2Hz

Sense contactSense contact

Find obstacleFind obstacle

Track maneuverTrack maneuverTrack maneuver

Move the robotMove the robotMove the robotWait for the moveWait for the move

On
edge? No

Yes

Contacted? No
Yes

Obstacle
found?

Yes

No

Back & random
move

(Contact maneuver)

Back & random Back & random
movemove

(Contact maneuver)(Contact maneuver)

(a)

Environment Interaction Workflows Robot Components

Sense edgeSense edgeEdgeEdge

20Hz

ContactContactContact

10Hz

TrackTrackTrack

2Hz

Sense contactSense contact

Check the routeCheck the route

Track maneuverTrack maneuverTrack maneuver

Move the robotMove the robotMove the robotWait for the moveWait for the move

On
edge? No

Yes

Contacted? No
Yes

Still on
route?

Yes

No

Back & random
move

(Contact maneuver)

Back & random Back & random
movemove

(Contact maneuver)(Contact maneuver)

Follow edge
(Edge maneuver)
Follow edgeFollow edge

(Edge maneuver)(Edge maneuver)

(b)
Start point

Terminate point

Repeat point

While

If else

Delay /Timeout

Throw
Exception

Invoke workflow

Execute workflow

Invoke component command

Listen component event
Fig.2. Workflow-based service robots (a) Automated vacuum cleaner,

(b) Medication transporter

62 Workshop on Adaptive and Reconfigurable Embedded Systems (APRES’08)

The operational (behavior) view specification of a device is
written in terms of workflow graphs. It tells us how the device
works and what actions it expects from its user(s).
Specifically, the workflow graphs in the specification define
the actions of the user, work by the device, and collaborations
between the user and the device.

As an example, the workflow graph in Fig. 3 is a part of the
operational specification of a personal medication dispenser
[1, 3]. The device is used to manage medications of a single
user and help the user administer his/her medications at home.
The dispenser provides a number of sockets to hold
containers of medications under its care and relies on the user
to plug all containers into empty sockets during initialization.
The location of each container is given by the number of the
socket holding it. Each container is tagged with the RF ID of
the medication in it. The dispenser acquires the id of the
medication in the container by reading the tag.

Sense the state
of some socket

has changed

Plug
a container
into a socket

rollback
activityyes

Get location k
of newly filled

socket and
read RFID tags

N > 1?
No of new
ids > 1?

Store new id M
and

(M, k) - mapping

yes

Acquisition of
(medication – id,
socket-location)

association

More
container
to plug?

yes

Get number N
of newly filled

sockets

Fig. 3. Operational specification (initialize containers)

The workflow graph describes the collaboration between
the user and the device in this task: The underlying
assumption made by the dispenser is that the containers are
plugged into empty sockets one at the time. When it senses
that a socket (say socket k) just changed from being empty to
non-empty, it records the socket number k, reads the RF id
tags on all containers already plugged in, and discovers a new
medication id (say M). It then concludes that the new id M is
that of the medication in the container at location k and
creates the new medication-id-socket-location association (M,
k), which is maintained until the container is unplugged.
Clearly, the dispenser must correctly associate the location
and id of every medication. It can accomplish this if its
assumption is valid. This is why whenever the dispenser
finds that the states of more than one socket have changed
from empty to non-empty when it services a socket
state-change interrupt or reads more than one new tag, it
prompts the user to carry out a rollback activity: The user
unplugs the containers in the sockets involved and then plugs
them back in one at a time.

By writing operational specifications of a new or revised
device in terms of workflows, which are executable, we can

simulate, emulate and experiment with its operations and its
interaction with the user throughout the design, development
and quality assurance process. The simulation environment
shown in Fig. 1(c) is for this purpose.

C. Light-Weight Engine and Embedded XPDL
To date, few embedded devices and systems are built on

workflow-based architecture. A major reason is the lack of
engines suited for embedded systems such as UCAAD.
Memory space and processor bandwidth of these devices are
typically not scarce. Still even they cannot accommodate the
resource demands of existing engines designed to run in J2EE
or .Net environments. Another reason is that the standard
language XPDL (XML Process Definition Language) [11] is
too rich than needed for definitions of embedded workflows
on one hand. On the other hand, it lacks many important
elements. Examples include means for specifying timing
constraints and basic activities (e.g., behavior coordination)
for some applications (e.g., behavior-based robots). For
flexible applications, the restriction to static workflow graphs
forces us to provide a priori workflows for different
configurations and adaptive behaviors. The ability to modify
workflow graphs dynamically at runtime is also a needed
feature named by the scientific computing community [19].

We are addressing these issues. The light-weight workflow
engine (LIWWE) [15] developed for SISARL is a first step.
We are enhancing the engine and plan to release it under the
GPL license in the near future. SISARL-XPDL is a subset of
XPDL. Scaling it down is straightforward. Expanding it to
provide some of the features mentioned above while avoiding
(or minimizing) incompatibility with a widely used standard
is another matter.

Data obtained from a case study on LIWWE comparing
memory footprint and runtime overheads of workflow
implementation of a medication dispenser module with that of
a customized, hardwired version indicate that runtime
overhead is negligibly small. The engine added almost 50%
extra footprint, however. We expect this result since the
medication dispenser, like many other UCAAD, is not
compute-intensive and its code is small compared with the
engine. Obviously we need to do broader and deeper studies.

III. MONITORING TECHNIQUES AND TOOLS
As stated earlier, we are concerned with how to keep the
device and its user(s) safe and sound as parts of the symbiotic
system changes. There have been extensive works on user
models, formal verification methods, and runtime monitoring
techniques [20], and so on for this purpose. A typical
assumption is that the device is used as intended. This
assumption is usually valid for machine-centric devices with
their well trained users, but is not valid for UCAAD without
help for their users. We are exploring the idea of having the
device monitor user actions at runtime and help to prevent
misuses that may have serious consequences.
 The example in Fig. 3 illustrates this idea. In this case, the
device can determine whether the underlying assumption for

4. Design and Modeling 63

its correct operation is valid by monitoring its own states.
When it detects user actions that lead to violation of the
assumption, it works with the user to correct the situation.
 Fig. 4 shows a general runtime monitoring environment for
this purpose. The device may have control mechanisms that
do not interact with the user. They are included in the box
labeled Plant. The symbiotic system is modeled as a feedback
loop which takes user actions as input. User actions are
partitioned into three types: The device guarantees to work as
intended if the user actions are of the Assumed type. A device
well designed for usability should have only few actions of
the Disallowed type. A disallowed action may cause serious
malfunctions. In the case of medication dispenser, actions
involving plugging containers are either assumed or
disallowed. An easy to use device may allow many Tolerable
actions. The device works in a degraded manner in this case.
An example is a semi-automatic smart pantry [4]. When the
users act as assumed, it can order the right supplies to be
delivered just in time. A tolerable action can cause the pantry
to fail in a placing an order but is aware of the failure and can
warn the user in time. A disallowed action causes wrong
supplies to be delivered, incurring expenses and annoyance.

Disallowed?

YesError
Handler

Assumed?

Plant Monitor &
Checker

Yes

rollback
request

Normal
Control law

warning

Degraded
Control law

Fig. 4. Runtime monitoring of user actions

 Needless to say that such a monitoring scheme works
only if device state changes caused by user actions (or at least
disallowed actions) are observable. To be effective, we also
want the device to be able to rollback when a disallowed
action is observed, and in this sense, to be controllable. This is
indeed the case for the simple example in Fig. 3. In the case
of smart pantry, the device is not always able to distinguish
types of user actions. For such devices, runtime monitoring
does not work.

Thus far, we have been looking at this problem in an ad hoc
manner, one device at a time. General design principles such
as disallowed actions should always lead to observable state
changes cannot be easily translated into general design
guidelines and rules and working methods and tools. Without
them, we are forced to play it safe. This typically means that
we restrict the adaptability and sacrifice usability of the
device so we are sure it is always safe and often sound.

IV. SUMMARY
Earlier sections described our approaches to building

flexible UCAAD and ensuring their safe and sound

operations. The work on applying workflow-based design
and implementation to achieve flexibility is well underway.
In contrast, the idea of having the device monitor user actions
is yet to be developed into working techniques and tools. We
are collaborating with Professors M. Kim and B. Y. Wang
from the formal method community in this effort.

