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Parallel Synchronous Programming

Parallel Synchronous Programming
Synchronous programming has many advantages:

I Determinism
I Reactive behaviour
I Relatively simple programming model

But even embedded realtime systems today are actually
distributed

Consider fly by wire, . . ..

⇒ We really want to keep synchronicity and ”simply” make it
distributed.
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Esterel

Short overview of Esterel
Clock tick A clock tick divides time into a sequences of instants.
Signals

I Signals can be present or absent
I Within a single instant: Signals cannot be disabled

Control Flow Model
I Control flows through program with each instant

Transitions that are enabled through signal state

Deterministic

Semantic calculus for provable correctness
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Constructive Semantics on the fly

An Esterel program in the constructive calculus consists of a set of
transitions T :

Transitions
Transition: Guards + Emissions

Grammar: (<G>?(, <G>?)∗)(! <E> (, <E>)∗)?
Example: a+, b−!c

G = signal+? if signal in current round
G = signal−? if not signal in current round
G = pre(signal)+? if signal in last round
G = pre(signal)−? if not signal in last round
E = !signal emit signal.
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Constructive Semantics on the fly
1 input+? pre(d0)−? d0
2 input−? pre(d0)+? !d0
3 input+? pre(d0)+? !c0
4 c0+? pre(d1)−? !d1
5 c0−? pre(d1)+? !d1
6 c0+? pre(d1)+? !c1
7 c1+? pre(d2)−? !d2
8 c1−? pre(d2)+? !d2
9 c1+? pre(d2)+? !c3

Start with
Must = {input}
Check Guards

Green Present
Red Absent

Black Undecided

Must The set of signals that must be present

Cannot The set of signals that cannot be present

Fixed point point iteration

Minimal (w.r.t. number of present signals) fixed point
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Start with
Must = {input}
Check Guards

Green Present
Red Absent

Black Undecided

Undecided Not all guard signals surely absent/present

Decided All guard signals surely absent/present

Enabled All guard signals match definition

Disabled At least one guard signal does not match definition
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Constructive Semantics on the fly
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What about Transitions 4 and 7?

c0 cannot be emitted ! → c0 ∈ Cannot

Transition 4 is disabled

c1 cannot be emitted ! → c1 ∈ Cannot

Transition 7 is disabled
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Distributed Synchronous Programming

Problem
Calculation methods are centralised.

But even the binary counter is actually already a parallel system:
Signal transmission delay

Distributed calculation
Multiple approaches: Girault, Berry, Boussinot

Most approaches: Distribute code according to some ruleset

Problem : Non-constructiveness is hard to detect at runtime.
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Distributed Constructive Semantics

Basic architecture
Rulesets are distributed to nodes of a transition system:
Ti ⊆ T

⋃
i

Ti = T

Only local information is available

Goal
Same behaviour as in the centralised case

Idea
Must-Cannot is distributive
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Algorithm draft

Algorithm draft
Step Calculate Must/Cannot locally.

Broadcast-convergecast Must-Cannot-Sets

New must set is union of all Must sets

New cannot set is intersection of all Cannot sets

Term A round ends, if there are no changes any more
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Distributed Calculation

A (input) ()

B () ()

Distribute single digit only

TA = { input+,pre(d0)-!d0 }
TB = { input-,pre(d0)+!d0,

input+,pre(d0)+!c0 }
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Distributed Calculation
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Distributed Calculation

A (input , d0, c0) ()

B (input , d0, c0) ()

Combine

Distribute single digit only

TA = { input+,pre(d0)-!d0 }
TB = { input-,pre(d0)+!d0,

input+,pre(d0)+!c0 }
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Distributed Calculation Algorithm

Distributed Calculation Algorithm

∀iE i
k ← 0

∀iE i
k+1 ← Must(Ti , Ek )+ ∪ Cannot(Ti , Ek )− ∪ Ek

Broadcast/convergecast E i
k+1

Combine information
Ek+1 = (

⋃
i

Must(Ti , Ek ))+ ∪ (
⋂
i

Cannot(Ti , Ek ))− ∪ Ek

Repeat until for some n + 1: En+1 = En
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Properties of the simple algorithm

Properties
Good Arbitrary distribution of transition set possible

Good Provable same behaviour as centralised version

Bad M = O(|S|n2) T = O(|S|n)

Bad Waits for the slowest node, even if decision does not
depend on that node.
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Improvements – Early Local Termination

Barrier
The broadcast-convergecast is a simple implementation of a BSP
barrier.

