
REFLIX: A Processor Core with Native Support for Control-
Dominated Embedded Applications

Zoran Salcic, Partha Roop, Morteza Biglari-Abhari, Abbas Bigdeli
Department of Electrical and Electronic Engineering, University of Auckland,

Private Bag 92019, Auckland, New Zealand
e-mail: {z.salcic, p.roop, m.abhari, a.bigdeli}@auckland.ac.nz

Abstract: Efficient and reliable interaction with the environment (reactivity) is a key

feature for many embedded system applications. Current implementation technologies

that include standard microprocessors and microcontrollers, or fully customized systems,

are not ideally suited to such reactive tasks either in terms of their performance

constraints or in terms of design implementation and programming. We propose a

microprocessor architecture that has native Esterel-like support for reactivity, flexibility

of using programs and design styles as used in Esterel programming language for reactive

embedded system implementation and provides time-predictable behaviors in reaction to

external events. The new processor, called REFLIX, is built around already existing

processor core and exploits its flexibility in allowing customization at much higher level

than usual microprocessor cores. REFLIX shows manifold improvement in speed and

memory footprint in dominantly reactive applications compared to the traditional

microprocessors.

Keywords : reactive systems, processor core, embedded systems, FPGA

 2

1 Introduction

Embedded systems most often have a dedicated microprocessor or a microcontroller that

executes a non-terminating control program, which controls its environment. The

environment constitutes of a set of sensors and actuators, which the microprocessor

controls. The control program repeatedly determines the status of the environment (by

checking the status of the sensors and actuators) and then reacts based on the current

status (hence embedded systems are often called reactive systems) [1], [2].

The environment status can be determined either by polling (which checks for the

presence of certain signals routinely) or by using interrupt mechanism (which is like an

alert mechanism when certain signals occur in the environment). Polling is also known as

busy waiting since CPU cycles are wasted while checking for the presence of signals in

environment. Interrupts avoid busy waiting but have context switching overhead since the

occurrence of an interrupt requires the execution of specific code (called an interrupt

service routine) leading to a change in the standard control flow of the program. Hence,

the context of program execution needs to be saved prior to branching for interrupt

handling and has to be restored after interrupt handling is completed. Such context-

switching overhead can be considerable in an embedded system where environment

interaction is a key. Moreover, as interrupt handling is executed concurrently with the

main control task, there is a danger of inconsistent system behavior due to mishandling of

common resources (data). Also, different events often have different level of importance

and priority-based interrupt schemes have to be used.

While context switching is necessary for data dominated tasks, where return to main

program is important, it is not crucial for many control-dominated tasks as it is illustrated

further in this paper. Moreover, priority signal handling is done using either software

means (additional polling through daisy-chaining) or hardware means (using

programmable peripheral devices or daisy chaining using external hardware) both of

which are quite inefficient and inelegant ways to handle priorities in control dominated

tasks.

 3

This paper describes a novel processor core, called REFLIX, which is aimed at reactive

embedded applications. REFLIX provides a primitive set of features and instructions

suited to reactive systems in addition to a set of standard set of instructions found in

common microprocessors and generic instructions to control external hardware functional

units. The proposed approach provides mechanism to avoid busy waiting associated with

polling, when required, and context switching associated with interrupts for control

dominated tasks. The environment interaction model of a reactive programming language

called Esterel [3] inspires this mechanism, but does not follow fully the Esterel

semantics. The major contributions presented in the paper are the following:

a) Support for reactivity through a set of native instructions is incorporated in

REFLIX, which are lacking in previous architectures. All instructions, including

those that look like conventional instructions for polling, perform in the same

time tick that is equal to 4 machine cycles contributing to both efficiency and

predictability of program execution.

b) Support for preemption and priority resolution based on external events using a

new native instruction called ABORT, which can be nested to achieve priorities

of external events. This is an extremely important feature for implementation of

control-dominated real-time tasks.

c) Reusability of the core for different embedded applications and their variations is

achieved primarily by change of an application program; hence efficient

implementation of control-driven software with the ability for compiling new

Esterel-like specifications to REFLIX instructions directly. In case of need a

further hardware customization can be achieved using parameterized nature of the

processor core description.

