Distributed Esterel

A Direct Constructive Approach

Peter Wullinger

University of Bamberg

November 30th 2007

Outline

Parallel Synchronous Programming

Parallel Synchronous Programming

- Synchronous programming has many advantages:
 - Determinism
 - Reactive behaviour
 - Relatively simple programming model
- But even embedded realtime systems today are actually distributed
- Consider fly by wire,
- ⇒ We really want to keep synchronicity and "simply" make it distributed.

Esterel

Short overview of Esterel

- Clock tick A clock tick divides time into a sequences of instants.
- Signals
 - Signals can be present or absent
 - Within a single instant: Signals cannot be disabled
- Control Flow Model
 - Control flows through program with each instant
- Transitions that are enabled through signal state
- Deterministic
- Semantic calculus for provable correctness

An Esterel program in the constructive calculus consists of a set of **transitions** T:

Transitions

- Transition: Guards + Emissions
- Grammar: (<G>?(,<G>?)*)(! <E>(,<E>)*)?
- Example: *a*+, *b*-!*c*
- G = signal + ? if signal in current round
- G = signal -? if **not** signal in current round
- G = pre(signal) + ? if signal in last round
- G = pre(signal) -? if **not** signal in last round E = !signal emit signal.

- 1 input+? pre(d0)-? d0
- 2 input-? pre(d0)+? !d0
- 3 input+? pre(d0)+? !c0
- 4 c0+? pre(d1)-? !d1
- 5 c0-? pre(d1)+? !d1
- 6 c0+? pre(d1)+? !c1
- 7 c1+? pre(d2)-? !d2
- 8 c1-? pre(d2)+? !d2
- 9 c1+? pre(d2)+? !c3

Must The set of signals that must be present *Cannot* The set of signals that cannot be present

Fixed point point iteration

Minimal (w.r.t. number of present signals) fixed point

- 1 input+? pre(d0)-? d0
- 2 input-? pre(d0)+? !d0
- 3 input+? pre(d0)+? !c0
- 4 c0+? pre(d1)-? !d1
- 5 c0-? pre(d1)+? !d1
- 6 c0+? pre(d1)+? !c1
- 7 c1+? pre(d2)-? !d2
- 8 c1-? pre(d2)+? !d2
- 9 c1+? pre(d2)+? !c3

Start with
 Must = {input}

- 1 input+? pre(d0)-? d0
- 2 input-? pre(d0)+? !d0
- 3 input+? pre(d0)+? !c0
- 4 c0+? pre(d1)-? !d1
- 5 c0-? pre(d1)+? !d1
- 6 c0+? pre(d1)+? !c1
- 7 c1+? pre(d2)-? !d2
- 8 c1-? pre(d2)+? !d2
- 9 c1+? pre(d2)+? !c3

- Start with
 Must = {input}
- Check Guards

Green Present Red Absent Black Undecided

- 1 input+? pre(d0)-? d0
- 2 input-? pre(d0)+? !d0
- 3 input+? pre(d0)+? !c0
- 4 c0+? pre(d1)-? !d1
- 5 c0-? pre(d1)+? !d1
- 6 c0+? pre(d1)+? !c1
- 7 c1+? pre(d2)-? !d2
- 8 c1-? pre(d2)+? !d2
- 9 c1+? pre(d2)+? !c3

- Start with
 Must = {input}
- Check Guards
 - Green Present Red Absent Black Undecided

Undecided Not all guard signals surely absent/present Decided All guard signals surely absent/present Enabled All guard signals match definition Disabled At least one guard signal does not match definition

- 1 input+? pre(d0)-? d0
- 2 input-? pre(d0)+? !d0
- 3 input+? pre(d0)+? !c0
- 4 c0+? pre(d1)-? !d1
- 5 c0-? pre(d1)+? !d1
- 6 c0+? pre(d1)+? !c1
- 7 c1+? pre(d2)-? !d2
- 8 c1-? pre(d2)+? !d2
- 9 c1+? pre(d2)+? !c3

- Transition 1 is enabled
- d0 must be emitted.
- $d0 \in Must$

- 1 input+? pre(d0)-? d0
- 2 input-? pre(d0)+? !d0
- 3 input+? pre(d0)+? !c0
- 4 c0+? pre(d1)-? !d1
- 5 c0-? pre(d1)+?!d1
- 6 c0+? pre(d1)+? !c1
- 7 c1+? pre(d2)-? !d2
- 8 c1-? pre(d2)+? !d2
- 9 c1+? pre(d2)+? !c3

- Transition 1 is enabled
- d0 must be emitted.
- $d0 \in Must$
- Transitions 2, 3, 5, 6, 8, 9 are disabled

- 1 input+? pre(d0)-? d0
- 2 input-? pre(d0)+? !d0
- 3 *input*+? *pre*(*d*0)+? !*c*0
- 4 c0+? pre(d1)-? !d1
- 5 c0-? pre(d1)+? !d1
- 6 c0+? pre(d1)+? !c1
- 7 c1+? pre(d2)-? !d2
- 8 c1-? pre(d2)+? !d2
- 9 c1+? pre(d2)+? !c3
 - What about Transitions 4 and 7?