ACKNOWLEDGMENT
. This work is partially supported by the Taiwan Academia
Sinica thematic project SISARL.

REFERENCES
[1] J. W. S. Liu, C. S. Shih, P. H. Tsai, H. C. Yeh, P. C. Hsiu, C. Y. Yu, and

W. H. Chang, “End-User Support for Error Free Medication Process,”
Proceedings of High-Confidence Medication Device Software and
Systems and UPnP Workshop, IEEE Press, June 2007

[2] T. S. Chou and J. W. S. Liu, “Design and Implementation of
RFID-Based Object Locator,” Proceedings of IEEE RFID
Technologies, March 2007

[3] P. H. Tsai, H. C. Yeh, C. Y. Yu, P. C. Hsiu, C. S. Shih and J. W. S. Liu,
“Compliance Enforcement of Temporal and Dosage Constraints,”
Proceedings of IEEE Real-Time Systems Symposium, December 2006.

[4] C. F. Hsu, H. Y. M. Liao, P. C. Hsiu, Y. S. Lin, C. S. Shih, T. W. Kuo,
and J. W. S. Liu, “Smart Pantries of Homes,” Proceedings of IEEE
International Conf. on Systems, Man and Cybernetics, October 2006.

[5] Y. Kaneshige, M. Nihei, and M. G. Fujie, “Development of new
mobility assistive robot for elderly people with body functional
control,” Proceedings of IEEE/RAS-EMBS International Conference
on Biomedical Robotics and Biomechatronics, February 2006.

[6] C. H. Lin, Y. Q. Wang and K. T. Song, “Personal assistant robot,”
Proceedings of IEEE International Conf. on Mechatronics, July 2005.

[7] J. Grudin, “Three faces of human-computer interaction,” IEEE Annals
of the History of Computing, Vol. 27, No. 4, 2005.

[8] S. Coradeschi and A. Saffiotti, “Symbiotic robotic systems: humans,
robots and smart environments,” IEEE Intelligent Systems, 2006.

[9] Workflow definition, http://en.wikipedia.org/wiki/Workflow
[10] J. W. S. Liu, Real-Time Systems, Chapter 3, Prentice Hall, 2000.
[11] XPDL (XML Process Definition Language) Document,

http://www.wfmc.org/standards/docs/TC-1025_xpdl.2.2005-10-03.pdf,
October 2005.

[12] BPEL (Business Process Execution Language),
http://en.wikipedia.org/wiki/BPEL

[13] WfMC: Workflow Management Coalition, http://www.wfmc.org/,
[14] Windows Workflow Foundation,

http://msdn2.microsoft.com/en-us/netframework/aa663328.aspx
[15] S.-Y. Chang, Y.-F. Lu, T. W. Kuo, and J. W. S. Liu, “The design of a

light-weight workflow engine for embedded systems," Proceedings of
RTSS Workshop on Software and Systems for Medical Devices and
Services, December 2007.

[16] T.Y. Chen, P. H. Tsai, T. S. Chou, C. S. Shih, T. W. Kuo, and J. W. S.
Liu, “Component model and architecture of smart devices for the
elderly,” to appear in Proceedings of the 7th Working IEEE/IFIP
Conference on Software Architecture, February 2008.

[17] H. C. Yeh, C. S. Shih and J. W. S. Liu, “Integration framework for
medication use process,” Proceedings of IEEE International
Conference on Systems, Man and Cybernetics, October 2007.

[18] P. Levis, TinyOS Programming,
http://www.tinyos.net/tinyos-2.x/doc/pdf/tinyos-programming.pdf

[19] Y. Gil, et al, “Examining the challenges of scientific workflow,”
Computer, December 2007.

[20] M. Viswanathan and M. Kim, “Foundations of the run-time
monitoring of reactive systems,＂ Theoretical Aspect of Computing,
Vol. 3407/2005, Springer

64 Workshop on Adaptive and Reconfigurable Embedded Systems (APRES’08)

Towards an Integrated Planning and Adaptive Resource Management
Architecture for Distributed Real-time Embedded Systems

Nishanth Shankaran†, John S. Kinnebrew†, Xenofon D. Koutsoukos†,
Chenyang Lu‡, Douglas C. Schmidt†, and Gautam Biswas†

†Dept. of EECS ‡Dept. of Computer Science and Engineering,
Vanderbilt University, Nashville, TN Washington University, St. Louis, MO

Abstract

Distributed real-time embedded (DRE) systems often op-
erate in open environments where operating conditions, in-
put workload, and resource availability cannot be accu-
rately characterized a priori. Some DRE systems, such as
NASA’s Magnetospheric Multi-Scale (MMS) mission, per-
form sequences of heterogeneous data collection, manip-
ulation, and coordination tasks to meet specified objec-
tives/goals. These systems are also required to operate with
a high degree of local autonomy and adaptivity as new data
is acquired and analyzed, and as environmental conditions
change. Key challenges in managing open DRE systems in-
clude effective planning and online management of system
resources to accommodate for changing mission goals, en-
vironmental conditions, resource needs, and resource avail-
ability. This paper explores the benefits of an integrated
planning and adaptive resource management architecture
that combines decision-theoretic planning with adaptive re-
source management to control and ensure efficient function-
ing of open DRE systems.

1 Introduction
Emerging trends and challenges. Distributed real-

time and embedded (DRE) systems form the core of many
mission-critical applications that operate in dynamic and
uncertain environments. An example of such an applica-
tion is NASA’s Magnetospheric Multi-Scale (MMS) mis-
sion [1]. As with many other DRE systems, the MMS mis-
sion system operates in open environments where operating
conditions, input workload, and resource availability can-
not be accurately characterized a priori. Moreover, over-
all mission goals and analysis methods may change as new
data and information is obtained or scientists that operate
the mission propose new goals/objectives.

Conventional resource management approaches, such as
end-to-end task allocation and scheduling [2], are designed
to manage system resources and maintain QoS in closed
environments where the operating conditions, input work-
loads, and resource availability are known in advance and
do not change much at runtime. These solutions, however,
are insufficient for complex DRE systems such as the MMS
mission system that operate in open environments since

the autonomous operation of these systems require them to
adapt to a combination of (1) changes in mission require-
ments and goals, (2) changes in operating conditions, (3)
loss of resources, and (4) drifts and fluctuations in system
resource utilization and application QoS at runtime.

Adaptation in such complex DRE systems can be per-
formed at various levels, including at the (1) system level
by deploying/removing end-to-end applications to/from the
system, (2) application structure level by adding, modify-
ing, and removing components or sets of components asso-
ciated with one or more applications executing in the sys-
tem, (3) resource level by reassigning resources to applica-
tion components to ensure their timely completion, and (4)
application parameter level by fine-tuning configurable pa-
rameters (if any) of application components. These adapta-
tion decisions, however, are tightly coupled as they directly
or indirectly impact the utilization of system resources and
QoS of the system, which ultimately defines the success of
the overall mission. It is therefore necessary that adapta-
tions at various levels of the system are performed in a sta-
ble and coordinated fashion.

Solution approach→ Integrated planning and adap-
tive resource management. To address the planning and
adaptive resource management needs of open DRE systems,
we developed the Spreading Activation Partial Order Plan-
ner (SA-POP) [3] and the Resource Allocation and Con-
trol Engine (RACE) [4], respectively. SA-POP combines
decision-theoretic task planning with resource constraints
for DRE systems operating in uncertain environments to
produce effective executable component sequences that can
achieve current mission goals, including desired QoS, with
available system resources. RACE provides a customizable
and configurable adaptive resource management framework
that enables open DRE systems to adapt to fluctuations in
utilization of system resources and QoS specifications.

Although SA-POP provides efficient re-planning capa-
bilities in response to changes in the goals of applications,
it cannot deal with uncertainties and fluctuations in task
execution times and resource availability. To enhance the
robustness of the system, RACE support adaptive resource
management at two levels: (1) task reallocation in response
to significant changes in component sequences caused by
application re-planning, and (2) feedback-control-based

4. Design and Modeling 65

task rate adaptation. Note that the two adaptation strate-
gies are complementary to each other. Task reallocation
provides coarse-grained adaptation to application changes,
while task rate adaptation provides fine-grained adaptation
to resource fluctuations.