 The paper is organized as follows. Sections 2 and 3 give an overview of the related work

and explain the background and motivation of REFLIX design and some of the major

features that support reactivity. In section 4, we introduce the major REFLIX features

with the emphasis on those that support reactivity. Section 5 gives a flavor for REFLIX

programming when using the reactive instructions. In section 6 we describe the REFLIX

 4

data path and control unit together with some implementation details. Section 7 gives

some further performance comparison using a set of application benchmarks. REFLIX is

first compared to original FLIX core and demonstrates manifold speed-up in dominantly

reactive tasks. The same benchmarks are used to demonstrate REFLIX’s low memory

footprint compared to footprint of standard microprocessors. Section 8 presents some

concluding remarks related to the current implementation and limitations of the current

design and the scope for future work.

2 Related Work

One of the trends in implementation of embedded systems, such as cell phones, medical

appliances, home appliances, and similar applications, is to rely on application-specific

processors that better match requirements of those applications than general-purpose

instruction processors [4]. There are several approaches suggested or used for

customization of those processors. Some of them rely on using existing architectures,

such as those from ARM or MIPS [5, 6, 7]. Standard fixed processor cores are connected

to programmable logic to implement additional instructions and functions. Some of the

solutions employ parameterized processor cores that are customized at the time of their

compilation/synthesis for FPGAs, such as Altera NiOS processor [5], or in run-time

during system operation [8, 9]. Some other processor cores [10,11] provide generic

mechanisms for new instruction implementation. These instructions are executed in

functional units external to the processor core and are readily supported by software. A

further step towards generalization has been proposed in [12], where a number of

processor “templates” is used to provide a framework for different customization

strategies. All above processors have general-purpose RISC-type architecture with more

or less typical instruction sets common to RISC-type processors. None of those

processors addresses aspects of reactive applications by supporting generic mechanisms

for reactivity and preemption beyond usual interrupt structures found in conventional

processors.

 5

3 Background and Motivation

REFLIX processor operation is inspired by Esterel, which is a synchronous reactive

programming language that provides a neat set of constructs for modeling, verification

and synthesis of reactive systems. Esterel language has been used in the past for

specification and verification of processors [13], generation of hardware circuits [14] and

for rapid system prototyping [15]. The environment of any Esterel program consists of a

set of sensors and signals, which can be modeled abstractly using constructs available in

the language. The activation clock of the Esterel program is a predefined event called the

tick event. During every tick the Esterel kernel samples its environment and performs a

set of instantaneous reactions based on the values present in its environment during the

present tick. The main constructs for interacting with the environment are await (which is

a delay construct), emit (which performs signal emissions to the environment), sustain

(which sustains a signal forever), abort (which is preemption construct), and trap (which

is similar to software interrupts). Esterel is also a concurrent language and its model of

concurrency is known as synchronous broadcast which means that input and the

corresponding output both occur at the same instant (tick) and also an event generated in

any concurrent module is instantaneously broadcasted to all other concurrent modules. In

addition to such constructs for control flow Esterel supports data handling through a

suitable host language such as C or Java. Data handling can be either performed

synchronously (consumes no time) by performing procedure calls (which are defined in

the host language) or asynchronously (takes time) using tasks (which are also defined in

the host language).

REFLIX is a processor core designed to follow main ideas of Esterel is environment

interaction model. REFLIX provides a set of native instructions suitable for reactive

systems in addition to providing standard instructions for data processing. These include

native facilities for delay, signal emission, priorities, preemption and task execution

facility using functional units. The main unsupported Esterel feature is concurrency

(parallel execution), which must be implemented in a similar way as it has been done

when Esterel is compiled for execution on standard microprocessors. In order to make its

 6

implementation easy we used our customizable FLIX core [10,11] as the basis for the

REFLIX design.

By adopting and supporting Esterel-like model for reactivity on machine instruction

level, we achieve two major goals:

a) the same processor core can be used to implement different reactive algorithms

for different applications by changing only programs and not processor hardware

and

b) preserve performance predictability by guaranteeing execution times for all

primitive instructions.

In this way we provide a generic platform for implementation of a large class of

embedded applications, which would otherwise be implemented either by separately

synthesized hardware (usually finite state machine - FSM) or by software means that can

be implemented on standard microprocessors but with many difficulties.

Original FLIX processor supports customization by allowing the designer to add new

instructions or resources to the datapath by implementing new functional units (FUs).

