
Distributed Esterel

A Direct Constructive Approach

Peter Wullinger

University of Bamberg

November 30th 2007

Peter Wullinger (University of Bamberg) Distributed Esterel November 30th, 2007 1 / 23

Outline

1 Esterel

2 Distributing Esterel

3 Conclusion

Peter Wullinger (University of Bamberg) Distributed Esterel November 30th, 2007 2 / 23

Parallel Synchronous Programming

Parallel Synchronous Programming
Synchronous programming has many advantages:

I Determinism
I Reactive behaviour
I Relatively simple programming model

But even embedded realtime systems today are actually
distributed

Consider fly by wire,

⇒ We really want to keep synchronicity and ”simply” make it
distributed.

Peter Wullinger (University of Bamberg) Distributed Esterel November 30th, 2007 3 / 23

Esterel

Short overview of Esterel
Clock tick A clock tick divides time into a sequences of instants.
Signals

I Signals can be present or absent
I Within a single instant: Signals cannot be disabled

Control Flow Model
I Control flows through program with each instant

Transitions that are enabled through signal state

Deterministic

Semantic calculus for provable correctness

Peter Wullinger (University of Bamberg) Distributed Esterel November 30th, 2007 4 / 23

Constructive Semantics on the fly

An Esterel program in the constructive calculus consists of a set of
transitions T :

Transitions
Transition: Guards + Emissions

Grammar: (<G>?(, <G>?)∗)(! <E> (, <E>)∗)?
Example: a+, b−!c

G = signal+? if signal in current round
G = signal−? if not signal in current round
G = pre(signal)+? if signal in last round
G = pre(signal)−? if not signal in last round
E = !signal emit signal.

Peter Wullinger (University of Bamberg) Distributed Esterel November 30th, 2007 5 / 23

Constructive Semantics on the fly
1 input+? pre(d0)−? d0
2 input−? pre(d0)+? !d0
3 input+? pre(d0)+? !c0
4 c0+? pre(d1)−? !d1
5 c0−? pre(d1)+? !d1
6 c0+? pre(d1)+? !c1
7 c1+? pre(d2)−? !d2
8 c1−? pre(d2)+? !d2
9 c1+? pre(d2)+? !c3

Start with
Must = {input}
Check Guards

Green Present
Red Absent

Black Undecided

Must The set of signals that must be present

Cannot The set of signals that cannot be present

Fixed point point iteration

Minimal (w.r.t. number of present signals) fixed point

Peter Wullinger (University of Bamberg) Distributed Esterel November 30th, 2007 6 / 23

Constructive Semantics on the fly

1 input+? pre(d0)−? d0
2 input−? pre(d0)+? !d0
3 input+? pre(d0)+? !c0
4 c0+? pre(d1)−? !d1
5 c0−? pre(d1)+? !d1
6 c0+? pre(d1)+? !c1
7 c1+? pre(d2)−? !d2
8 c1−? pre(d2)+? !d2
9 c1+? pre(d2)+? !c3

Start with
Must = {input}

Check Guards
Green Present

Red Absent
Black Undecided

Peter Wullinger (University of Bamberg) Distributed Esterel November 30th, 2007 6 / 23

Constructive Semantics on the fly

1 input+? pre(d0)−? d0
2 input−? pre(d0)+? !d0
3 input+? pre(d0)+? !c0
4 c0+? pre(d1)−? !d1
5 c0−? pre(d1)+? !d1
6 c0+? pre(d1)+? !c1
7 c1+? pre(d2)−? !d2
8 c1−? pre(d2)+? !d2
9 c1+? pre(d2)+? !c3

Start with
Must = {input}
Check Guards

Green Present
Red Absent

Black Undecided

Peter Wullinger (University of Bamberg) Distributed Esterel November 30th, 2007 6 / 23

Constructive Semantics on the fly

1 input+? pre(d0)−? d0
2 input−? pre(d0)+? !d0
3 input+? pre(d0)+? !c0
4 c0+? pre(d1)−? !d1
5 c0−? pre(d1)+? !d1
6 c0+? pre(d1)+? !c1
7 c1+? pre(d2)−? !d2
8 c1−? pre(d2)+? !d2
9 c1+? pre(d2)+? !c3

Start with
Must = {input}
Check Guards

Green Present
Red Absent

Black Undecided

Undecided Not all guard signals surely absent/present

Decided All guard signals surely absent/present

Enabled All guard signals match definition

Disabled At least one guard signal does not match definition

Peter Wullinger (University of Bamberg) Distributed Esterel November 30th, 2007 6 / 23