Our experience developing a MMS mission prototype [5]
showed that although SA-POP and RACE performs effec-
tive adaptive resource management, neither SA-POP nor
RACE, individually, have sufficient capabilities to effi-
ciently manage and ensure proper functioning of such com-
plex DRE system. To meet the challenge of such open DRE
systems, we propose an integrated planning and adaptation
resource management architecture.
2 An Integrated Planning and Resource

Management Architecture
This section first describes SA-POP, RACE, and our in-

tegrated planning and adaptive resource management archi-
tecture. It then shows how we applied this integrated ar-
chitecture to address the QoS needs of our MMS system
prototype.
2.1 Overview of SA-POP

Open DRE systems can operate more efficiently and ef-
fectively by incorporating some degree of autonomy that
allows them to adapt to changing mission goals and en-
vironmental conditions. SA-POP provides a planning ap-
proach for dynamic generation of component-based appli-
cations that operate with limited resources in uncertain en-
vironments. The architecture of SA-POP is shown in Fig-
ure 1.

Probabilistic
Domain

Knowledge

System
Knowledge

Task
Network

Task Map

Spreading
Activation

Planning Scheduling

Mission Goals

SA-POP

Applications

Figure 1. SA-POP Architecture

Given one or more goals specified by a software agent or
system user, SA-POP takes into account current conditions
to generate partial order plans with high expected utility [3].
Goals are specified as desired conditions with associated
utility values. SA-POP uses a spreading activation mech-
anism [6] to generate expected utility values for individual
tasks that contribute to achieving the specified goal condi-
tions. Guided by these expected utility values, SA-POP’s
planning algorithm generates a set of task sequences that to-
gether achieve the goal while meeting all resource and time
constraints.

For SA-POP to choose appropriate tasks to achieve a
goal, it must know which preconditions must be satisfied
for each task, its input/output data streams (if any), and

the pertinent effects that result from its operation. Uncer-
tainty as to whether tasks will produce the desired output or
effects is captured via conditional probabilities associated
with the preconditions and effects of a task. Together, these
input/output definitions, preconditions/effects, and related
conditional probabilities define the functional signature of
the task.

To ensure applications and their scheduled executions
do not violate resource and time constraints, SA-POP also
requires knowledge of the expected resource consumption
and execution time for each component/configuration that
can implement a task, i.e., its resource signature. The plan-
ning of SA-POP uses the task function signatures and asso-
ciated component resource signatures to dynamically gener-
ate applications most suited to local conditions and resource
availability. It also provides a schedule of acceptable time
windows for the execution of each application component
with any required before-after constraints on the execution
components both within and between applications. More-
over, through re-planning, SA-POP can dynamically adapt
deployed applications when environmental conditions and
resource usage change unexpectedly.
2.2 Overview of RACE

RACE addresses two key challenges of adaptive resource
management of open DRE systems: (1) efficient online re-
source allocation for applications, and (2) effective system
adaptation in response to fluctuations in input workload, op-
erating conditions, and resource availability. The RACE
framework decouples adaptive resource management algo-
rithms from the middleware implementation, thereby en-
abling the use of customized resource management algo-
rithms without redeveloping significant portions of the mid-
dleware or applications. To enable the seamless integration
of resource allocation and control algorithms into DRE sys-
tems, RACE configures and deploys feedback control loops.

Online resource allocation using RACE. As shown in

RACE

SA-POP Components to
Resource Mapping

Resource
MonitorsSystem Resource Utilization

Application
Metadata Allocator System

Resources

Figure 2. RACE: Online Resource Allocation

Figure 2, RACE features Allocators that implement
resource allocation algorithms, such as multi-dimensional
bin-packing algorithms [2], to allocate various domain
resources (such as CPU, memory, and network band-
width) to application components by determining the map-
ping of components onto nodes in the system domain.
Allocators determine the component-to-node mapping
at runtime based on estimated resource requirements of the
components and current resource availability on the vari-
ous nodes in the domain. As shown in Figure 2, input to

66 Workshop on Adaptive and Reconfigurable Embedded Systems (APRES’08)

Allocators include the metadata of the application cor-
responding to the application generated by SA-POP and the
current utilization of system resources.

Effective system adaptation. As shown in Figure 3,

Resource
Monitors

QoS
Monitors

Controller
System

Adaptation
Decisions

Effectors System/Application
Parameters

Application QoS

System Resource Utilization

RACE

System
Resources

Figure 3. RACE: Online System Adaptation

RACE uses Controllers to implement control-theoretic
adaptive resource management algorithms, such as EU-
CON [7], that enable DRE systems to adapt to changing
operational context and variations in resource availability
and/or demand. Controllers use the control algorithm
they implement to compute system adaptation decisions to
ensure that system performance and resource utilization re-
quirements are met. Figure 3 also shows how these deci-
sions serve as inputs to Effectors that modify system pa-
rameters (such as resources allocated to components, ex-
ecution rates of applications, and OS/middleware/network
QoS setting for components) to achieve the Controller
recommended adaptation. RACE’s Controller and
Effectors work with resource monitors and QoS mon-
itors to compensate for drifts/fluctuations in utilization of
system resources and/or application QoS.
2.3 Overview of the Integrated Architecture

Our integrated planning and adaptive resource manage-
ment architecture integrates SA-POP and RACE to address
system management challenges of complex open DRE sys-
tems, such as the MMS mission system. Figure 4 shows the
integrated SA-POP/RACE planning and adaptive resource
management architecture. A set of QoS and resource mon-

ApplicationsUser SA-POP RACEMission
Goals

Deploy & Manage
Application

Components

Resource
Monitors

QoS
MonitorsApplication QoS

System Resource
Utilization

System Resource Utilization

Application QoS

System
Resources

Figure 4. Integrated Architecture

itors track system behavior and performance, and periodi-
cally update SA-POP and RACE with current resource uti-
lization (e.g., processor/memory utilization and power) and
QoS values (e.g., end-to-end latency and throughput). Al-
though inputs to SA-POP and RACE include system behav-
ior and performance metrics, SA-POP uses this informa-
tion to monitor the evolution of the system with respect to

its long-term plan/schedule for achieving given goals and
to re-plan/re-schedule when necessary, whereas RACE uses
this information to fine-tune application/system parameters
in response to drifts/fluctuations in utilization of system re-
sources and/or application QoS.

Figure 4 also shows how the integrated SA-POP/RACE
architecture is comprised of two hierarchical feedback
loops: (1) the inner feedback control loop with resource
and QoS monitors, RACE, and the DRE system, and (2) the
outer feedback control loop that includes SA-POP, RACE,
and the DRE system. The outer feedback loop enables a
DRE system to adapt to new mission goals, major changes
in resource availability (e.g., loss of a satellite sensor or
drastic deviations in resource consumption), and changes
in environmental conditions, by performing coarse-grained
system adaptation, such as adding/removing components
deployed as part of an application and modifying the sched-
ule for operation of components. The inner feedback
loop computes fine-grained system adaptation decisions,
such as fine-tuning application parameters (e.g., execu-
tion rates) and system parameters (operating system and/-
or middleware QoS parameters), thereby compensating for
drifts/fluctuations in utilization of system resources and/or
application QoS.
2.4 Applying our Integrated Architecture to the

MMS Mission System
As shown in Figure 5, our integrated planning and adap-

tive resource management architecture performs the follow-
ing actions for the MMS mission system prototype:

1. Upon receiving a mission goal from the user, SA-POP
employs integrated decision-theoretic planning to generate
an application capable of achieving the provided goal, given
current local conditions and resource availability.

2. After an appropriate application has been generated
by SA-POP, RACE’s Allocator allocates resources to
application components and employs the underlying mid-
dleware to deploy and initialize the application.

3. RACE’s Controllers and Effectors periodi-
cally compute system adaptation decisions and modify sys-
tem parameters, respectively, to handle minor variations in
system resource utilization and performance due to fluctu-
ations in resource availability, input workload, and opera-
tional conditions.

