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Abstract: Efficient and reliable interaction with the environment (reactivity) is a key 

feature for many embedded system applications. Current implementation technologies 

that include standard microprocessors and microcontrollers, or fully customized systems, 

are not ideally suited to such reactive tasks either in terms of their performance 

constraints or in terms of design implementation and programming. We propose a 

microprocessor architecture that has native Esterel-like support for reactivity, flexibility 

of using programs and design styles as used in Esterel programming language for reactive 

embedded system implementation and provides time-predictable behaviors in reaction to 

external events. The new processor, called REFLIX, is built around already existing 

processor core and exploits its flexibility in allowing customization at much higher level 

than usual microprocessor cores. REFLIX shows manifold improvement in speed and 

memory footprint in dominantly reactive applications compared to the traditional 

microprocessors. 
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1 Introduction 

Embedded systems most often have a dedicated microprocessor or a microcontroller that 

executes a non-terminating control program, which controls its environment. The 

environment constitutes of a set of sensors and actuators, which the microprocessor 

controls. The control program repeatedly determines the status of the environment (by 

checking the status of the sensors and actuators) and then reacts based on the current 

status (hence embedded systems are often called reactive systems) [1], [2].   

 

The environment status can be determined either by polling (which checks for the 

presence of certain signals routinely) or by using interrupt mechanism (which is like an 

alert mechanism when certain signals occur in the environment). Polling is also known as 

busy waiting since CPU cycles are wasted while checking for the presence of signals in 

environment. Interrupts avoid busy waiting but have context switching overhead since the 

occurrence of an interrupt requires the execution of specific code (called an interrupt 

service routine) leading to a change in the standard control flow of the program. Hence, 

the context of program execution needs to be saved prior to branching for interrupt 

handling and has to be restored after interrupt handling is completed. Such context-

switching overhead can be considerable in an embedded system where environment 

interaction is a key. Moreover, as interrupt handling is executed concurrently with the 

main control task, there is a danger of inconsistent system behavior due to mishandling of 

common resources (data). Also, different events often have different level of importance 

and priority-based interrupt schemes have to be used.  

 

While context switching is necessary for data dominated tasks, where return to main 

program is important, it is not crucial for many control-dominated tasks as it is illustrated 

further in this paper. Moreover, priority signal handling is done using either software 

means (additional polling through daisy-chaining) or hardware means (using 

programmable peripheral devices or daisy chaining using external hardware) both of 

which are quite inefficient and inelegant ways to handle priorities in control dominated 

tasks. 
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This paper describes a novel processor core, called REFLIX, which is aimed at reactive 

embedded applications. REFLIX provides a primitive set of features and instructions 

suited to reactive systems in addition to a set of standard set of instructions found in 

common microprocessors and generic instructions to control external hardware functional 

units. The proposed approach provides mechanism to avoid busy waiting associated with 

polling, when required, and context switching associated with interrupts for control 

dominated tasks. The environment interaction model of a reactive programming language 

called Esterel [3] inspires this mechanism, but does not follow fully the Esterel 

semantics. The major contributions presented in the paper are the following: 

 

a) Support for reactivity through a set of native instructions is incorporated in 

REFLIX, which are lacking in previous architectures. All instructions, including 

those that look like conventional instructions for polling, perform in the same 

time tick that is equal to 4 machine cycles contributing to both efficiency and 

predictability of program execution. 

b) Support for preemption and priority resolution based on external events using a 

new native instruction called ABORT, which can be nested to achieve priorities 

of external events. This is an extremely important feature for implementation of 

control-dominated real-time tasks.  

c) Reusability of the core for different embedded applications and their variations is 

achieved primarily by change of an application program; hence efficient 

implementation of control-driven software with the ability for compiling new 

Esterel-like specifications to REFLIX instructions directly. In case of need a 

further hardware customization can be achieved using parameterized nature of the 

processor core description. 

 

 The paper is organized as follows. Sections 2 and 3 give an overview of the related work 

and explain the background and motivation of REFLIX design and some of the major 

features that support reactivity. In section 4, we introduce the major REFLIX features 

with the emphasis on those that support reactivity. Section 5 gives a flavor for REFLIX 

programming when using the reactive instructions. In section 6 we describe the REFLIX 
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data path and control unit together with some implementation details. Section 7 gives 

some further performance comparison using a set of application benchmarks. REFLIX is 

first compared to original FLIX core and demonstrates manifold speed-up in dominantly 

reactive tasks. The same benchmarks are used to demonstrate REFLIX’s low memory 

footprint compared to footprint of standard microprocessors. Section 8 presents some 

concluding remarks related to the current implementation and limitations of the current 

design and the scope for future work. 