Constructive Semantics on the fly

1 input+? pre(d0)−? d0
2 input−? pre(d0)+? !d0
3 input+? pre(d0)+? !c0
4 c0+? pre(d1)−? !d1
5 c0−? pre(d1)+? !d1
6 c0+? pre(d1)+? !c1
7 c1+? pre(d2)−? !d2
8 c1−? pre(d2)+? !d2
9 c1+? pre(d2)+? !c3

Transition 1 is enabled

d0 must be emitted.

d0 ∈ Must

Transitions 2, 3, 5, 6, 8,
9 are disabled

Peter Wullinger (University of Bamberg) Distributed Esterel November 30th, 2007 6 / 23

Constructive Semantics on the fly

1 input+? pre(d0)−? d0
2 input−? pre(d0)+? !d0
3 input+? pre(d0)+? !c0
4 c0+? pre(d1)−? !d1
5 c0−? pre(d1)+? !d1
6 c0+? pre(d1)+? !c1
7 c1+? pre(d2)−? !d2
8 c1−? pre(d2)+? !d2
9 c1+? pre(d2)+? !c3

Transition 1 is enabled

d0 must be emitted.

d0 ∈ Must

Transitions 2, 3, 5, 6, 8,
9 are disabled

Peter Wullinger (University of Bamberg) Distributed Esterel November 30th, 2007 6 / 23

Constructive Semantics on the fly
1 input+? pre(d0)−? d0
2 input−? pre(d0)+? !d0
3 input+? pre(d0)+? !c0
4 c0+? pre(d1)−? !d1
5 c0−? pre(d1)+? !d1
6 c0+? pre(d1)+? !c1
7 c1+? pre(d2)−? !d2
8 c1−? pre(d2)+? !d2
9 c1+? pre(d2)+? !c3

Transition 1 is enabled

d0 must be emitted.

d0 ∈ Must

Transitions 2, 3, 5, 6, 8,
9 are disabled

What about Transitions 4 and 7?

c0 cannot be emitted ! → c0 ∈ Cannot

Transition 4 is disabled

c1 cannot be emitted ! → c1 ∈ Cannot

Transition 7 is disabled

Peter Wullinger (University of Bamberg) Distributed Esterel November 30th, 2007 6 / 23

Constructive Semantics on the fly
1 input+? pre(d0)−? d0
2 input−? pre(d0)+? !d0
3 input+? pre(d0)+? !c0
4 c0+? pre(d1)−? !d1
5 c0−? pre(d1)+? !d1
6 c0+? pre(d1)+? !c1
7 c1+? pre(d2)−? !d2
8 c1−? pre(d2)+? !d2
9 c1+? pre(d2)+? !c3

Transition 1 is enabled

d0 must be emitted.

d0 ∈ Must

Transitions 2, 3, 5, 6, 8,
9 are disabled

What about Transitions 4 and 7?

c0 cannot be emitted ! → c0 ∈ Cannot

Transition 4 is disabled

c1 cannot be emitted ! → c1 ∈ Cannot

Transition 7 is disabled

Peter Wullinger (University of Bamberg) Distributed Esterel November 30th, 2007 6 / 23

Constructive Semantics on the fly
1 input+? pre(d0)−? d0
2 input−? pre(d0)+? !d0
3 input+? pre(d0)+? !c0
4 c0+? pre(d1)−? !d1
5 c0−? pre(d1)+? !d1
6 c0+? pre(d1)+? !c1
7 c1+? pre(d2)−? !d2
8 c1−? pre(d2)+? !d2
9 c1+? pre(d2)+? !c3

Transition 1 is enabled

d0 must be emitted.

d0 ∈ Must

Transitions 2, 3, 5, 6, 8,
9 are disabled

What about Transitions 4 and 7?

c0 cannot be emitted ! → c0 ∈ Cannot

Transition 4 is disabled

c1 cannot be emitted ! → c1 ∈ Cannot

Transition 7 is disabled

Peter Wullinger (University of Bamberg) Distributed Esterel November 30th, 2007 6 / 23

Distributed Synchronous Programming

Problem
Calculation methods are centralised.

But even the binary counter is actually already a parallel system:
Signal transmission delay

Distributed calculation
Multiple approaches: Girault, Berry, Boussinot

Most approaches: Distribute code according to some ruleset

Problem : Non-constructiveness is hard to detect at runtime.

Peter Wullinger (University of Bamberg) Distributed Esterel November 30th, 2007 7 / 23

Distributed Constructive Semantics

Basic architecture
Rulesets are distributed to nodes of a transition system:
Ti ⊆ T

⋃
i

Ti = T

Only local information is available

Goal
Same behaviour as in the centralised case

Idea
Must-Cannot is distributive

Peter Wullinger (University of Bamberg) Distributed Esterel November 30th, 2007 8 / 23

Algorithm draft

Algorithm draft
Step Calculate Must/Cannot locally.