4. RACE triggers re-planning by SA-POP if RACE’s
Controllers and Effectors are unable to adapt the
system effectively to changes in resource availability, input
workload, and operational conditions, e.g., due to drastic
changes in system’s operating conditions, such as complete
loss of resources. SA-POP performs iterative plan repairto
modify the current application to achieve its goal even when
it encounters unexpected conditions or resource availability.

Our integrated SA-POP/RACE architecture offers ca-
pabilities that: (1) efficiently handle uncertainty in plan-

4. Design and Modeling 67

Satellite System

Resource
Monitors

QoS
Monitors

Controller
System

Adaptation
Decisions

Effectors System/Application
Parameters

Application QoS

System Resource Utilization

Allocator

RACE

User

SA-POP

Spreading
Activation

Planning Scheduling

Task
Network

Task
Map

Mission
Goals

Application
Metadata

Component to
Resource Mapping

System Resource Utilization

Application QoS

1

2 3

4

Runtime
Adaptation

Unsuccessful

Figure 5. Applying the Integrated Architecture to the MMS Mission System

ning for online generation of applications, (2) planning
with multiple interacting goals, (3) efficiently allocate sys-
tem resources to application components, (4) avoid over-
utilization of system resources, thereby ensuring system sta-
bility and application QoS requirements are met, even under
high load conditions.
3 Concluding Remarks

The paper described how our integrated planning and
adaptive resource management architecture helps address
system management challenges of complex open DRE sys-
tems. By integrating SA-POP and RACE, our architec-
ture enables open DRE systems to adapt to (1) high-level
changes, such as new mission goals and drastic changes
in operating conditions and (2) fluctuations in utilization
of system resources and/or application QoS. Although SA-
POP and RACE individually offer many features that en-
able the effective management of complex DRE systems,
the benefits of our integrated architecture include:

Fast and efficient online planning and resource allo-
cation. In our integrated architecture, SA-POP considers
coarse-grained (system-wide) resource constraints during
planning of applications. In contrast, RACE handles re-
source allocation optimization with fine-grained (individ-
ual processing node) resource constraints. The separation
of concerns between SA-POP and RACE limits the search
spaces in each during planning and resource allocation,
thereby making the process of planning and online resource
allocation faster, more effective, and more efficient.

Fast and efficient runtime system adaptation. Since
planners such as SA-POP are designed to be domain inde-
pendent, adaptation decisions computed by the planner are
coarse-grained, such as adding/removing components de-
ployed as part of an application and modifying the schedule
for operation of some components. Moreover, system adap-
tation by SA-POP may involve significant computation for
re-planning, as well as re-deployment of applications. Sys-
tem adaptation by planners are therefore more suitable for
significant changes in system workload, resources, objec-
tives, and/or operating conditions that occur at lower fre-
quency. Conversely, RACE employs control-theoretic adap-
tive resource management algorithms that performs sys-
tem adaptation and have minimal or low overhead. System

adaptation by RACE is thus more suitable for more frequent
fluctuations in workload and resources, such as changes
in application resource utilization and minor disturbances
from external sources.

As a part of our ongoing work, we are empirically val-
idating and evaluating the stated advantages of integrating
online planning (SA-POP) and an adaptive resource man-
agement framework (RACE).

References

[1] S. Sharma and S. Curtis, “Magnetospheric Multiscale Mission,” in
Nonequilibrium Phenomena in Plasmas. Springer Verlag, 2005, pp.
179–195.

[2] J. W. S. Liu, Real-time Systems. New Jersey: Prentice Hall, 2000.

[3] J. S. Kinnebrew, A. Gupta, N. Shankaran, G. Biswas, and D. C.
Schmidt, “Decision-Theoretic Planner with Dynamic Component
Reconfiguration for Distributed Real-time Applications,” in The
8th International Symposium on Autonomous Decentralized Systems
(ISADS 2007), Sedona, Arizona, Mar. 2007.

[4] N. Shankaran, D. C. Schmidt, Y. Chen, X. Koutsoukous, and C. Lu,
“The Design and Performance of Configurable Component Middle-
ware for End-to-End Adaptation of Distributed Real-time Embed-
ded Systems,” in Proc. of the 10th IEEE International Symposium
on Object/Component/Service-oriented Real-time Distributed Com-
puting (ISORC 2007), Santorini Island, Greece, May 2007.

[5] D. Suri, A. Howell, N. Shankaran, J. Kinnebrew, W. Otte, D. C.
Schmidt, and G. Biswas, “Onboard Processing using the Adaptive
Network Architecture,” in Proceedings of the Sixth Annual NASA
Earth Science Technology Conference, College Park, MD, Jun. 2006.

[6] S. Bagchi, G. Biswas, and K. Kawamura, “Task Planning under Un-
certainty using a Spreading Activation Network,” IEEE Transactions
on Systems, Man, and Cybernetics, vol. 30, no. 6, pp. 639–650, Nov.
2000.

[7] C. Lu, X. Wang, and X. Koutsoukos, “Feedback Utilization Control in
Distributed Real-time Systems with End-to-End Tasks,” IEEE Trans.
Parallel Distrib. Syst., vol. 16, no. 6, pp. 550–561, 2005.

68 Workshop on Adaptive and Reconfigurable Embedded Systems (APRES’08)

Designing Reconfigurable Component Systems with a Model Based Approach

Brahim Hamid
CEA LIST

email:brahim.hamid@cea.fr

Agnes Lanusse
CEA LIST

email:agnes.lanusse@cea.fr

Ansgar Radermacher
CEA LIST

email:ansgar.radermacher@cea.fr

Sébastien Gérard
CEA LIST

email:sebastien.gerard@cea.fr

Abstract

Dynamic reconfigurability of systems is of particular
importance when considering dependability issues. In this
paper we consider the utilization of such techniques in
the context of fault-tolerance. Indeed, one way to achieve
fault management is to use reconfiguration mechanisms.
In this paper we propose a model driven approach to
help specify and configure reconfigurability issues.Within
this development process, component application and
reconfiguration properties are declaratively specified
at model level and are transparent for the component
implementation. An application is described using UML
and specialized extensions: QoS &FT, D&C profiles from
the OMG. From this model, we generate descriptor files for
a framework based on the CORBA component model and
configure specific infrastructure components devoted to
reconfiguration management. The approach is illustrated
on a simple example.

Key words: Distributed applications, CORBA Compo-
nent Model, Connector, Fault tolerance, Profile, Reconfigu-
ration, UML.

1 Introduction

The “Inflexion” project 1 aims at providing a flexible
infrastructure framework in the domain of real-time em-
bedded applications. The framework promotes an infras-
tructure based on the CORBA Component model (CCM)
[5] and its Component/Container paradigm. It extends this
model with the concept of Connector that provides an ab-
straction for connections. The project provides also toolsto

1This work has been performed in the context of the Usine Logi-
cielle (software-factory) project of the System@tic ParisRégion Cluster
(http://www.usine-logicielle.org).

configure and generate efficient containers – from a descrip-
tion of deployment specification at a model level. This work
has already been successful in previous projects, namely the
IST project Compare (http://www.ist-compare.org).

We present an ongoing work which extends this frame-
work with support for the management of fault-tolerant ar-
chitectures. It is based on the definition of a run-time frame-
work and on code generation tools and an accompanying
modeling process. The former offers transparent manage-
ment of fault-tolerance (mainly fault-detection and redun-
dancy mechanisms), the latter supports the application de-
signer in the development process. In the scope of this pa-
per, we focus on reconfiguration support at model level.

In the context of fault-tolerance, the failure of a node has
to be properly dealt with. Whereas critical components are
actively replicated and have to continue without interrup-
tion, other parts of an application may bere-configuredin
order to adapt to the node-failure. We study reconfigura-
tion at multiple layers within a model driven engineering
approach, including the model level and required runtime
support from the execution platform.

A major reason for using CCM is its separation of busi-
ness code from non-functional or service code within a con-
tainer. Non-functional services support the reconfiguration
process by blocking for instance the access to ports during
reconfiguration in order to maintain a consistent state (avoid
messages loss).