2 Related Work 

One of the trends in implementation of embedded systems, such as cell phones, medical 

appliances, home appliances, and similar applications, is to rely on application-specific 

processors that better match requirements of those applications than general-purpose 

instruction processors [4]. There are several approaches suggested or used for 

customization of those processors. Some of them rely on using existing architectures, 

such as those from ARM or MIPS [5, 6, 7]. Standard fixed processor cores are connected 

to programmable logic to implement additional instructions and functions. Some of the 

solutions employ parameterized processor cores that are customized at the time of their 

compilation/synthesis for FPGAs, such as Altera NiOS processor [5], or in run-time 

during system operation [8, 9]. Some other processor cores [10,11] provide generic 

mechanisms for new instruction implementation. These instructions are executed in 

functional units external to the processor core and are readily supported by software. A 

further step towards generalization has been proposed in [12], where a number of 

processor “templates” is used to provide a framework for different customization 

strategies. All above processors have general-purpose RISC-type architecture with more 

or less typical instruction sets common to RISC-type processors. None of those 

processors addresses aspects of reactive applications by supporting generic mechanisms 

for reactivity and preemption beyond usual interrupt structures found in conventional 

processors. 
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3 Background and Motivation 

REFLIX processor operation is inspired by Esterel, which is a synchronous reactive 

programming language that provides a neat set of constructs for modeling, verification 

and synthesis of reactive systems. Esterel language has been used in the past for 

specification and verification of processors [13], generation of hardware circuits [14] and 

for rapid system prototyping [15]. The environment of any Esterel program consists of a 

set of sensors and signals, which can be modeled abstractly using constructs available in 

the language. The activation clock of the Esterel program is a predefined event called the 

tick event. During every tick the Esterel kernel samples its environment and performs a 

set of instantaneous reactions based on the values present in its environment during the 

present tick. The main constructs for interacting with the environment are await (which is 

a delay construct), emit (which performs signal emissions to the environment), sustain 

(which sustains a signal forever), abort (which is preemption construct), and trap (which 

is similar to software interrupts). Esterel is also a concurrent language and its model of 

concurrency is known as synchronous broadcast which means that input and the 

corresponding output both occur at the same instant (tick) and also an event generated in 

any concurrent module is instantaneously broadcasted to all other concurrent modules. In 

addition to such constructs for control flow Esterel supports data handling through a 

suitable host language such as C or Java. Data handling can be either performed 

synchronously (consumes no time) by performing procedure calls (which are defined in 

the host language) or asynchronously (takes time) using tasks (which are also defined in 

the host language).  

 

REFLIX is a processor core designed to follow main ideas of Esterel is environment 

interaction model. REFLIX provides a set of native instructions suitable for reactive 

systems in addition to providing standard instructions for data processing. These include 

native facilities for delay, signal emission, priorities, preemption and task execution 

facility using functional units. The main unsupported Esterel feature is concurrency 

(parallel execution), which must be implemented in a similar way as it has been done 

when Esterel is compiled for execution on standard microprocessors. In order to make its 
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implementation easy we used our customizable FLIX core [10,11] as the basis for the 

REFLIX design.  

 

By adopting and supporting Esterel-like model for reactivity on machine instruction 

level, we achieve two major goals:  

 

a) the same processor core can be used to implement different reactive algorithms  

for different applications by changing only programs and not processor hardware 

and  

b) preserve performance predictability by guaranteeing execution times for all 

primitive instructions.  

 

In this way we provide a generic platform for implementation of a large class of 

embedded applications, which would otherwise be implemented either by separately 

synthesized hardware (usually finite state machine - FSM) or by software means that can 

be implemented on standard microprocessors but with many difficulties. 

 

Original FLIX processor supports customization by allowing the designer to add new 

instructions or resources to the datapath by implementing new functional units (FUs). 

This feature is very convenient for designing embedded applications as the core can be 

customized based on the application requirements. In REFLIX, we have extended FLIX 

core by providing native instructions for preemption, priority, delay, suspension and 

signal emission while preserving its flexibility for customization of the data processing 

part. Some of the key features of the FLIX core have been preserved in order to support 

the notion of its local time and “time tick” by executing all native instructions in equal 

time that corresponds to one “system tick”.  

 

A qualitative comparison of different implementation strategies of embedded applications 

and our motivation for REFLIX development are summarized in Table 1. Reactive 

features in embedded systems may be mapped into finite state machines (FSMs) and 

subsequently synthesized as custom logic. Alternatively, a general purpose processor may 
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be used to implement such reactive features using interrupts. The proposed approach is a 

novel intermediate approach that combines the efficiency of the FSMs and the flexibility 

of conventional processor.  

Table 1 Qualitative comparison of embedded application implementations 

 
Implementation 

approach 
 

 
Advantages 

 
Disadvantages  

 
HDLs and hardware 
implementation 

• Reactive behaviors mapped 
onto FSMs 

• Small footprint and cheap 
implementation 

• Supports real parallelism 

• Not suitable for non-reactive 
parts  

• Each application and  
modification requires full 
synthesis  

 
High-Level 
Programming 
Languages 

 

• Good handling of non-
reactive parts 

• Easy for modification 
• High abstraction level 

 

• Large footprint (memory 
requirement) 

• Often requires RT OS and 
appropriate scheduling 

• Sow in reacting to events  
• Difficult to integrate non-

standard interfaces  
• Complex compilation process 
• Complex context switching 

increases overhead 
• Emulates parallelisms by 

serialization of concurrent 
activities  

 
Native Standard 
Microprocessor 
Assembly 
Languages 

 

• Smaller footprint (memory 
requirements) 

• Ease of control of low-level 
details  

• Relatively easy for behavior 
modification 

• Low abstraction level 
• Easier to integrate non-

standard interfaces 
• Faster reaction times 

• Low abstraction level 
• Unsuitable reactive behaviors 

mechanisms 
• Difficult to integrate non-

standard interfaces  
• Emulates parallelisms by 

serialization of concurrent 
activities 

• Often requires real-time 
operating system (RTOS) or 
kernel 

 
REFLIX  

 