Broadcast-convergecast Must-Cannot-Sets

New must set is union of all Must sets

New cannot set is intersection of all Cannot sets

Term A round ends, if there are no changes any more

Peter Wullinger (University of Bamberg) Distributed Esterel November 30th, 2007 9 / 23

Distributed Calculation

A (input) ()

B () ()

Distribute single digit only

TA = { input+,pre(d0)-!d0 }
TB = { input-,pre(d0)+!d0,

input+,pre(d0)+!c0 }

Peter Wullinger (University of Bamberg) Distributed Esterel November 30th, 2007 10 / 23

Distributed Calculation

A (input , d0, c0) ()

B (input , d0, c0) ()

Distribute single digit only

TA = { input+,pre(d0)-!d0 }
TB = { input-,pre(d0)+!d0,

input+,pre(d0)+!c0 }

Peter Wullinger (University of Bamberg) Distributed Esterel November 30th, 2007 10 / 23

Distributed Calculation

A (input , d0, c0)
EA

%%LLLLLLLLLLL
()

B (input , d0, c0) ()

Distribute single digit only

TA = { input+,pre(d0)-!d0 }
TB = { input-,pre(d0)+!d0,

input+,pre(d0)+!c0 }

Peter Wullinger (University of Bamberg) Distributed Esterel November 30th, 2007 10 / 23

Distributed Calculation

A (input , d0, c0) ()

B (input , d0, c0)

EB

66llllllllllllllll
(input , d0, c0)

Distribute single digit only

TA = { input+,pre(d0)-!d0 }
TB = { input-,pre(d0)+!d0,

input+,pre(d0)+!c0 }

Peter Wullinger (University of Bamberg) Distributed Esterel November 30th, 2007 10 / 23

Distributed Calculation

A (input , d0, c0) (input , d0, c0)

B (input , d0, c0) (input , d0, c0)

Distribute single digit only

TA = { input+,pre(d0)-!d0 }
TB = { input-,pre(d0)+!d0,

input+,pre(d0)+!c0 }

Peter Wullinger (University of Bamberg) Distributed Esterel November 30th, 2007 10 / 23

Distributed Calculation

A (input , d0, c0) ()

B (input , d0, c0) ()

Combine

Distribute single digit only

TA = { input+,pre(d0)-!d0 }
TB = { input-,pre(d0)+!d0,

input+,pre(d0)+!c0 }

Peter Wullinger (University of Bamberg) Distributed Esterel November 30th, 2007 10 / 23

Distributed Calculation Algorithm

Distributed Calculation Algorithm

∀iE i
k ← 0

∀iE i
k+1 ← Must(Ti , Ek)+ ∪ Cannot(Ti , Ek)− ∪ Ek

Broadcast/convergecast E i
k+1

Combine information
Ek+1 = (

⋃
i

Must(Ti , Ek))+ ∪ (
⋂
i

Cannot(Ti , Ek))− ∪ Ek

Repeat until for some n + 1: En+1 = En

Peter Wullinger (University of Bamberg) Distributed Esterel November 30th, 2007 11 / 23

Properties of the simple algorithm

Properties
Good Arbitrary distribution of transition set possible

Good Provable same behaviour as centralised version

Bad M = O(|S|n2) T = O(|S|n)

Bad Waits for the slowest node, even if decision does not
depend on that node.

Peter Wullinger (University of Bamberg) Distributed Esterel November 30th, 2007 12 / 23

Improvements – Early Local Termination

Barrier
The broadcast-convergecast is a simple implementation of a BSP
barrier.

This is strong enough for our synchronisation needs

But can we do with something weaker?

Local Early Termination
If a node is decided (all local transitions decided)

⇒ Transmit a marker on outbound channels

⇒ Stop processing for the decided node

If a marker is received on a channel:

⇒ Ignore that channel for the current round

Peter Wullinger (University of Bamberg) Distributed Esterel November 30th, 2007 13 / 23

Improvements (continued)

Non-Fully Connected Graphs
Some channels never carry useful information

If a node only ever emits messages that are not useful to the other
endpoint

Those channels can be left out

Peter Wullinger (University of Bamberg) Distributed Esterel November 30th, 2007 14 / 23

Improvements (continued 2)

Sequential composition
p; q

Require p to be decided, before evaluating q

Transition p depends on another transition q

Introduce decision signals

Emit decision signal when a transition is decided

Enable transition only if decision signal of all its preconditions are
available

Peter Wullinger (University of Bamberg) Distributed Esterel November 30th, 2007 15 / 23

Conclusion

Distributed Esterel
A simple distribution algorithm exists

O(n2) unfortunately

We can make some improvements

Distributing circuits is more efficient

Implementation
Java is not so good for this

Communication system works well

Debugging is very hard

Peter Wullinger (University of Bamberg) Distributed Esterel November 30th, 2007 16 / 23

Questions?