The paper is organized as follows: In the next section
we present some background related to component model,
the connector extension and the modeling support for adap-
tive quality of service design. In section 3, we present our
approach to deal with reconfiguration at a model level. Sec-
tion 4 describes briefly the proposed framework to imple-
ment reconfiguration in the context of fault-tolerance. In the
following section, we propose our process to design recon-
figurable applications. We review in Section 6 some related
works. Finally, Section 7 concludes the paper with short

4. Design and Modeling 69

discussion about future works.

2 Background

In this section, we outline two different aspects: the com-
ponent platform, namely the CORBA Component model
and an extension of it and the modeling support for adap-
tive quality of service design.

2.1 CCM Connectors – non-standard in-
teraction mechanisms

In the context of fault tolerance, a connection with a
replicated component should perform the group communi-
cation. Whereas this could be done with standard CCM and
a specific CORBA implementation supporting group com-
munication, it would be impossible to configure and control
it (in case for instance of node failures) from standard CCM.

This motivates the introduction of what we callcon-
nectorsthat offer the possibility to use a specific interac-
tion semantic and multiple implementations of this seman-
tic within CCM [10]. The basic idea of this extension is
that the semantics of an interaction is defined by a certain
port type and that one or more connectors can support this
port type. The port types are already fixed at component de-
sign time, whereas the choice of a connector (and a specific
implementation) is not fixed until application deployment.

A connector has certain similarities with a component.
A main difference is that it is a fragmented entity: since the
connection between a (part of a) component and its connec-
tor is always local, the connector needs to be split into a
number offragmentswhich represent the connector in the
address space of its users.

Since a connector fragment is responsible for incoming
and outgoing messages, it is an ideal place for the inte-
gration of code that transparently interacts with a group of
replicas. In addition, the connector caninterceptmessages
and block these until a reconfiguration is done - thus avoid-
ing message loss.

2.2 Modeling Support for Adaptive Qual-
ity of Service Design

Model Driven Engineering is becoming more and more
successful in software engineering. Though, primarily used
in information systems, it is particularly well suited to the
domain of real-time embedded applications since it puts in
action the separation of concerns promoted by the OMG
standard Model-Driven ArchitectureTM (MDA). But until
now, there was a lack of tools to support such methodolo-
gies and approaches in this domain.

In this context the “Inflexion” sub-project takes advan-
tage of “Usine logicielle” environment and on recent ad-
vances in modeling non-functional issues offered mainly

by QoS & FT [7] and more recently by MARTE(Modeling
and Analysis of Real-Time Embedded systems) [8] OMG
standards to support dependability modeling issues in the
development of Component Based systems. Advances in
AADL (Architecture Analysis and Design Language) and
its recent extensions (behavior and error annex) devoted to
dependability oriented modeling [3] have also been taken
into account.

Adaptive systems implement generally decision strate-
gies for dynamic reconfiguration depending on criteria de-
fined during design. These can be expressed by means of
constraints (defining contracts) on services offered or re-
quired by components, these constraints can be related to
different quality levels and/or to different phases duringthe
application life. Promoting a unified framework to specify
declaratively such quality related concepts is thus a major
issue. Several proposals have been issued until now :

• One of the most achieved work in this direction was
the QoS&FT profile. In this profile, many aspects of
Quality of Service have been investigated and mod-
eling features have been proposed that are directly in
relation with the modeling of adaptive systems. The
profile helps modelingQoSLevels. These levels re-
fer to states where a certain degree of quality can be
achieved. A component remains in aQoSLevelas long
as the constraints attached to this level are verified.
When this is no longer the case, aQoSTransitionis
fired. This QoSTransitioncontains a set ofadapta-
tionActionsthat determine the reconfiguration process
that must be achieved. This meta-model of adaptabil-
ity is pretty much general and must be detailed in or-
der to support adaptive systems development method-
ology. However, the framework fits well to most exist-
ing adaptive systems.

However, the concept ofQosLevelis not suitable for
modeling operationalmodesof an application. An op-
erational mode is a global application mode, in case
of an aerospace application it may for instance corre-
spond to a start and in-flight phase of a launch vehicle
which have quite different demands. Modes and tran-
sitions between these are usually specified by means of
some kind of automaton.

• MARTE profile provides a more general framework
to specify non-functional properties (generalization of
QoSChracteristics), libraries of predefined types de-
voted to RTE domain and specific sub-profiles have
been defined to support Schedulability and Perfor-
mance Analysis. These concepts can be used (but
are not explicitly devoted) to expressQoSConstraints.
In MARTE profile, the notion of operational modes (
close to AADL concept) has been introduced and is at-
tached toRT-Unitsin a subprofile named RTEMoCC

70 Workshop on Adaptive and Reconfigurable Embedded Systems (APRES’08)

which is devoted to the modeling of concurrent sys-
tems using high level abstractions. Operational modes
is described by a UML state machine which describes
operational modes of the application. We are currently
developing a profile for dependability analysis com-
patible with MARTE that extends this profile for mode
management (see next section).

• In AADL, mode management is explicitly supported.
Modes represent alternative operational states of a sys-
tem or component. Modes and mode transitions are
represented thanks to state machines. Each mode cor-
responds to a particular system configuration.

3 Modes management modeling

In the meta-model we have developed to capture multi-
mode management requirements, we consider modeling op-
erational modes of an application at a coarse grain level.
Modes can correspond to two types of preoccupations: 1)
modeling multi-phase applications such as aerospace ap-
plications and 2) modeling degraded mode management in
presence of partial failure of a system. The major features
of this model are described in the next figure. The concepts
supported are relatively limited. From this meta-model, a
derived profile has been implemented and integrated within
the PapyrusUML tool. The specifications entered in the tool
are used to configure specific components from the infras-
tructure and to enrich code generation (see section 5).

Application

OperationalModes

Mode

 + modeId: Integer [1]

 + modeName: String [1]

ModeTransition

 + transitionID: Integer [1]

ModeTransitionGuard

ModeChangeEvent

 + eventNature: ModeChangeEventKind [1] = UserModeChange

 + eventCode: Integer [1]

«enumeration»

ModeChangeEventKind

 UserModeChange

 InfrastructureModeChange

ModeConfiguration

 +/ modeId: Integer [1]

DeploymentPlan

ReconfigurationAction

ReconfigurationActivity

 +/ sourceConfiguration: ModeConfiguration [1]

 +/ destConfiguration: ModeConfiguration [1]

 + operationalModes [1..*]

 + configuration [1..*] + initialMode [1] + modeTransition [*]

 + mode

 [*]

 + modeConfiguration

 [1]

 + sourceMode

 [1]

 + targetMode

 [1]

 + modeTransitionGuard [*]

 + causingEvent [*]

 + reconfigurationActivityEffect

 [0..1]
 + plan [*]

 + action [*]

Figure 1: Our proposed MetaModel for Mode Management

TheOperationalModesStateMachine describes the dif-
ferent states and transitions defined as valid for the applica-
tion. In this approach we are considering statically prede-
fined configurations. A configuration is given by a partic-
ular deployment plan that describes component instances,

their configuration and allocation to a node along with the
connections between instances. A transition from one op-
erational mode to another will switch the system into the
new target mode. A mode transition is thus described by its
sourceMode, its targetModeand amodeTransitionGuard.
Each mode is associated with amodeConfigurationthat
relates the mode to a deployment plan. AmodeTransi-
tionGuardrelates a modeChangeEventand areconfigura-
tionActivity. ThereconfigurationActivitydescribes the algo-
rithm for switching from the current mode to the target one.
It consists of terminating some services and starting new
ones – both described in form of UML actions. The trigger-
ing conditions for mode change in this model can be raised
either by the user or the infrastructure. A user event re-
lates to explicit anticipated mode changes while infrastruc-
ture events relate generally to abnormal situation detected
by the infrastructure.