• Small footprint 
• Specialized support for 

reactive situations 
• Fast reaction and response 

times 
• Customization at both 

hardware and software level 
• Ease of behavior 

modification 
• Generic support for 

hardware implemented 
functional units  

• Easy to verify behaviors 
• Can support reactive HLLs  

• Low abstraction level for 
data processing 

• Less flexible for algorithm 
modifications than HLLs 

• No support for true 
parallelism  

• Requires RT OS or kernel to 
support concurrency 
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4 REFLIX Core Features 

In this section we introduce the main architectural features of the REFLIX processor and 

describe the main ideas that lead to its design. The current version of REFLIX has 

adopted original FLIX core for its base with removal of the interrupt structure and 

asynchronous event handling altogether. REFLIX preserves FLIX word length (16 bits) 

and instruction execution principles (4 machine cycles make one instruction cycle). Main 

departures and extensions to the original core that directly aim reactive applications are: 

 

• Variable number of single-bit input sensor (Sin) and single-bit output sensor 

(Sout) lines. The number of these lines is a design parameter and can be 

instantiated for each specific application. 

• Introduction of internal timers that generate user programmable timing (TimeOut) 

signals. Number of internal timers is customizable and is represented by a design 

parameter. TimeOut signals can be used for interaction with the environment or 

can be fed back to the REFLIX core itself and used for synchronization purposes. 

• Introduction of ABORT mechanism for preemption, which is activated upon an 

event occurrence. Any piece of code can be wrapped up in the ABORT statement 

(abort body) and immediately abandoned in case that an external event on 

specified sensor input or timeout occurs. Using nested aborts it is possible to 

guarantee maximum one instruction cycle delay in response to a set of external 

events (including the time to resolve event priorities). 

• Introduction of other instructions that support reactivity in the native instruction 

set. 

 

These new features are primarily visible through the REFLIX programming model and its 

instruction set. 

 

REFLIX core’s external (interface) view is presented in Figure 1. In addition to the 

common and above mentioned ports, it also contains three specific ports:  

 

• T, which provides information on the current processor machine cycle. 
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• IRBUS, which provides the access to currently executed instruction operation 

code and can be used by external hardware (e.g. to start operation of an external 

functional unit). 

• EndFU, which provides feedback information on the status of external hardware 

(e.g. functional units) similar to [10]. 

 

 

Figure 1 REFLIX external view 

 

4.1 Native Reactive Instructions 

The original FLIX instruction set is appended with new group of instructions that support 

reactive processing. There are seven basic instructions in the reactive category and they 

are presented in Table 2. Most of REFLIX instructions are only one word long, but some 

of the reactive instructions require two words for immediate operands or address 

information. 

 

 
 
 
 
 
 
 
 
 
 

REFLIX  

Din[15. .0 ] Dout [15. .0]  

A[15. .0]  

S in [15 . .0 ] 

T imeOUT[3 . .0 ]  

Sout[15..0]  

I IRBUS [15 . .0 ] 

R/W  

EndFU[3. .0 ]  

Clk 

T [3 . .0 ] 
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Table 2 REFLIX instructions supporting reactive processing 

Feature Instruction syntax Instructi
on 
Length 
(words) 

Function/Description 

Preemption ABORT signal, address 2 Preemption instruction. ABORT has 
a body up to the instruction whose 
address  is indicated in the instruction 
(called continuation address since 
after preemption program continues 
from this address). signal can be 
either an external one or a TimeOut 
received from internal timer. 
 

Signal 
emission 

EMIT signal 1 
 

The specified signal is set high for one 
instruction cycle 
 

Signal 
sustenance 

SUSTAIN signal  1 Specified signal is set high forever 
(indefinitely)  
 

Signal 
polling 

SAWAIT signal   1 Wait until the specified signal occurs  

Delay TAWAIT delay 2 Immediate delay— wait until specified time 
elapses (wait at least one system tick - time is 
expressed in the number of instruction cycles) 
 

Conditional 
signal 
polling 

CAWAIT signal1, signal2, 
address 

2 Wait until either signal1 or 
signal 2 occurs. If signal1 
occurs then execute instructions 
from the address following this 
instruction, else from specified address. 
 

Signal 
presence 

PRESENT signal, address 2 If signal is present the next instruction is 
fetched from the next consecutive address. 
Otherwise, it is fetched from the specified 
address. 
 

 
Two instructions generate external signals (outputs), which can last one system tick 

(EMIT) or indefinitely (SUSTAIN). The next tree instructions, SAWAIT, TAWAIT and 

CAWAIT, provide waiting mechanism on events on external signals and timeouts 

(generated by internal timers) and are used for synchronization purpose. The duration of 

time to wait is under the explicit program control. PRESENT instruction provides a 

mechanism for conditional execution depending on the presence of the specified signal. 

