
Reactive Processing
Instruction Set

The KReP

The Kiel Reactive Processor
Reactive Processing beyond the KEP

Claus Traulsen

Christian-Albrechts Universität zu Kiel

Synchron 2007

29. November 2007

Claus Traulsen The Kiel Reactive Processor Slide 1



Reactive Processing
Instruction Set

The KReP

General Idea
The Kiel Esterel Processor (KEP)

Outline

Reactive Processing
General Idea
The Kiel Esterel Processor (KEP)

Instruction Set
Candidates
Scade

The KReP
Basic Ideas
Example Execution
Outlook

Claus Traulsen The Kiel Reactive Processor Slide 2



Reactive Processing
Instruction Set

The KReP

General Idea
The Kiel Esterel Processor (KEP)

The Problem
Control flow on traditional (non-embedded) computing systems:

I Jumps, conditional branches, loops

I Procedure/method calls

Control flow on embedded, reactive systems: all of the above, plus

I Concurrency

I Preemption

I Precise timing

The problem: mismatch between traditional processing
architectures and reactive control flow patterns

I Processing overhead, e. g., due to OS involvement or need to
save thread states at application level

I Timing unpredictability

Claus Traulsen The Kiel Reactive Processor Slide 3



Reactive Processing
Instruction Set

The KReP

General Idea
The Kiel Esterel Processor (KEP)

Solution: Reactive Processing

Just another application (class) specific processor

I Deterministic control flow

I Predictable timing

I Short design cycle

I Low power requirements

Can use reactive processor

I in stand alone, small reactive applications

I as building block in SoC designs

Claus Traulsen The Kiel Reactive Processor Slide 4



Reactive Processing
Instruction Set

The KReP

General Idea
The Kiel Esterel Processor (KEP)

KEP: Current Status

I Reactive Processor for Esterel

I “Directly” executes Esterel
I Implements Esterel v5 (nearly) completely

I Includes concurrency
I Includes valued signals (but no combine)

I Complete toolchain
I Compiler from Esterel to KEP assembler

uses Columbia Esterel Compiler as front-end
I Compiler from KEP assembler
I Testbench for automatic testing

Generate trace files (esi/eso) and compare to Esterel-Studio

Claus Traulsen The Kiel Reactive Processor Slide 5



Reactive Processing
Instruction Set

The KReP

General Idea
The Kiel Esterel Processor (KEP)

KEP: Recent work

Reimplementation in Esterel v7

I Better maintainability

I Medium size Esterel example:
> 4000 lines of Esterel code

I SoftKEP for fast testing

Connection to real world

I So far the KEP executes
trace files

I Have it control some
“real” environment

Claus Traulsen The Kiel Reactive Processor Slide 6



Reactive Processing
Instruction Set

The KReP

General Idea
The Kiel Esterel Processor (KEP)

KEP: Drawbacks

I Input limited to Esterel

I Niche between hardware and software generation
Even more true for KEP on FPGA

I Single core with multiple threads
(Logical concurrency, not suited for acceleration)

Claus Traulsen The Kiel Reactive Processor Slide 7



Reactive Processing
Instruction Set

The KReP

General Idea
The Kiel Esterel Processor (KEP)

The Kiel Reactive Processor

Key Idea: Have a wider field of application

1. Compile other languages to the KEP Assembler

2. Have a new reactive Processor
But keep the good parts of the KEP:

I Support for concurrency and preemption
I Precise timing
I Easy compilation

Claus Traulsen The Kiel Reactive Processor Slide 8



Reactive Processing
Instruction Set

The KReP

Candidates
Scade

Outline

Reactive Processing
General Idea
The Kiel Esterel Processor (KEP)

Instruction Set
Candidates
Scade

The KReP
Basic Ideas
Example Execution
Outlook

Claus Traulsen The Kiel Reactive Processor Slide 9



Reactive Processing
Instruction Set

The KReP

Candidates
Scade

Requirements for the Instruction Set

I Should grab key idea of reactive processing!
I Direct support for:

I Preemption
I Concurrency

I Timing is an essential part of semantics

I Implementable

I Easy use as target language

I Similar requirements as for real-time languages

; Use them as a base language
(Just like Esterel for the KEP)

Claus Traulsen The Kiel Reactive Processor Slide 10



Reactive Processing
Instruction Set

The KReP

Candidates
Scade

Requirements for the Base Language

I Widly used for programming reactive systems

I Well defined (formal semantics)

I Small kernel

I Support for reactive control-flow

Lets take a look at other languages . . .