This is strong enough for our synchronisation needs

But can we do with something weaker?

Local Early Termination
If a node is decided (all local transitions decided)

⇒ Transmit a marker on outbound channels

⇒ Stop processing for the decided node

If a marker is received on a channel:

⇒ Ignore that channel for the current round
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Improvements (continued)

Non-Fully Connected Graphs
Some channels never carry useful information

If a node only ever emits messages that are not useful to the other
endpoint

Those channels can be left out
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Improvements (continued 2)

Sequential composition
p; q

Require p to be decided, before evaluating q

Transition p depends on another transition q

Introduce decision signals

Emit decision signal when a transition is decided

Enable transition only if decision signal of all its preconditions are
available
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Conclusion

Distributed Esterel
A simple distribution algorithm exists

O(n2) unfortunately

We can make some improvements

Distributing circuits is more efficient

Implementation
Java is not so good for this

Communication system works well

Debugging is very hard

Peter Wullinger (University of Bamberg) Distributed Esterel November 30th, 2007 16 / 23



Questions?
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µ-steps

How is the output signal set calculated?
Procedure: Fixed point iteration.

Calculate a converging sequence of signal sets

Must and Cannot combined: Environment E

e.g. Must = {a}, Cannot = {b} → E = {a+, b−}
Sequence of environments E0, E1, . . . , E∞
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Esterel µ-Steps (continued 1)

Step Sequence
Step For every transition t ∈ T , calculate must(t , Ek ).

For every transition t , calculate cannot(t , Ek ).

Must(T , Ek ) is the union of all must(t , Ek )

Cannot(T , Ek ) is the intersection of all cannot(t , Ek )

Set Ek+1 to Ek plus all signals in the must cannot sets marked
with + and − accordingly:

Ek+1 = must(T , Ek )+ ∪ Cannot(T , Ek )− ∪ Ek

Repeat until there are no more changes.
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Esterel µ-Steps (continued 2)

must()

t = a+?(u) must(t , Ek ) =

{
must(u, Ek ) if a+ ∈ Ek

∅ otherwise

t = a−?(u) must(t , Ek ) =

{
must(u, Ek ) if a− ∈ Ek

∅ otherwise
t =!s must(t , Ek ) = s

Peter Wullinger (University of Bamberg) Distributed Esterel November 30th, 2007 20 / 23



Esterel µ-Steps (continued 3)

cannot()

t = a+?(u) cannot(t , Ek ) =

{
S if a− ∈ Ek

cannot(u, Ek ) otherwise

t = a−?(u) cannot(t , Ek ),=

{
S if a+ ∈ Ek

S\cannot(t , Ek ) otherwise
t =!s cannot(t , Ek ) = S\{s}
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Esterel µ-Steps (continued 4)

Fixed Point Iteration
Must and Cannot iterations converge

The resulting sets are a canonical fixed point with regard to
number of active signals.

The fixed point in general may not be unique.

Example:

c-(a+?(!b))

Under the environment c+ there are two fixed points points
{c+, a+}, {c+, a−}.
Only the last fixed point is canonical.
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Esterel µ-Steps (continued 5)

Non-Constructive Programs
We said Must and Cannot converge

This is not true ...

... and even worse: the result of convergence may not be
consistent

Ex a-!b
b+!a

Analysis says: Must∞ = {a, b}
It also says: Cannot∞ = {a, b}.
This cannot be right! Such programs are called non-constructive.

It happens when there is a non-resolvable cycle.
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