Finally, ABORT is preemption and priority resolution instruction which is explained in 

detail in the next section.  
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4.2 Semantics and Implementation of Preemption Support 

Native ABORT instruction is introduced to support preemption with priorities. In the 

current REFLIX prototype ABORT instruction can work with up to 16 different external 

input signals and up to four internal timers generated signals. ABORT instructions can be 

nested to support up to four levels of priorities. These numbers are obviously 

implementation dependent and can be changed as the design parameters for the REFLIX 

parameterized core. 

 
An ABORT instruction is active from the instant it is executed until its entire body is 

executed or until an event on the signal occurs that preempts all unexecuted instructions 

within the body. Format of the instruction is as follows: 

 

 

 

 

 

Two different operation codes are used for abort operations, one for an abort on an 

external signal and the other for an abort on a timer. The ABORT instruction is executed 

in two stages with   the support of a dedicated hardware unit called the abort-handling 

block (AHB): 

 

• Abort activation. It is executed immediately after fetching and decoding the 

ABORT instruction, when REFLIX starts monitoring change (activation) of the 

designated signal. Continuation address, from where the program will continue 

execution if preemption happens, is stored into the REFLIX abort handling 

block. 

• Abort termination. Once the designated signal is activated, abort is taken and 

an unconditional jump to the continuation address is executed, or, if the 

continuation address is reached and the designated signal has not been 

activated, the abort is automatically terminated. 

 

OPCODE (10)                 Timer(2)/Signal(4) 
 

Continuation-address (16) 
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The abort handling block (AHB), which is a part of the REFLIX datapath, supports 

nesting and prioritizing of abort statements. The AHB contains active abort signal 

register (AASR) block with 4 registers with a length that equals to the number of input 

sensing signals, which can abort current program execution. Registers are used to store 

the code of the signal line that starts to be monitored for signal activation. Each signal 

line has a unique code generated using a one-hot encoding scheme (only one bit can have 

a value 1). The addresses of the AASR registers, 0 to 3, at the same time represent, in 

ascending order, priorities of signals that are monitored. The first executed ABORT 

instruction always stores the monitored signal code into AASR(0), next nested ABORT 

instruction stores its monitored signal code into AASR(1), and so on. Summary 

information on all currently monitored signals that can abort program sequence is stored 

in joint abort signal register (JASR). Its value is obtained by bit-wise OR-ing values of all 

AASRs: 

 

 JASRi = AASRi(0) + …+ AASRi(3) for i=0, 1, …, 15 

 

As JASR cannot preserve information on priorities of monitored signals, each AASR is 

associated with a single bit flag called abort flag (AF), and individual AF bits will be set 

if the corresponding AASR register (with the same address) is non-empty (with AF(0) 

being 1 for the highest priority monitored signal). The summary joint abort flag (JAF) 

contains information on the presence of monitored signals, or 

 

 JAF = AF(0) + AF(1) + AF(2) + AF(3) 

 

REFLIX control unit determines an action path during instruction execution based on the 

value of the JAF bit as it is shown in section 6.  

 

Another register block contains four active abort address registers (AAARs), which are 

used to store the continuation addresses of currently active abort instructions. The highest 

priority ABORT instruction’s (outermost one) continuation address is in AAAR(0), next 

lower priority continuation address is in AAAR(1) and so on. Signal input register (SIR) 
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is used to capture (latch) activation of signals on individual input sensing lines. This 

information is used, together with the information on currently monitored signals, to 

identify the presence of pending (non-processed) abort events. For that purpose, another 

flag, called the pending abort event flag (PAEF) is introduced and used by REFLIX 

control unit to provide proper and immediate reaction when events on monitored signal 

lines occur. Its value is derived as 

 

 PAEF = (SIR0  JASR0) + …+ (SIR15 JASR15) 

 

The abort termination stage is executed when a monitored event occurs, or when abort 

instruction reaches its continuation address without occurrence of event. Termination of 

an ABORT instruction causes also the termination of all other ABORT instruction nested 

within its body that are of the lower priority. 

 

It should be noted that both JAF and PAEF flags are not programmer visible. However, 

they can be made such and used in new currently non-implemented instructions to enable 

a certain level of programmer’s control over reactive core features. 

 

Two pointers, called the abort read pointer (ARP) and the abort write pointer (AWP), are 

used to up-date addresses of registers within the AHB from which information will be 

read or written to. However, these pointers are not a part of the programming model as 

they are not user visible. They are used only by the control unit and can be considered as 

its part. They are effectively 2-bit (mod 4) counters, which are initialized to a value 0 on 

the system power-up or reset.  

 

Other parts of the programming model include signal output register (SOR) with 

individually controllable/writtable bits, and pool of timers which appear as memory 

mapped registers with some programmable features. The level of their programmability is 

application dependent and can be customized by the selection of configuration (VHDL 

generics) parameters. Their meanings are more or less obvious and they are described 

further in the following section where we discuss REFLIX data path. 
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5 Programming Examples 

In order to get a flavor of programming at a low level when reactive native instructions 
are available, in this section we consider a few simple code examples. 

5.1 Pump Controller Example 

Consider for example the following specification of a simple pump controller [8]: 

 

A pump controller is used to control the operation of a pump inside a mine which may have high methane 

levels. The pump is used to pump out water (whenever the water level exceeds the desired level) provided 

the methane level is below the desired level (RIGHT-METHANE). Whenever, methane level goes above this 

desired level (NOT-RIGHT-METHANE), the controller must stop the pump and wait until right methane 

level is restored. 