This feature is very convenient for designing embedded applications as the core can be

customized based on the application requirements. In REFLIX, we have extended FLIX

core by providing native instructions for preemption, priority, delay, suspension and

signal emission while preserving its flexibility for customization of the data processing

part. Some of the key features of the FLIX core have been preserved in order to support

the notion of its local time and “time tick” by executing all native instructions in equal

time that corresponds to one “system tick”.

A qualitative comparison of different implementation strategies of embedded applications

and our motivation for REFLIX development are summarized in Table 1. Reactive

features in embedded systems may be mapped into finite state machines (FSMs) and

subsequently synthesized as custom logic. Alternatively, a general purpose processor may

 7

be used to implement such reactive features using interrupts. The proposed approach is a

novel intermediate approach that combines the efficiency of the FSMs and the flexibility

of conventional processor.

Table 1 Qualitative comparison of embedded application implementations

Implementation

approach

Advantages

Disadvantages

HDLs and hardware
implementation

• Reactive behaviors mapped
onto FSMs

• Small footprint and cheap
implementation

• Supports real parallelism

• Not suitable for non-reactive
parts

• Each application and
modification requires full
synthesis

High-Level
Programming
Languages

• Good handling of non-
reactive parts

• Easy for modification
• High abstraction level

• Large footprint (memory
requirement)

• Often requires RT OS and
appropriate scheduling

• Sow in reacting to events
• Difficult to integrate non-

standard interfaces
• Complex compilation process
• Complex context switching

increases overhead
• Emulates parallelisms by

serialization of concurrent
activities

Native Standard
Microprocessor
Assembly
Languages

• Smaller footprint (memory
requirements)

• Ease of control of low-level
details

• Relatively easy for behavior
modification

• Low abstraction level
• Easier to integrate non-

standard interfaces
• Faster reaction times

• Low abstraction level
• Unsuitable reactive behaviors

mechanisms
• Difficult to integrate non-

standard interfaces
• Emulates parallelisms by

serialization of concurrent
activities

• Often requires real-time
operating system (RTOS) or
kernel

REFLIX

• Small footprint
• Specialized support for

reactive situations
• Fast reaction and response

times
• Customization at both

hardware and software level
• Ease of behavior

modification
• Generic support for

hardware implemented
functional units

• Easy to verify behaviors
• Can support reactive HLLs

• Low abstraction level for
data processing

• Less flexible for algorithm
modifications than HLLs

• No support for true
parallelism

• Requires RT OS or kernel to
support concurrency

 8

4 REFLIX Core Features

In this section we introduce the main architectural features of the REFLIX processor and

describe the main ideas that lead to its design. The current version of REFLIX has

adopted original FLIX core for its base with removal of the interrupt structure and

asynchronous event handling altogether. REFLIX preserves FLIX word length (16 bits)

and instruction execution principles (4 machine cycles make one instruction cycle). Main

departures and extensions to the original core that directly aim reactive applications are:

• Variable number of single-bit input sensor (Sin) and single-bit output sensor

(Sout) lines. The number of these lines is a design parameter and can be

instantiated for each specific application.

• Introduction of internal timers that generate user programmable timing (TimeOut)

signals. Number of internal timers is customizable and is represented by a design

parameter. TimeOut signals can be used for interaction with the environment or

can be fed back to the REFLIX core itself and used for synchronization purposes.

• Introduction of ABORT mechanism for preemption, which is activated upon an

event occurrence. Any piece of code can be wrapped up in the ABORT statement

(abort body) and immediately abandoned in case that an external event on

specified sensor input or timeout occurs. Using nested aborts it is possible to

guarantee maximum one instruction cycle delay in response to a set of external

events (including the time to resolve event priorities).

• Introduction of other instructions that support reactivity in the native instruction

set.

These new features are primarily visible through the REFLIX programming model and its

instruction set.

REFLIX core’s external (interface) view is presented in Figure 1. In addition to the

common and above mentioned ports, it also contains three specific ports:

• T, which provides information on the current processor machine cycle.

 9

• IRBUS, which provides the access to currently executed instruction operation

code and can be used by external hardware (e.g. to start operation of an external

functional unit).

• EndFU, which provides feedback information on the status of external hardware

(e.g. functional units) similar to [10].