4 Reconfiguration Framework
We propose a simple runtime framework to implement

reconfiguration to deal with fault tolerance management in
a system using replication to achieve fault-tolerance. Since
these are realized as CCM components they are independent
of an ORB, in particular the connector extensions allows for
choosing different interaction implementations. The sepa-
ration between components and containers in CCM allows
to keep non-functional aspects out of the business code.
Only the container and the associated connector fragments
(which can be seen as part of the container) manage recon-
figuration aspects. Non-functional services support the re-
configuration process by blocking for instance the access to
ports during reconfiguration in order to maintain a consis-
tent state. That is, the connector caninterceptmessages and
block these until a reconfiguration is done - thus avoiding
message loss.

The framework is composed of three kind of non-
functional components:Fault Detector, FT Managerand
ReplicaManager. We present in Figure 2 briefly the in-
terfaces of the infrastructure components. An example of
a simple scenario is: Fault detector executesis nodealive
() to implement fault detector protocol. This method in-
vokesnodealive on other nodes. When some fault occur,
the methodmanageeventis invoked on theFT Manager
with the corresponding event. Then, the methodreconfig-
ure() is executed to transit to the specified mode.

5 Designing Reconfigurable Applications
Our laboratoryLISE 2 has developed a tool, as shown

in Figure 3, that supports UML modeling (Papyrus UML)
based on the Eclipse environment. This tool suite provides

2Laboratory of Model Driven Engineering for Embedded Systems,
which is part of the CEA LIST.

4. Design and Modeling 71

interface IFault_Detector
{
void is_node_alive ();
void node_alive ();

};
interface IFT_Manager
{
void init(XMLFile Behavior);
void manage_event(Event event);
void reconfigure(Event event,

Mode source, Mode target);
};
interface IReplica_Manager
{
void manage_replica();

};

Figure 2: Interfaces of the components transition framework

a graphic UML modeling editor and code generation com-
ponents (Java, C, C++). The tool supports also advanced
UML profile management. We have developed additional
plug-ins which generate CCM descriptor files from a model
containing reconfiguration requirements.

These tools have been integrated in the Usine Logicielle
platform, and interconnected with the microCCM chain tool
developed in collaboration with Thales partner.

Binary

ModelProfile
eC3M

Profile
FT

IDL/IDL3

descriptions

Deployment
XML (CDP, CCD)

Framework
microCCM

Model

Editor

UML2

EMF

Generation

plug−in

Modeling

Modeling Environment

Component

Executors

Equivalent IDL

Connector fragments

Container

Figure 3: Chain tools

The profile capturing the component model is oureC3M
proposal. It is based on the UML profile for deployment
and configuration D&C [6], comprising also the assembly
of an application from existing components. In general,
the specification mechanisms are quite close to the com-
posite structure mechanisms in UML. Once this model is
defined, reconfiguration issues can be added. Reconfigura-
tion transitions and the operational modes are modeled by
using our profile for mode management. Modes and mode
transitions are defined using UML statecharts. A simple ex-
ample is shown in Figure 4, this application has two possi-
ble modes, aNominalModeandDegradedMode. Reconfig-
uration properties, for instance mode, mode transition and
causing events are specified by means of stereotypes that are

applied to the states and transitions of the statechart. More
complex examples may of course involve a larger number
of modes.

The application model is then parsed by a dedicated tool
whose goal is build a configuration file for the reconfigura-
tion framework itself so that specific components devoted
to reconfiguration management can be populated according
to application needs.

Figure 4: The mode transition behavior

The reconfiguration framework may be seen as a service
offered by the execution infrastructure. The connection be-
tween application and the framework is done using an XML
file generated from a statechart with the applied reconfigu-
ration profile (see Figure 1). From this file, the reconfigura-
tion framework generates adequate code that is used by the
runtime framework to execute a certain transition. These
mechanisms are currently only partly implemented.

6 Related Work

AQuA [11] provides tools to allow developers to specify
the desired level of dependability, through the configuration
of the system according to the availability of resources and
the faults occurred.

The next two approaches are both based on component-
oriented modeling: AFT-CCM [4] is based on CCM and
treats fault-tolerance as a specific QoS requirement. The
proposed framework enables the modification of QoS pa-
rameters at runtime. In [2], the authors designed and im-
plemented Jade, a framework to build autonomic systems:
it uses the Fractal component architecture to reconfigure
applications according to observed events and using the
knowledge of the application architecture. The represen-
tation of the environment is based on a component model.

[9] studies reconfiguration in the context of an operating
system. In this work the reconfiguration is achieved dur-
ing design time using a reflective component model and an
associated architecture description language. The problem

72 Workshop on Adaptive and Reconfigurable Embedded Systems (APRES’08)

of expanding all possible operational modes is addressed in
[1]. The design flow proposed is devoted to flexible safety-
critical systems.

The main difference between the reconfiguration CCM
approaches above and our approach is the focus on a specifi-
cation based on UML and a standardized profile (QoS+FT).
Another difference is that we integrated the reconfigura-
tion mechanism into a generic CCM extension. Regard-
less PIM/PSM (platform independent/specific models), our
specification of reconfiguration aspects is already done at
a platform independent model. The container (and connec-
tor) enables us to hide platform specific aspects at the model
level.

7 Summary and Further Research

This work deals with application reconfiguration, i.e. the
transition between operational modes. We present an ap-
proach to deal with reconfiguration at different levels within
the development process of distributed applications. Thisis
done within the larger scope of a component based design
that relies on UML, a subset of the OMG profiles QoS&FT
as well as Deployment and Configuration. From this model,
we generate descriptor files for a framework based on the
CORBA component model. Within this development pro-
cess, reconfiguration properties are declaratively specified
at model level and are transparent for the component im-
plementation. While a premier support of fault-tolerance
has been finished, the re-configuration support is still par-
tial. The next steps are primarily a support for an automatic
re-configuration of the application in a Fault tolerance con-
text. The challenges of the integration include for instance
the replication of the component performing the reconfigu-
ration steps.

Acknowledgment:We thanks our partners in the Usine
Logicielle project in particular Inflexion sub project(Thales,
Astrium and Trialog) and anonymous reviewers of the
APRES08 workshop for their comments.

References

[1] L. Almeida, M. Anand, S. Fischmeister, and I. Lee.
A dynamic scheduling approach to designing flexible
safety-critical systems. InProc. of the 7th Annual
ACM Conference on Embedded Software (EmSoft’07),
2007.

[2] B. Claudel, N. De Palma, R. Lachaize, and D. Hag-
imont. Self-protection for distributed component-
based applications. InConference on Security and
Network Architectures (SAR), Seignosse, France, vol-
ume 4280, pages 184–198. Springer, 2006.

[3] Peter Feiler and Ana Rugina. Dependability Modeling
with the Architecture Analysis & Design Language
(AADL). Technical report, 2007. CMU/SEI-2007-
TN-043.

[4] J. Fraga, F. Siqueira, and F. Favarim. An adap-
tive fault-tolerant component model.Object-Oriented
Real-Time Dependable Systems, 2003. WORDS 2003
Fall. The Ninth IEEE International Workshop on,
pages 179–179, 2003.

[5] OMG. CORBA Component Model Specification, Ver-
sion 4.0, 2006. document formal/2006-04-01.

[6] OMG. Deployment and Configuration of Component
Based Distributed Applications, v4.0, 2006. document
ptc/2006-04-02.

[7] OMG. UML Profile for Modeling Quality of Service
and Fault Tolerance Characteristics and Mechanisms,
2006. document formal/06-05-02.

[8] OMG. UML Profile for MARTE, 2007. document
ptc/07-08-04.

[9] J. Polakovic, A. E. Ozcan, and J.B Stefani. Build-
ing reconfigurable component-based os with think.
In EUROMICRO ’06: Proceedings of the 32nd EU-
ROMICRO Conference on Software Engineering and
Advanced Applications, pages 178–185, Washington,
DC, USA, 2006. IEEE Computer Society.

[10] Sylvain Robert, Ansgar Radermacher, Vincent
Seignole, Sébastien Gérard, Virginie Watine, and
François Terrier. Enhancing interaction support in
the corba component model. InFrom Specification to
Embedded Systems Application. Kluwer, 2005.

[11] W.H. Sanders Y. Ren, M. Cukier. An adaptive al-
gorithm for tolerating value faults and crash failures.
IEEE transaction on parallel an distributed systems,
2:173–192, 2001.