 

An implementation of this specification using REFLIX assembly language is as follows: 

 
start1: 

ABORT NOT-RIGHT-METHANE ADDR 
#abort body 
loop: 

SAWAIT HIGH-WATER-LEVEL 
EMIT START-PUMP 
SAWAIT LOW-WATER-LEVEL 
EMIT STOP-PUMP 
JMP loop 

#end of abort body 
ADDR: 
#handle exception 
EMIT STOP-PUMP 
SAWAIT RIGHT-METHANE 
#return to resume normal operation 
JMP start1 

 
 

The pump controller is implemented in two parts: normal behavior, which is enclosed by 

an ABORT statement (preemption mechanism in REFLIX), and exception behavior, 

which is provided from the continuation address of the ABORT (when the body of the 

ABORT is preempted, program control resumes from this address). The behavior of the 

ABORT body has an SAWAIT statement (for usual polling of a signal) that samples the 

water level. Whenever water level is high (HIGH-WATER-LEVEL triggers) signal 

START-PUMP is emitted, to start the pump. This water level is checked again till it 
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reaches the low level (using another SAWAIT). Then the pump is immediately stopped 

using another EMIT statement.  

 

This normal behavior is continued until enclosing ABORT triggers. ABORT triggers 

either when the signal NOT-RIGHT-METHANE occurs in the environment and the body 

has not finished execution or when the body terminates before this signal occurs. In this 

example, since the body is an infinite loop, it never terminates and ABORT triggers only 

when the signal NOT-RIGHT-METHANE occurs.  

 

When ABORT triggers, current instruction in the body is completed and the next 

instruction is automatically fetched from the continuation address provided with ABORT 

(in this case ADDR). So, whenever, NOT-RIGHT-METHANE is detected the pump is 

immediately stopped (by an EMIT statement) and the controller waits for methane level 

to restore (RIGHT-METHANE is sensed using another SAWAIT) before resuming 

normal operation. 

5.2 Extended Pump Controller Example - Comparison with a Conventional Microprocessor 

In this section we consider how two of most important reactive features, priority and  

preemption, are supported in conventional microprocessors and how they compare with 

REFLIX. We have selected Intel 8051 microcontroller [16] to illustrate the ideas. 

 

Preemption. Consider the pump controller example, presented in the previous section. 

now implemented using native instruction set of Intel 8051: 

 
#setup interrupt vector 
ORG addr 
DD HighMethanLevel 
 

#wait for high water level 
start: MOV A, HIGH-WATER-LEVEL 
loop1 CJNE  A, PX, LOOP1 

#water level high detect.start pump 
MOV Px, START-PUMP 
#wait for low water level 
MOV A, LOW-WATER-LEVEL 

loop2 CJNE PX, A, loop2 
#water level low detected; stop pump 
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MOV Px, STOP-PUMP 
LJMP start 

 
#Interrupt service routine (ISR) 
HighMethaneLevel 
#save registers to be used in ISR 
PUSH A 
#stop the pump 
MOV Px, STOP-PUMP 
#wait for right methane level 
MOV A, RIGHT-METHANE 

loop CJNE Px, A, loop 
#restore registers 
POP A 
#return from interrupt 
RETI 

 
To handle preemption, an interrupt vector needs to be setup for handling high methane 

level within the mine. The main routine samples the water level and starts or stops the 

pump appropriately. The interrupt routine stops the pump when methane level is not right 

and waits until right level is detected before returning to the main program. Even 

ignoring the initialization and context-switching overhead, we have 13 instructions in 

8051 compared to 9 instructions in REFLIX. 

 

Priority. To handle priority conventional processors use either software mechanism 

(daisy chaining) or hardware mechanism (external peripheral). Software mechanism is 

very inefficient as it uses polling after interrupt to determine the highest priority device. 

The hardware mechanism use external peripherals such as programmable interrupt 

controller (Intel 8259 [17]) to resolve priorities and are quite inefficient. If, however, the 

control dominated task is such that after handling an exception it is undesirable to return 

to the main program, interrupt mechanism cannot be efficiently employed (as it forces the 

return to the interrupted program). 

 

Let us now consider a slightly modified pump controller specification as given below [8]: 

 

A pump controller is used to control the operation of a pump inside a mine which may 

have high methane levels. The pump is used to pump out water (whenever the water level 

exceeds the desired level) provided the methane level is below the desired level (RIGHT-

METHANE). Whenever, methane level goes above this desired level (NOT-RIGHT-
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METHANE), the controller must stop the pump and wait until right methane level is 

restored. If at any time, however, the methane level is too high (NOT-RIGHT-METHANE 

is only marginally high) then the pump must be stopped immediately and an ALARM must 

be generated. Pumping is stopped until right methane level is restored. 