Figure 1 REFLIX external view

4.1 Native Reactive Instructions

The original FLIX instruction set is appended with new group of instructions that support

reactive processing. There are seven basic instructions in the reactive category and they

are presented in Table 2. Most of REFLIX instructions are only one word long, but some

of the reactive instructions require two words for immediate operands or address

information.

REFLIX

Din[15. .0] Dout [15. .0]

A[15. .0]

S in [15 . .0]

T imeOUT[3 . .0]

Sout[15..0]

I IRBUS [15 . .0]

R/W

EndFU[3. .0]

Clk

T [3 . .0]

 10

Table 2 REFLIX instructions supporting reactive processing

Feature Instruction syntax Instructi
on
Length
(words)

Function/Description

Preemption ABORT signal, address 2 Preemption instruction. ABORT has
a body up to the instruction whose
address is indicated in the instruction
(called continuation address since
after preemption program continues
from this address). signal can be
either an external one or a TimeOut
received from internal timer.

Signal
emission

EMIT signal 1

The specified signal is set high for one
instruction cycle

Signal
sustenance

SUSTAIN signal 1 Specified signal is set high forever
(indefinitely)

Signal
polling

SAWAIT signal 1 Wait until the specified signal occurs

Delay TAWAIT delay 2 Immediate delay— wait until specified time
elapses (wait at least one system tick - time is
expressed in the number of instruction cycles)

Conditional
signal
polling

CAWAIT signal1, signal2,
address

2 Wait until either signal1 or
signal 2 occurs. If signal1
occurs then execute instructions
from the address following this
instruction, else from specified address.

Signal
presence

PRESENT signal, address 2 If signal is present the next instruction is
fetched from the next consecutive address.
Otherwise, it is fetched from the specified
address.

Two instructions generate external signals (outputs), which can last one system tick

(EMIT) or indefinitely (SUSTAIN). The next tree instructions, SAWAIT, TAWAIT and

CAWAIT, provide waiting mechanism on events on external signals and timeouts

(generated by internal timers) and are used for synchronization purpose. The duration of

time to wait is under the explicit program control. PRESENT instruction provides a

mechanism for conditional execution depending on the presence of the specified signal.

Finally, ABORT is preemption and priority resolution instruction which is explained in

detail in the next section.

 11

4.2 Semantics and Implementation of Preemption Support

Native ABORT instruction is introduced to support preemption with priorities. In the

current REFLIX prototype ABORT instruction can work with up to 16 different external

input signals and up to four internal timers generated signals. ABORT instructions can be

nested to support up to four levels of priorities. These numbers are obviously

implementation dependent and can be changed as the design parameters for the REFLIX

parameterized core.

An ABORT instruction is active from the instant it is executed until its entire body is

executed or until an event on the signal occurs that preempts all unexecuted instructions

within the body. Format of the instruction is as follows:

Two different operation codes are used for abort operations, one for an abort on an

external signal and the other for an abort on a timer. The ABORT instruction is executed

in two stages with the support of a dedicated hardware unit called the abort-handling

block (AHB):

• Abort activation. It is executed immediately after fetching and decoding the

ABORT instruction, when REFLIX starts monitoring change (activation) of the

designated signal. Continuation address, from where the program will continue

execution if preemption happens, is stored into the REFLIX abort handling

block.

• Abort termination. Once the designated signal is activated, abort is taken and

an unconditional jump to the continuation address is executed, or, if the

continuation address is reached and the designated signal has not been

activated, the abort is automatically terminated.

OPCODE (10) Timer(2)/Signal(4)

Continuation-address (16)

 12

The abort handling block (AHB), which is a part of the REFLIX datapath, supports

nesting and prioritizing of abort statements. The AHB contains active abort signal

register (AASR) block with 4 registers with a length that equals to the number of input

sensing signals, which can abort current program execution. Registers are used to store

the code of the signal line that starts to be monitored for signal activation. Each signal

line has a unique code generated using a one-hot encoding scheme (only one bit can have

a value 1). The addresses of the AASR registers, 0 to 3, at the same time represent, in

ascending order, priorities of signals that are monitored. The first executed ABORT

instruction always stores the monitored signal code into AASR(0), next nested ABORT

instruction stores its monitored signal code into AASR(1), and so on. Summary

information on all currently monitored signals that can abort program sequence is stored

in joint abort signal register (JASR). Its value is obtained by bit-wise OR-ing values of all