- Transition 1 is enabled
- d0 must be emitted.
- d0 ∈ Must
- Transitions 2, 3, 5, 6, 8,
 - 9 are disabled

- 1 input+? pre(d0)-? d0
- 2 input-? pre(d0)+? !d0
- 3 *input*+? *pre*(*d*0)+? !*c*0
- 4 c0+? pre(d1)-? !d1
- 5 c0-? pre(d1)+? !d1
- 6 c0+? pre(d1)+? !c1
- 7 c1+? pre(d2)-? !d2
- 8 c1-? pre(d2)+? !d2
- 9 c1+? pre(d2)+? !c3
 - What about Transitions 4 and 7?
 - c0 cannot be emitted! $\rightarrow c0 \in Cannot$
 - Transition 4 is disabled

- Transition 1 is enabled
- d0 must be emitted.
- d0 ∈ Must
- Transitions 2, 3, 5, 6, 8,
 - 9 are disabled

- 1 input+? pre(d0)-? d0
- 2 input-? pre(d0)+? !d0
- 3 *input*+? *pre*(*d*0)+? !*c*0
- 4 c0+? pre(d1)-? !d1
- 5 c0-? pre(d1)+? !d1
- 6 c0+? pre(d1)+? !c1
- 7 c1+? pre(d2)-? !d2
- 8 c1-? pre(d2)+? !d2
- 9 c1+? pre(d2)+? !c3
 - What about Transitions 4 and 7?
 - c0 cannot be emitted! $\rightarrow c0 \in Cannot$
 - Transition 4 is disabled
 - c1 cannot be emitted! \rightarrow c1 \in Cannot
 - Transition 7 is disabled

- Transition 1 is enabled
- d0 must be emitted.
- d0 ∈ Must
- Transitions 2, 3, 5, 6, 8,
 - 9 are disabled

Distributed Synchronous Programming

Problem

- Calculation methods are centralised.
- But even the binary counter is actually already a parallel system: *Signal transmission delay*

Distributed calculation

- Multiple approaches: Girault, Berry, Boussinot
- Most approaches: Distribute code according to some ruleset
- Problem: Non-constructiveness is hard to detect at runtime.

Distributed Constructive Semantics

Basic architecture

• Rulesets are distributed to nodes of a transition system: $T_i \subseteq T$ $\bigcup T_i = T$

Only local information is available

Goal

Same behaviour as in the centralised case

Idea

Must-Cannot is distributive

Algorithm draft

Algorithm draft

Step Calculate Must/Cannot locally.

- Broadcast-convergecast Must-Cannot-Sets
- New must set is union of all Must sets
- New cannot set is intersection of all Cannot sets

Term A round ends, if there are no changes any more

A (input) ()

B () ()

$$T_{A} = \{ input+,pre(d0)-!d0 \} \\ T_{B} = \{ input-,pre(d0)+!d0, \\ input+,pre(d0)+!c0 \}$$

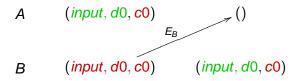
$$A \quad (input, d0, c0) \quad ()$$

$$B \qquad (input, d0, c0) \qquad ()$$

$$T_{A} = \{ input+,pre(d0)-!d0 \} \\ T_{B} = \{ input-,pre(d0)+!d0, \\ input+,pre(d0)+!c0 \}$$

 $A \quad (input, d0, c0) \quad ()$ $B \quad (input, d0, c0) \quad ()$

$$T_{A} = \{ input+,pre(d0)-!d0 \} \\ T_{B} = \{ input-,pre(d0)+!d0, \\ input+,pre(d0)+!c0 \}$$



$$T_{A} = \{ input+,pre(d0)-!d0 \} \\ T_{B} = \{ input-,pre(d0)+!d0, \\ input+,pre(d0)+!c0 \}$$

- $A \qquad (input, d0, c0) \qquad (input, d0, c0)$
- $B \qquad (input, d0, c0) \qquad (input, d0, c0)$

$$T_{A} = \{ input+,pre(d0)-!d0 \} \\ T_{B} = \{ input-,pre(d0)+!d0, \\ input+,pre(d0)+!c0 \}$$

$$A \quad (input, d0, c0) \quad ()$$

B (*input*, d0, c0) () Combine

$$T_{A} = \{ input+,pre(d0)-!d0 \}$$
$$T_{B} = \{ input-,pre(d0)+!d0,$$
input+,pre(d0)+!c0 \}

Distributed Calculation Algorithm

Distributed Calculation Algorithm

- $\forall i E_k^i \leftarrow 0$
- $\forall i E_{k+1}^i \leftarrow Must(T_i, E_k)^+ \cup Cannot(T_i, E_k)^- \cup E_k$
- Broadcast/convergecast Eⁱ_{k+1}
- Combine information $E_{k+1} = (\bigcup_{i} Must(T_i, E_k))^+ \cup (\bigcap_{i} Cannot(T_i, E_k))^- \cup E_k$
- Repeat until for some n + 1: $E_{n+1} = E_n$

Properties of the simple algorithm

Properties

Good Arbitrary distribution of transition set possible

Good Provable same behaviour as centralised version

Bad
$$M = O(|S|n^2) T = O(|S|n)$$

Bad Waits for the slowest node, even if decision does not depend on that node.