Claus Traulsen The Kiel Reactive Processor Slide 11



Reactive Processing
Instruction Set

The KReP

Candidates
Scade

A Survey on Possible Languages (Esterel like)

IC I Not more used than Esterel
I Only use as intermediate language
I Probably easier?

BAL I Can be generated from Esterel
I Comparison to KASM might be interesting

SHIM I Designed for Scheduling
I Not widly spread (yet?)

Claus Traulsen The Kiel Reactive Processor Slide 12



Reactive Processing
Instruction Set

The KReP

Candidates
Scade

A Survey on Possible Languages (Mainstream)

Simulink/Stateflow I Widely used
I Semantics complicated (and changing)
I Unclear how to implement

UML Stacharts I Clearly wide spread
I Not well defined
I Not deterministic
I Hard to implement efficiently

Real Time Java I Clearly wide spread
I Real-Time is only an “add-on”
I Concurrency is not deterministic

Claus Traulsen The Kiel Reactive Processor Slide 13



Reactive Processing
Instruction Set

The KReP

Candidates
Scade

A Survey on Possible Languages (Lustre like)

Lustre I Mainly concurrent equations
I Precise and simple semantics
I Compilation is quite efficient
I Might get benefit from parallel execution

(Multicore)

Scade I Adds automata to Lustre
I Special hardware might be useful for

I Deep hierarchy of automata
I Parallelism

Claus Traulsen The Kiel Reactive Processor Slide 14



Reactive Processing
Instruction Set

The KReP

Candidates
Scade

Which one to choose?

So far, our candidate is Scade because . . .

I clear and simple semantics

I mixing of dataflow and automata
(introduced in Lucid Synchrone by Pouzet)

I import from Simulink/Stateflow (SystemC/TLM, AADL)
I easier than Esterel

I no schizophrenia
I simple causality analysis
I preemption more restricted

But there are some drawbacks:

I Not too widely used

I No open tool, no “Scade community”

Claus Traulsen The Kiel Reactive Processor Slide 15



Reactive Processing
Instruction Set

The KReP

Candidates
Scade

Code Generation

Software:

I Efficient compilation to C code

I Automata are first transformed to
dataflow

I Makes code lengthy
and hard to read

Hardware:

I Can generate hardware
(just as for Lustre)

I But not currently done by the
SCADE tool

graphical Scade

Textual Scade

Simplified

C code

Claus Traulsen The Kiel Reactive Processor Slide 16



Reactive Processing
Instruction Set

The KReP

Basic Ideas
Example Execution
Outlook

Outline

Reactive Processing
General Idea
The Kiel Esterel Processor (KEP)

Instruction Set
Candidates
Scade

The KReP
Basic Ideas
Example Execution
Outlook

Claus Traulsen The Kiel Reactive Processor Slide 17



Reactive Processing
Instruction Set

The KReP

Basic Ideas
Example Execution
Outlook

Aims of the KReP

I Faster than software
I Precise timing

I Stall when too fast
I Balance workload (WCET not ACET)
I Need very good WCET analysis
I Be precise and fast!

I Parallel Execution

I Support for automata

Claus Traulsen The Kiel Reactive Processor Slide 18



Reactive Processing
Instruction Set

The KReP

Basic Ideas
Example Execution
Outlook

Overview of the Architecture

Mem

Interface

Watchers

MemControl
Controller

P2

P1

P0

Processors: I simple ISA +
SYNC

I each has its own
ROM

Watcher: to detect preemption

Interface: I sample inputs
I buffer

outputs

Controller: I load program
I control bus

Claus Traulsen The Kiel Reactive Processor Slide 19



Reactive Processing
Instruction Set

The KReP

Basic Ideas
Example Execution
Outlook

A Simple Program

Execute on two cores:

P1 L1 = I1 + 2

P2 L2 = L1 ∗ I1

Claus Traulsen The Kiel Reactive Processor Slide 20



Reactive Processing
Instruction Set

The KReP

Basic Ideas
Example Execution
Outlook

Parallel Execution: Step 01234

Input

I1: 0 1 2 1 0

P1

I1: - 0 1 2 1
L1: - 2 3 4 3

P2

I1: - 0 1 2 1
L1: - - 2 3 4
L2: - - 0 3 8

Output

L1: - - 2 3 4
L2: - - - 0 3
O1: - - - 2 3
O2: - - - 0 3

Claus Traulsen The Kiel Reactive Processor Slide 21



Reactive Processing
Instruction Set

The KReP

Basic Ideas
Example Execution
Outlook

Parallel Execution: Wrap-Up

Similar to distribution of Lustre programs

I New hardware for synchronization

I Still have a global clock.

Can as well be seen as multicore execution:

I Do we really need new hardware . . .

I . . . or can we use COTS multicore and some SW instead?

Claus Traulsen The Kiel Reactive Processor Slide 22



Reactive Processing
Instruction Set

The KReP

Basic Ideas
Example Execution
Outlook

Dealing with Automata

1. Compile to dataflow

+ Can use existing tools
- Lengthy code
- Code for transitions is executed each tick

2. Special instructions for automata

+ Better performance
+ More information for WCRT analysis
- Unclear how to preempt
- Have to deal with concurrency inside atomata

Claus Traulsen The Kiel Reactive Processor Slide 23



Reactive Processing
Instruction Set

The KReP

Basic Ideas
Example Execution
Outlook

Execution of automata

Execution of an automaton (from the Scade Language Primer):

1. Determine the selected state

2. If the state has outgoing transitions, evaluate all the guards of the
strong transitions and inspect them

3. Determine the active state

4. Compute actions in the active state

5. If no strong transition has fired, evaluate and inspect all the guards
of the weak transitions

Could directly implement this algorithm,
but have to traverse complete hierarchy in each step.

Claus Traulsen The Kiel Reactive Processor Slide 24



Reactive Processing
Instruction Set

The KReP

Basic Ideas
Example Execution
Outlook

Automata and Watcher

Idea: Similar to the KEP

I Watcher unit checks whether a transition is triggered

I Watcher is initialized when state is entered

I Watcher gives new PC
I But multicore: More like the Emperor

1. Each processor has one watcher (no parallelism/easy)
2. One watcher for multiple processors

SYNC instruction asks watcher unit at begin/end of each tick

Advantage of Scade: Preemption is more constrained than in
Esterel

Claus Traulsen The Kiel Reactive Processor Slide 25



Reactive Processing
Instruction Set

The KReP

Basic Ideas
Example Execution
Outlook

Related Work

Processors:

I KEP by Li

I Emperor/STARPro by Roop et al.

I JOP (java optimized processor) by Schoeberl

I PRET (Precision timed machine) by Lee and Edwards

Distributed execution of Lustre:

I ocrep/screp by Girault

I Lustre and TTA by Curic et al.

I . . .

Claus Traulsen The Kiel Reactive Processor Slide 26



Reactive Processing
Instruction Set

The KReP

Basic Ideas
Example Execution
Outlook

Conclusion

None yet

Claus Traulsen The Kiel Reactive Processor Slide 27



Reactive Processing
Instruction Set

The KReP

Basic Ideas
Example Execution
Outlook

Current Status

I Hacked a prototype in Esterel v7

I Can execute Counter on three cores

I Object code generated by hand

Claus Traulsen The Kiel Reactive Processor Slide 28



Reactive Processing
Instruction Set

The KReP

Basic Ideas
Example Execution
Outlook

Future Work /Open Questions

1. Integrate Automata
I How to preempt efficiently
I Reassign work to processors

2. Think about the timing
I Precise WCRT
I Timing guarantees in the ISA

3. Automatic compilation
I How to balance the workload

Any comments are welcome!

Claus Traulsen The Kiel Reactive Processor Slide 29


	Reactive Processing
	General Idea
	The Kiel Esterel Processor (KEP)

	Instruction Set
	Candidates
	Scade

	The KReP
	Basic Ideas
	Example Execution
	Outlook