4. Design and Modeling 73

Enabling Extensibility of Sensing Systems through Automatic Composition
over Physical Location

Maurice Chu and Juan Liu
Palo Alto Research Center
[mchu, jjliu] @parc.com

Abstract

 Networked sensing systems are increasingly
adopted in many applications, but today’s systems are
generally single purpose and hard to extend. This
paper addresses the problem of enabling developers to
develop extensible networked sensing systems. We
propose a design methodology, which centers on a
novel automatic composition service where the sensor
processing software modules are parameterized by a
physical location region. The automatic composer
automatically configures the processing and
communication occurring in a networked sensing
system based on up-to-date sensing needs and sensor
device availability. Our approach also enables
adaptability and robustness against sensor failures.

1 Introduction

Adding functionality into existing sensing systems
that were never designed to be extended can be such a
complicated and costly task that deploying a separate
system with its own set of sensors is often the simpler,
more reliable, and economical choice. This short-
sighted “reinvent versus reuse” design methodology
results in multiple, isolated sensing systems that cannot
be adapted or extended in a robust and reliable way.

For a concrete example, let us consider two video
surveillance applications in high demand in retail
stores today: security and marketing research.
Commercial products for security include surveillance
systems from ObjectVideo [1] and Vidient, and
products for market research include those from
Brickstream. Today, to get security and market
research capabilities, separate systems must be
purchased. Extending a security surveillance system to
do market research (or vice versa) is difficult, which
requires a thorough understanding of the processing
flow and function call hierarchies. However, these two
systems are similar in hardware usage and share a lot
of functionality. A potentially more cost effective
alternative is to design the systems to be extensible.

Compared to multiple isolated sensing systems, an
integrated, extensible system has several advantages.
Redundant deployment of sensors can be avoided, so

that the upfront cost of deployment is amortized over
multiple applications over the system lifetime. The
availability of more sensors can improve performance
through increased sensor or spatial diversity.

We are interested in a practical methodology that
will encourage developers to design for extensibility.
This methodology should be simple and impose
minimal overhead cost for the benefit of extensibility.
In this paper, we propose a design methodology that
leverages the key role of physical location in sensing
and an automatic composition service. The automatic
composer monitors dynamically changing sensor
availability and evolving sensing needs, and
automatically instantiates, integrates, and reconfigures
software components on devices as the system evolves.

The focus of this paper is on extensibility of sensors
and sensing, not the entirety of application logic.
Although handling heterogeneity in data types,
protocols, interfaces, networks, and devices are
important for a total solution, our focus will be on
designing a methodology that minimizes developer
effort to design extensible sensing systems.

Several existing middleware systems also perform
automatic composition. For example, [2] composes an
appropriate set of sensors and algorithms based on pre-
defined roles and connections, but since it is designed
for “ tiny” nodes, it composes only at compile-time.
GRATIS [3], on the other hand, performs dynamic
reconfiguration but chooses among developer-specified
alternatives of operations to meet quality-of-service
goals. Neither of these focus on physical location as
we do.

2 Practical Extensibility Requirements

Let us revisit the video surveillance applications:
security and market research. Figure 1 shows a
possible reuse scenario. In this example, the retail store
is first deployed with a security surveillance system
that captures video from cameras, detects people, and
tracks them (CameraImager, PeopleDetector, and
Tracker). With the initial deployment in place, store
managers may wish to leverage this system to extract
customer count information throughout a store to help
them dispatch sales people accordingly, which can be

74 Workshop on Adaptive and Reconfigurable Embedded Systems (APRES’08)

accomplished by adding only a people counting
algorithm (PeopleCounter) on top of the existing
functionality. Security may then decide to add
additional capabilities like detecting unusually dense
crowds in restricted areas (AlarmBasedOnDensity).
Furthermore, more complex human behavior analysis
capabilities can be built on top, like detecting what
items are picked up (ItemPickDetector), gaze
(GazeDetector), and shoplifting (ShopliftingDetector).
In this simple reuse scenario, both applications benefit
from extensibility.

To derive requirements for a practical design
methodology for extensibility, we consider two
developer perspectives: that of the original developer
and that of the extender, which refers to the developer
who intends to reuse or extend existing functionality.
(i) Or iginal developer ’s perspective.
For functionality to be reused or extended, the original
developer must design for it, and the extra required
effort must be nearly nothing.

Req.1a: Packaging functionality into modular,
independently invokable units must require minimum
extra effort.

Req.1b: Developing generalized algorithms should
require minimum extra effort.
(ii) Extender ’ s perspective.
To encourage the extender to reuse, we have the
following requirements:

Req.2a: Discovering what capabilities exist must be
nearly effortless. Strong developers know that the
effort to reuse existing libraries will save time later.
We would like to make this extremely easy, so that
even weak developers are encouraged to reuse.

Req.2b: The use of existing components should not
require specialized expertise. Developers have
different domain expertise. For instance, security
application developers may be computer vision
specialists, while marketing application developers are
sales experts. It is important that the relevant
knowledge of how to use sensors, sensing algorithms,
their capabilities, and their limitations are all packaged

so that non-experts can use the outputs of these
algorithms correctly

Req.2c: Integrating components should be as
simple as wiring to match inputs and outputs. In our
example, the PeopleDetector component takes images
as input and outputs people detections in a specified
region, while PeopleCounter takes people detection as
input and outputs total counts of customers in a region.
This simple example illustrates that the two
components can be integrated by “wiring” matching
inputs and outputs. In practice, wiring can become a
massively complicated manual task when there are
large numbers of modules and data types. With well-
defined matching rules, integration could be
automated, which is what our automatic composition
service will do.

Req.2d: Updating existing and adding new
components should not break functionality. Since one
of the main benefits of an extensible system is that its
functionality can be modified over time, it is critical
that incremental updates be reliable without breaking
existing functionalities.

3 Design Methodology

3.1 Naming data

For multiple applications to reuse each other’s
functionality, we need a common interface to refer to
data. From our experience, the physical location and
timing information of sensor data is the fundamental
context information needed to interpret and extract
high-level information. Thus, we will refer to data and
extracted information by a name tagged with
spatiotemporal context. For example, the software
components in Figure 1 extract information like
“ images” , “people locations” , and “motion trajectories”
in certain locations and times. Because the
specification of arbitrary spatiotemporal regions can
become quite complex, we will focus on the smaller
class of specifying and delivering sensing information
in arbitrary location regions at the present time only.
Then, interests in sensing information can be
represented by name-location pairs, with time being
implicitly defined to the present.

Naming has issues like defining ontologies and dealing
with non-uniqueness, which we defer to the literature.

3.2 Design Methodology

From the developer’s perspective, to make a system
extensible means that, the design needs to be modular
and with light overhead (Reqs. 1a and 1b respectively).
For modularity, we adopt a component-based model
where all functionality must be packaged into

Secur ity Marketing
CameraImager
PeopleDetector

Tracker

AlarmBasedOnDensity
ItemPickDetector

ShopliftingDetector

PeopleCounter

GazeDetector

time

Figure 1. Reuse scenario.

4. Design and Modeling 75

independently executable sensing software modules
that can be linked together. As for Requirement 1b,
since the physical location of sensors is critical context
information to interpret sensor data, and it is not until
an actual deployment of the system that device
locations are established, our design methodology
requires all software modules be parameterized by
location. This is well-supported by our location-based
naming scheme. For example, when developing the

, it should be able to extract the
detections of people within any specified physical
region . Developing location-parameterized modules
requires extra effort, but this is a natural generalization
for sensing tasks.

From the extender’s perspective, discovering
existing capabilities and components (Reqs. 2a and 2b)
can be effortless with proper naming support, like a list
of unique names that indicate the type of information
that can be pulled out of the existing sensing system.
This means developers do not even have to know about
sensing modules because the data name provides a
sufficient abstraction. Furthermore, a developer can
assume that this information can be extracted from any
location region by specifying a name-location pair, as
long as there is sufficient sensor coverage in the region
of interest.