Peter Wullinger (University of Bamberg) Distributed Esterel November 30th, 2007 17 / 23

µ-steps

How is the output signal set calculated?
Procedure: Fixed point iteration.

Calculate a converging sequence of signal sets

Must and Cannot combined: Environment E

e.g. Must = {a}, Cannot = {b} → E = {a+, b−}
Sequence of environments E0, E1, . . . , E∞

Peter Wullinger (University of Bamberg) Distributed Esterel November 30th, 2007 18 / 23

Esterel µ-Steps (continued 1)

Step Sequence
Step For every transition t ∈ T , calculate must(t , Ek).

For every transition t , calculate cannot(t , Ek).

Must(T , Ek) is the union of all must(t , Ek)

Cannot(T , Ek) is the intersection of all cannot(t , Ek)

Set Ek+1 to Ek plus all signals in the must cannot sets marked
with + and − accordingly:

Ek+1 = must(T , Ek)+ ∪ Cannot(T , Ek)− ∪ Ek

Repeat until there are no more changes.

Peter Wullinger (University of Bamberg) Distributed Esterel November 30th, 2007 19 / 23

Esterel µ-Steps (continued 1)

Step Sequence
Step For every transition t ∈ T , calculate must(t , Ek).

For every transition t , calculate cannot(t , Ek).

Must(T , Ek) is the union of all must(t , Ek)

Cannot(T , Ek) is the intersection of all cannot(t , Ek)

Set Ek+1 to Ek plus all signals in the must cannot sets marked
with + and − accordingly:

Ek+1 = must(T , Ek)+ ∪ Cannot(T , Ek)− ∪ Ek

Repeat until there are no more changes.

Peter Wullinger (University of Bamberg) Distributed Esterel November 30th, 2007 19 / 23

Esterel µ-Steps (continued 1)

Step Sequence
Step For every transition t ∈ T , calculate must(t , Ek).

For every transition t , calculate cannot(t , Ek).

Must(T , Ek) is the union of all must(t , Ek)

Cannot(T , Ek) is the intersection of all cannot(t , Ek)

Set Ek+1 to Ek plus all signals in the must cannot sets marked
with + and − accordingly:

Ek+1 = must(T , Ek)+ ∪ Cannot(T , Ek)− ∪ Ek

Repeat until there are no more changes.

Peter Wullinger (University of Bamberg) Distributed Esterel November 30th, 2007 19 / 23

Esterel µ-Steps (continued 2)

must()

t = a+?(u) must(t , Ek) =

{
must(u, Ek) if a+ ∈ Ek

∅ otherwise

t = a−?(u) must(t , Ek) =

{
must(u, Ek) if a− ∈ Ek

∅ otherwise
t =!s must(t , Ek) = s

Peter Wullinger (University of Bamberg) Distributed Esterel November 30th, 2007 20 / 23

Esterel µ-Steps (continued 3)

cannot()

t = a+?(u) cannot(t , Ek) =

{
S if a− ∈ Ek

cannot(u, Ek) otherwise

t = a−?(u) cannot(t , Ek),=

{
S if a+ ∈ Ek

S\cannot(t , Ek) otherwise
t =!s cannot(t , Ek) = S\{s}

Peter Wullinger (University of Bamberg) Distributed Esterel November 30th, 2007 21 / 23

Esterel µ-Steps (continued 4)

Fixed Point Iteration
Must and Cannot iterations converge

The resulting sets are a canonical fixed point with regard to
number of active signals.

The fixed point in general may not be unique.

Example:

c-(a+?(!b))

Under the environment c+ there are two fixed points points
{c+, a+}, {c+, a−}.
Only the last fixed point is canonical.

Peter Wullinger (University of Bamberg) Distributed Esterel November 30th, 2007 22 / 23

Esterel µ-Steps (continued 5)

Non-Constructive Programs
We said Must and Cannot converge

This is not true ...

... and even worse: the result of convergence may not be
consistent

Ex a-!b
b+!a

Analysis says: Must∞ = {a, b}
It also says: Cannot∞ = {a, b}.
This cannot be right! Such programs are called non-constructive.

It happens when there is a non-resolvable cycle.

Peter Wullinger (University of Bamberg) Distributed Esterel November 30th, 2007 23 / 23

	Esterel
	Distributing Esterel
	Conclusion
	-steps