 

Note that in this specification there is a higher priority preemption condition triggered by 

HIGH-METHANE over NOT-RIGHT-METHANE. Priority is implemented in REFLIX 

using nesting of ABORTs with outer ABORTs having higher priority over inner 

ABORTs. Let us consider the following implementation of this specification using 

REFLIX instructions: 

 
start: 
ABORT HIGH-METHANE ADDR1 
start1: 
      ABORT NOT-RIGHT-METHANE ADD1 
             #abort body 
             loop: 
             SAWAIT HIGH-WATER-LEVEL 
             EMIT START-PUMP 
             SAWAIT LOW-WATER-LEVEL 
             EMIT STOP-PUMP 
             JMP loop 

#end of abort body 
  ADDR: 

#handle exception 
EMIT STOP-PUMP 
SAWAIT RIGHT-METHANE 
# resume normal operation 
JMP start1 

ADD1: 
#handle high methane 
EMIT STOP-PUMP 
EMIT ALARM 
SAWAIT RIGHT-METHANE 
JUMP start 
 
 In this implementation, HIGH-METHANE has higher priority over NOT-RIGHT-

METHANE. Hence, whenever HIGH-METHANE is detected, the pumping is stopped 

and alarm is generated (if HIGH-METHANE and NOT-RIGHT-METHANE occur in the 

same instant, the inner ABORT will be ignored and the outer ABORT will trigger). This 

example illustrates the simplicity of priority handling in REFLIX. In a conventional 

processor implementation of this would require several initialization steps (either to setup 
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a programmable interrupt controller hardware or to setup vector addresses in a processor 

that supports priority interrupt structure). ABORT provides an elegant mechanism to 

incorporate priorities in control-dominated tasks using simple nesting of aborts. Also, the 

overhead associated with context switching is completely eliminated, since this is not a 

requirement for the task involved. 

6 REFLIX Architecture and Implementation 

The REFLIX data path with emphasized differences to the original FLIX data path [11] is 

shown in Figure 2. The data path is organized around two internal buses, called ABUS 

and DBUS, which are used for transfers of address and data information between internal 

registers, respectively, and enable to carry two register transfers, between two pairs of 

registers, at the same time (machine cycle). The abort handling block (AHB) is shown 

with the shaded background in Figure 2.  

 
One of the major issues in the overall REFLIX design was to fit it within the basic and 

very simple FLIX framework and to preserve some of the original core features, which 

have been found useful in a number of customization projects. The instruction cycle is 

one of those features, which permits each of the instructions to be completely executed in 

four machine cycles. This leads to an easy maintenance of time, both the REFLIX global 

(absolute) time and individual timing relationships, especially those which use locally 

generated relative times and timing based events. Both the global clock and locally 

generated non-overlapping four clock phases are available to external logic to drive 

external circuits (including FUs). 

 

A conceptual REFLIX instruction execution cycle, which also depicts control unit 

operation, is shown in Figure 3. Upon power-up or reset REFLIX goes through the 

initialization phase to set initial conditions for all registers. Then, it enters instruction 

execution cycles in which priority is given to the handling of preemptions that have been 

awaited for by previously executed ABORT instructions. All events on monitored signals 

(ABORT triggers) recorded during one instruction cycle will be given attention in the 
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next instruction cycle (tick of time). In case of the absence of pending events, the control 

unit performs two actions: 

 

• Next instruction is fetched from memory and executed. Although there is no 

special difference between instructions, the ABORT instruction is emphasized 

in diagram of Figure 3, as it carries operations on the registers of the AHB.  

• Non-preemptive termination of ABORT instruction, if any, is performed in 

parallel with instruction fetching and execution. 

 

For REFLIX implementation and prototyping we have used field-programmable logic 

devices (FPLDs). There two major reasons for this: (a) FPLDs provide an ideal 

prototyping environment with very fast turn-around time between two versions of the 

design, and (b) with the appearance of huge FPLDs with millions of usable equivalent 

gates, it becomes feasible to build whole systems on programmable chips (SoPC). 

 

In addition, FPLDs are accompanied by advanced design tools and HDLs that enable 

parameterization of designs, which can be relatively easily customized for specific 

applications. This aspect of the REFLIX design has not been emphasized in the paper. 

The first implementation is used as a proof of concept and incorporates only 

parameterization of some of the resources, such as number of timers, number of sensing 

input signals, number of output signals and number of priority levels of external events 

(depth of nesting of ABORTs).  
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Figure 3 REFLIX control unit conceptual operation 

  

7. Implementation of the ABORT Mechanism 

The abort mechanism consists of two-stage process; abort activation performed by 

ABORT instruction execution, and abort termination, performed when preemption occurs 

or by natural expiration of the need for an event monitoring. 
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7.1 ABORT instruction execution 

 
Activation of the abort mechanism and start of monitoring of specific signal is initiated 

explicitly by programmer using the ABORT instruction. The ABORT instruction 

execution is similar to all other instructions. Once ABORT instruction is fetched and 

decoded, it is executed in two machine cycles (T2 and T3) as illustrated in Figure 4. 

 

Figure 4 ABORT instruction execution 

 

First, the one-hot-encoded code of the signal that will be monitored is stored to the next 

location in AASR and continuation address is transferred from memory (second 

instruction word) to the next location in AAAR. The JASR is updated to record all 

monitored signals, and corresponding abort flag is set. In the next cycle (T4), the values 

of program counter and AWP pointer are updated. 

7.2 Preemptive abort termination 

The algorithm for preemptive termination of abort instruction is presented in Figure 5. 