Finally, the key idea to bring this all together is the
inclusion of an automatic composition service, that
automatically instantiates, sets location parameters of
sensing modules, and “wires-up” sensing modules to
realize the sensing needs of users and applications,
which addresses Req. 2c and Req. 2d.

3.3 Automatic composition service details

The automatic composition service consists of four
subservices in Figure 2. The Sensing Needs Monitor
maintains information about the sensing needs of the
application as a set of name-location pairs. A GUI can
interface with this subservice to allow users to insert
and delete name-location pairs. Developers can also
programmatically interface with this subservice. The
Sensing Module Registry maintains a registry of all
sensing modules. It includes code and meta-data like
the input and output names and the location
relationship between inputs and output. The Device
Database maintains the state of physical deployment of
sensor devices on the network, including their physical
location and sensor-specific calibration information,
like lens distortion and view orientation in cameras.

These subservices maintain up-to-date information
of dynamically changing state, which is then used by
the Automatic Composer to decide what processing
and communication should be occurring in the

networked sensing system by performing three tasks.
First, it acts as a broker to figure out what software
modules and hardware devices are needed to fulfill the
sensing needs. Second, it acts as an architect to
determine how many of each sensing module is
needed, what location parameter to specify, how they
should be wired up, and on which devices to instantiate
them. Finally, it dispatches this plan, which we call a
composition, to command the devices to execute it.

The composition algorithm starts with name-
location pairs in the Sensing Needs Monitor, say
people counts in a region , .
Sensing modules that can provide the relevant outputs
are instantiated, and their location parameters chosen,
say . The inputs to these
instantiated sensing modules produce a new set of
name-location pairs, say , which are
used to recursively generate the composition all the
way down to modules that pull out raw data from the
deployed sensors of the system, say
and if there are two cameras viewing
regions and . Our algorithm is able to perform
geometric unions and intersections with complex,
polygonal spatial regions so that the algorithm would
choose the appropriate location parameters, say

 and .
Figure 3 shows a simple example composition.
Although not shown here, our algorithm can generate
quite complicated graph topologies.

��������� �
	��
�����
�����
�
� � �
�

� ����� ��� ��� � ���
� ���

��������� �
	
���
�
�
� �
� ��	�� ��� �!

" �
� ��# � � � �
$��
#&%
�
�'��� (�)�*,+�)�-'. / .)�0

Figure 2. Automatic composition

1 . 2�34-�5 2�6�.)�0 1 . 2�34-�5 2�6�.)�0

Figure 3. Example Composition

76 Workshop on Adaptive and Reconfigurable Embedded Systems (APRES’08)

For a networked system, the final step is to
determine on which devices to place each sensing
module. We can use rules, like pushing as much
functionality into the sensor nodes as possible, or
various load balancing and distributed process
migration techniques [4], which determine good
placement under a variety of cost criteria.

By recomputing a new composition online in
response to state changes of sensing needs and sensing
modules, our design methodology produces an
extensible and adaptable system that can reconfigure
its processing and automatically incorporate new
software without going offline. When new sensors are
added or failures are detected, the automatic composer
is able to respond by recomposing with the new
availability and unavailability of sensors. This results
in automatically loading appropriate software onto
newly added sensors and robustness to failures since
the system can recompose processing to not rely on
unavailable sensors.

The architecture we envision for implementing a
networked system with automatic composition over
physical location is a two-tiered system with one or
more “composer” nodes and several sensor nodes. This
separation allows for sensor nodes to be mote-like
devices rather than full-fledged computers.

4 Prototype system

We have built a prototype of the automatic
composition service and a supporting runtime for
sensor nodes to test out our ideas. We developed a
security and personal advertisement application, much
like that described in Section 2. The prototype consists
of one composer node, which is a 1 GHz Linux box,
and 15 sensor nodes, which are Linux OpenBrick
computers with 300 MHz Geode processors. 14 of the
sensor nodes, each with a camera, are mounted on the
ceiling of our lab. The 15th sensor node is an RFID
reader by the doorway. The composer and sensor nodes
are networked using TCP/IP over wired ethernet.

Figure 4 shows the output of the ceiling camera
images in our system. The red square is the result of
an AlarmBasedOnDensity module detecting when
there are more than two objects in the area. Figure 5
shows the GUI that interfaces with the Sensing Needs
Monitor. Users can select the type of data they want
from the system (color-coded) and specify a polygonal
region to sense for that kind of data. The less saturated
coloring indicates the lack of sensor coverage which is
a side result from our automatic composition algorithm
indicating insufficient sensor coverage.

Acknowledgments ---- We thank Fujitsu Limited for
sponsoring this research and acknowledge James Reich,

Teresa Lunt, Bo Begole, Kurt Partridge, Ignacio Solis, and
Dan Larner of PARC for their contributions.

5 References
1. Venetianer, Peter, et al., Video Verification of Point of
Sales Transactions. London : s.n., 2007. Advanced Video
and Signal based Surveillance.
2. Animesh Pathak, Luca Mottola, Amol Bakshi et. al., A
Compilation Framework for Macroprogramming Networked
Sensors. 2007. Proceedings of Distributed Computing in
Sensor Systems (DCOSS). pp. 189-204.
3. Sachin Kogekar, Sandeep Neema, Brandon Eames, et. al.,
Constraint-Guided Dynamic Reconfiguration in Sensor.
2004. Proceedings of Information Processing in Sensor
Networks (IPSN).
4. Milojicic, D., Douglis, F. and Wheeler, R. Mobility:
Processes, Computers, and Agents. s.l. : ACM Addison-
Wesley, Feb 1999.

Figure 5. Sensing Needs Monitor GUI

Figure 4. GUI screenshot

4. Design and Modeling 77

	Systems
	Semantics-Preserving and Incremental Runtime Patching of Real-Time Programs. Christoph M Kirsch, Luís Lopes and Eduardo R B Marques
	Limitations of Adaptable System Architectures for WCET Reduction. Jack Whitham and Neil Audsley
	Adaptive Framework for Efficient Resource Management in RTOS. Ameet Patil and Neil Audsley
	Enhancing the Adaptivity for Multi-Core Embedded Systems with Dynamic Performance Scaling in FPGA. Yan Zhang and Gang Quan

	Distributed Systems
	Building Adaptive Embedded Systems by Monitoring and Dynamic Loading of Application Modules. Florian Kluge, Jörg Mische, Sascha Uhrig and Theo Ungerer
	A Programmable Arbitration Layer for Adaptive Real-Time Systems. Sebastian Fischmeister and Robert Trausmuth
	ViRe: Virtual Reconfiguration Framework for Embedded Processing in Distributed Image Sensors. Rahul Balani, Akhilesh Singhania, Chih-Chieh Han and Mani Srivastava
	Trade-off Analysis of Communications Protocols for Wireless Sensor Networks. Jerome Rousselot, Amre El-Hoiydi and Jean-Dominique Decotignie

	Scheduling
	A GA-Based Approach to Dynamic Reconfiguration of Real-Time Systems. Marco A. C. Simões, George M. Lima and Eduardo Camponogara
	CPU Utilization Control Based on Adaptive Critic Design . Jianguo Yao and Xue Liu
	A hierarchical approach for reconfigurable and adaptive embedded systems. Moris Behnam, Thomas Nolte and Insik Shin
	Suitability of Dynamic Load Balancing in Resource-Constrained Embedded Systems: An Overview of Challenges and Limitations. Magnus Persson, Tahir Naseer Qureshi and Martin Törngren

	Design and Modeling
	Flexible User-Centric Automation and Assistive devices. J. W. S. Liu, C. S. Shih, T. W. Kuo, S. Y. Chang, Y. F. Lu and M. K. Ouyang
	Towards an Integrated Planning and Adaptive Resource Management Architecture for Distributed Real-time Embedded Systems. Nishanth Shankaran, John Kinnebrew, Xenofon Koutsoukos, Chenyang Lu, Douglas Schmidt and Gautam Biswas
	Designing Reconfigurable Component Systems with a Model Approach. Brahim Hamid, Agnes Lanusse, Ansgar Radermacher and Sébastien Gérard
	Enabling Extensibility of Sensing Systems through Automatic Composition over Physical Location. Maurice Chu and Juan Liu