Improvements - Early Local Termination

Barrier

- The broadcast-convergecast is a simple implementation of a BSP barrier.
- This is strong enough for our synchronisation needs
- But can we do with something weaker?

Local Early Termination

- If a node is decided (all local transitions decided)
- ⇒ Transmit a marker on outbound channels
- \Rightarrow Stop processing for the decided node
 - If a marker is received on a channel:
- \Rightarrow Ignore that channel for the current round

Improvements (continued)

Non-Fully Connected Graphs

- Some channels never carry useful information
- If a node only ever emits messages that are not useful to the other endpoint
- Those channels can be left out

Improvements (continued 2)

Sequential composition

- p; q
- Require p to be decided, before evaluating q
- Transition p depends on another transition q
- Introduce decision signals
- Emit decision signal when a transition is decided
- Enable transition only if *decision* signal of all its preconditions are available

Conclusion

Distributed Esterel

- A simple distribution algorithm exists
- O(n²) unfortunately
- We can make some improvements
- Distributing circuits is more efficient

Implementation

- Java is not so good for this
- Communication system works well
- Debugging is very hard

Questions?

Sac

μ -steps

How is the output signal set calculated?

Procedure: Fixed point iteration.

- Calculate a converging sequence of signal sets
- Must and Cannot combined: Environment E

e.g.
$$Must = \{a\}, Cannot = \{b\} \rightarrow E = \{a+, b-\}$$

• Sequence of environments $E_0, E_1, \ldots, E_\infty$

Esterel μ -Steps (continued 1)

Step Sequence

- Step For every transition $t \in T$, calculate $must(t, E_k)$.
 - For every transition *t*, calculate $cannot(t, E_k)$.

Esterel μ -Steps (continued 1)

Step Sequence

- Step For every transition $t \in T$, calculate $must(t, E_k)$.
 - For every transition *t*, calculate $cannot(t, E_k)$.
 - $Must(T, E_k)$ is the union of all $must(t, E_k)$
 - Cannot(T, E_k) is the intersection of all cannot(t, E_k)

Esterel μ -Steps (continued 1)

Step Sequence

- Step For every transition $t \in T$, calculate $must(t, E_k)$.
 - For every transition *t*, calculate $cannot(t, E_k)$.
 - $Must(T, E_k)$ is the union of all $must(t, E_k)$
 - Cannot(T, E_k) is the intersection of all cannot(t, E_k)
 - Set *E*_{*k*+1} to *E*_{*k*} plus all signals in the must cannot sets marked with + and accordingly:

$$E_{k+1} = must(T, E_k)^+ \cup Cannot(T, E_k)^- \cup E_k$$

• Repeat until there are no more changes.

Esterel μ -Steps (continued 2)

must()

$$t = a + ?(u) \quad must(t, E_k) = \begin{cases} must(u, E_k) & \text{if } a + \in E_k \\ \emptyset & \text{otherwise} \end{cases}$$
$$t = a - ?(u) \quad must(t, E_k) = \begin{cases} must(u, E_k) & \text{if } a - \in E_k \\ \emptyset & \text{otherwise} \end{cases}$$
$$t = !s \quad must(t, E_k) = s$$

Peter Wullinger (University of Bamberg)

Esterel μ -Steps (continued 3)

cannot()

$$t = a + ?(u) \ cannot(t, E_k) = \begin{cases} S & \text{if } a - \in E_k \\ cannot(u, E_k) & \text{otherwise} \end{cases}$$
$$t = a - ?(u) \ cannot(t, E_k), = \begin{cases} S & \text{if } a + \in E_k \\ S \setminus cannot(t, E_k) & \text{otherwise} \end{cases}$$
$$t = !s \ cannot(t, E_k) = S \setminus \{s\}$$

Peter Wullinger (University of Bamberg)

Esterel μ -Steps (continued 4)

Fixed Point Iteration

- Must and Cannot iterations converge
- The resulting sets are a canonical fixed point with regard to number of active signals.
- The fixed point in general may not be unique.
- Example:

c-(a+?(!b))

- Under the environment *c*+ there are two fixed points points {*c*+, *a*+}, {*c*+, *a*-}.
- Only the last fixed point is canonical.

Esterel μ -Steps (continued 5)

Non-Constructive Programs

- We said Must and Cannot converge
- This is not true ...
- ... and even worse: the result of convergence may not be consistent
- Ex a-!b

b+!a

- Analysis says: $Must_{\infty} = \{a, b\}$
- It also says: $Cannot_{\infty} = \{a, b\}.$
- This cannot be right! Such programs are called non-constructive.
- It happens when there is a non-resolvable cycle.