The algorithm first checks the values of abort flags in the order of their priority. The first 

T2 

T3 

AASR(AWP) ß  decoded(signal) 
AAAR(AWP)ß M[PC] 

JASRß JASR + decoded(SIGNAL) 
AF(AWP)ß1 

PC ß PC +1 
AWP ß AWP +1 

 

ABORT Instruction 

Start new instruction cycle 
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active one corresponding to a pending ABORT signal that triggers will be taken. Program 

execution continues from the corresponding continuation address. Abort write and read 

pointers are updated accordingly and abort flags reinitialized. For example, if an event 

with the highest priority has occurred, its index i is set equal to 0, and all abort flags are 

cleared. In case of any other event, all abort flags with equal or the same priority will be 

cleared, and those with higher priority will be left intact. 

Figure 5 Preemptive abort termination 

 

7.3 Non-preemptive abort termination 

A non-preemptive abort termination happens whenever program execution reaches any 

continuation address. The only action, which has to be carried out, in this case is to 

deactivate corresponding abort and update all internal registers (AF, AWP and ARP). 

This operation can be performed in parallel with any other instruction execution except 

with the ABORT instruction itself.  For this purpose, a separate finite state machine 

(FSM) checks the value of the joint abort flag (JAF). In case the JAF is set, the FSM 

checks whether any of the ABORT instructions has to be deactivated (naturally 

terminated) and up-dates appropriate registers within AHB. This FSM can be considered 

as a part of the AHB itself. The algorithm implemented within the FSM is shown in 

Figure 6. 

FOR i = 0 TO 3 
 
IF AF(i) = 1 THEN 
 ; Check event occurrence 
 IF AASR(i) AND SIR <> 0 THEN 

PC ß AAAR(i); continuation address into PC 
AWP ß i; update AWP and ARP 
ARP ß i; 
FOR k=3TO i 

AF(k) ß 0; reinitialize abort flags 
  NEXT k; 

CLEAR SIR; clear signal input register 
EXIT FOR; 

 END IF; 
END IF; 
 
NEXT i; 
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Figure 6 Non-preemptive abort termination 

 

The algorithm starts at the beginning of each instruction cycle. The current instruction 

address (program counter) must be temporarily saved in the TEMP register as it has to be 

compared with the continuation addresses stored in the active abort address registers. The 

value of the program counter itself will be changed by execution of the current 

instruction. If the values of TEMP and any of AAARs match, corresponding abort must 

be deactivated by up-dating values of appropriate registers. 

8 Results of Performance Comparison 

 
In this section, we present comparisons of REFLIX core to some similar standard 

microprocessors. As the benchmarks we used the following typical control dominated 

applications, initially written in Esterel and subsequently mapped to a number of standard 

microprocessors: 

 

• Transmission control protocol (TCP) transmitter [18]: TCP is a connection-

oriented protocol used in the TCP/IP which uses three way handshaking for 

TEMP ß PC; 
IF JAF = 1 THEN 

FOR i = 0 to 3 
 
  IF TEMP = AAAR(i) THEN 
 

AWP ß i; update AWP and ARP 
ARP ß i; 
FOR k=3TO i 

AF(k) ß 0; reinitialize abort flags 
   NEXT k; 

EXIT FOR; 
 
  END IF; 
 

NEXT i; 
END IF; 
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connection establishment and termination. This involves sending and receiving 

several synchronizing messages and is control dominated. We have modeled the 

transmitter behavior here. 

• TCP receiver [18]: We have modeled the TCP receiver behavior here. 

• Startup benchmark which builds a segment of the call mode modem startup 

procedure [19]: This application models the startup procedure of the call-mode 

modem. It is control dominated and involves sending and receiving specific 

streams of characters (of specific length) during startup. 

• Pump controller application [20]: This is an application which controls the 

working of a pump inside a mine with high methane levels and is a typical control 

dominated application with both preemption and priority.  

• An automatic teller machine (ATM) controller [21]: This models a subset of the 

ATM behavior focusing on control dominated actions and preemption and 

priority. 

• A traffic light controller [22]: This code was available as part of POLIS co-design 

tool distribution [23]. We slightly upgraded it by adding a bus-lane and 

incorporated priorities. 

• A lift controller [21]: We have modeled this application which is control 

dominated involving sampling of signals, signal emission etc. 

 

In all these applications, we abstracted the data handling code and only focused on the 

reactive code (as a result the benchmarks are small). As our first comparison, we 

compared the execution time for FLIX and REFLIX over the same application programs. 

They are compiled and executed for both REFLIX and FLIX. Table 3 indicates the total 

number of instruction cycles for each of these benchmarks. Since the instruction cycle 

duration of FLIX and REFLIX are identical, comparing the number of instruction cycles 

is equivalent to the execution time. On an average, REFLIX turns out to be 5.92 times 

faster than FLIX while executing these control-dominated programs. This shows that an 

existing processor can be modified to enable more efficient implementation of the same 

control dominated application programs. 
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Table 3 Comparison of execution time of REFLIX and FLIX in instruction cycles 

 
 
Application 

Levels of 
ABORT 
nesting 

 
REFLIX 

 

 
FLIX 

 
Speedup 

 
TCP Transmitter 0 10 46 4.6 
TCP Receiver 0 9 41 4.55 
Startup 
benchmark 

25 25 102 4.43 

Pump Controller 2 14 83 5.92 
ATM Machine 3 26 244 11.9 
Traffic Light 
Controller 

2 25 152 6.6 

Lift Controller 0 29 116 4.14 
Average  5.92 

 
 

We have made comparisons between REFLIX and a number of popular processors in 

terms of their code size (which plays an important role for embedded applications [24]) 

and execution times for the same set of control dominated applications which have 

initially been written in Esterel and then manually translated into the native code of each 

of those processors (Motorola 68HC11 [25], Intel 8051 [16] and 16-bit NiOS [26]). Table 

4 shows a clear advantage of REFLIX in terms of compactness of code and small 

memory footprint. The execution times, shown in Table 5, are expressed in the number of 

system clock cycles for each of the processors.  Absolute execution times may be 

calculated by multiplying these figures with system clock period, which depends on the 

concrete processor implementation. We should note that figures used for FLIX and 

REFLIX are for the non-pipelined version of the processors (implemented in the current 

prototype). If pipelined version is used, those figures will be reduced by a factor of 3. 
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Table 4 Code size comparison for some benchmarking examples in words  

 
 
Application 

 
REFLIX 

 

 
FLIX 

 
8051 

 

 
68HC11 

 

 
NIOS-16 

TCP Transmitter 10 46 20 31 46 
TCP Receiver 9 41 28 18 41 
Startup 
benchmark 

25 102 48 76 94 

Pump Controller 14 83 35 56 80 
ATM Machine 26 244 102 163 219 
Traffic Light 
Controller 

25 152 70 114 147 

Lift Controller 29 116 45 79 116 
Average 19.7 112 46.7 77.8 106.1 

 
 

Table 5 Execution time comparison (in the number of system clock cycles) 

 
 
Application 
 

 
REFLIX 

 
FLIX 

 
8051 

 
68HC11 

 
NIOS-16 

TCP Transmitter 40 184 240 64 46 
TCP Receiver 36 164 216 58 41 
Startup benchmark 100 408 972 200 94 
Pump Controller 56 332 708 146 80 
ATM machine 104 976 2040 446 219 
Traffic light controller 100 608 1320 275 147 
Lift controller 116 464 732 188 116 
Average 78.8 448 889.7 196.7 106.1 

 
 
Finally, Table 6 presents some example implementation figures for FLIX, REFLIX and 

Altera NiOS processors in the same FPLD device (APEX EP20K200EFC484-2). As can 

be seen from these figures, implementation of reactive features in REFLIX processor 

requires very small increase of logic elements compared to non-reactive version of the 

processor with a minimal impact on maximal clock frequency. 
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Table 6 Resource requirement comparison for some of the FPGA implemented processors 
 
 
Processor  

Maximal 
clock 

frequency 
(MHz) 

Minimal 
machine 

cycle timeT 
= 1/f (µs) 

Logic 
elements 

LE 
utilisation 

Embedded 
memory 
blocks 
(ESB) 

NIOS 1.1 Reference 
design 

37.5MHZ 0.0266 µs 25% 14% 

FLIX 31.8MHz 0.0314 µs 11% 0% 
REFLIX 30.5MHz 0.0327 us 13% 0% 
 
 
 
9 Conclusions  
 
The REFLIX approach proposes a novel way for supporting reactive systems at the 

processor hardware level. Inspired by the Esterel language, the first REFLIX 

implementation supports dealing with input and output signals in a Esterel-like model of 

computation, without true concurrency. However, by supporting constructs for 

synchronization and preemption on random and timing signals, REFLIX enables writing 

programs, which can be easily verified. REFLIX programs are predictable in their 

temporal performance and provide guaranteed reaction times on external events without 

unnecessary overheads and context-switching found in conventional microprocessors. 

Processor supports notion of time, which can easily be derived based on the fact that each 

instruction performs in time equal to 4 machine cycles.  

 
We built a prototype processor, REFLIX, by extending the open source FLIX processor 

core with native support for reactivity and a new preemption mechanism called ABORT. 

We then compared execution time of the same processor core without and with reactivity 

support (FLIX vs REFLIX) on a set of control dominated applications and obtained an 

average speedup of 5.92 times. We made memory footprint comparisons of REFLIX and 

a set of conventional processors. This comparison clearly shows the advantage of using 

native reactive instructions over using common instructions to deal with reactivity.   

REFLIX produced considerably more compact code compared to all these processors. 

Execution time comparisons are relative (in terms of system clock cycles) and obviously 

depend on the maximum system clock frequency. Maximal system clock has been found 

for FPLD-implemented processors, and it shows no disadvantage of the REFLIX 
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architecture. Finally, as the new processor is implemented in an FPLD, we have shown 

its feasibility and low resource requirements compared to the requirements of initial 

processor core and standard microprocessor implementation in the same device. 

 

REFLIX architecture is based on a concept of flexible instruction execution unit, which is 

well suited to embedded systems by keeping the core simple and small (essential for 

embedded systems) and providing facilities for interaction with a set of functional units 

to achieve more complex tasks (which is also very similar in spirit to the Esterel tasking 

model). 

 

The major limitation of the current implementation is that it does not support fully Esterel 

model of computation, which is one of our goals, particularly true concurrency and 

valued signals. Despite of that, we have found a number of applications that can be 

described much more clearly and concisely than with the native/assembly languages of 

the conventional processors, which do not have similar support for reactivity, and also 

verified using formal methods. 
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