AASRs:

 JASRi = AASRi(0) + …+ AASRi(3) for i=0, 1, …, 15

As JASR cannot preserve information on priorities of monitored signals, each AASR is

associated with a single bit flag called abort flag (AF), and individual AF bits will be set

if the corresponding AASR register (with the same address) is non-empty (with AF(0)

being 1 for the highest priority monitored signal). The summary joint abort flag (JAF)

contains information on the presence of monitored signals, or

 JAF = AF(0) + AF(1) + AF(2) + AF(3)

REFLIX control unit determines an action path during instruction execution based on the

value of the JAF bit as it is shown in section 6.

Another register block contains four active abort address registers (AAARs), which are

used to store the continuation addresses of currently active abort instructions. The highest

priority ABORT instruction’s (outermost one) continuation address is in AAAR(0), next

lower priority continuation address is in AAAR(1) and so on. Signal input register (SIR)

 13

is used to capture (latch) activation of signals on individual input sensing lines. This

information is used, together with the information on currently monitored signals, to

identify the presence of pending (non-processed) abort events. For that purpose, another

flag, called the pending abort event flag (PAEF) is introduced and used by REFLIX

control unit to provide proper and immediate reaction when events on monitored signal

lines occur. Its value is derived as

 PAEF = (SIR0 JASR0) + …+ (SIR15 JASR15)

The abort termination stage is executed when a monitored event occurs, or when abort

instruction reaches its continuation address without occurrence of event. Termination of

an ABORT instruction causes also the termination of all other ABORT instruction nested

within its body that are of the lower priority.

It should be noted that both JAF and PAEF flags are not programmer visible. However,

they can be made such and used in new currently non-implemented instructions to enable

a certain level of programmer’s control over reactive core features.

Two pointers, called the abort read pointer (ARP) and the abort write pointer (AWP), are

used to up-date addresses of registers within the AHB from which information will be

read or written to. However, these pointers are not a part of the programming model as

they are not user visible. They are used only by the control unit and can be considered as

its part. They are effectively 2-bit (mod 4) counters, which are initialized to a value 0 on

the system power-up or reset.

Other parts of the programming model include signal output register (SOR) with

individually controllable/writtable bits, and pool of timers which appear as memory

mapped registers with some programmable features. The level of their programmability is

application dependent and can be customized by the selection of configuration (VHDL

generics) parameters. Their meanings are more or less obvious and they are described

further in the following section where we discuss REFLIX data path.

 14

5 Programming Examples

In order to get a flavor of programming at a low level when reactive native instructions
are available, in this section we consider a few simple code examples.

5.1 Pump Controller Example

Consider for example the following specification of a simple pump controller [8]:

A pump controller is used to control the operation of a pump inside a mine which may have high methane

levels. The pump is used to pump out water (whenever the water level exceeds the desired level) provided

the methane level is below the desired level (RIGHT-METHANE). Whenever, methane level goes above this

desired level (NOT-RIGHT-METHANE), the controller must stop the pump and wait until right methane

level is restored.

An implementation of this specification using REFLIX assembly language is as follows:

start1:

ABORT NOT-RIGHT-METHANE ADDR
#abort body
loop:

SAWAIT HIGH-WATER-LEVEL
EMIT START-PUMP
SAWAIT LOW-WATER-LEVEL
EMIT STOP-PUMP
JMP loop

#end of abort body
ADDR:
#handle exception
EMIT STOP-PUMP
SAWAIT RIGHT-METHANE
#return to resume normal operation
JMP start1

The pump controller is implemented in two parts: normal behavior, which is enclosed by

an ABORT statement (preemption mechanism in REFLIX), and exception behavior,

which is provided from the continuation address of the ABORT (when the body of the

ABORT is preempted, program control resumes from this address). The behavior of the

ABORT body has an SAWAIT statement (for usual polling of a signal) that samples the

water level. Whenever water level is high (HIGH-WATER-LEVEL triggers) signal

START-PUMP is emitted, to start the pump. This water level is checked again till it

 15

reaches the low level (using another SAWAIT). Then the pump is immediately stopped

using another EMIT statement.

This normal behavior is continued until enclosing ABORT triggers. ABORT triggers

either when the signal NOT-RIGHT-METHANE occurs in the environment and the body

has not finished execution or when the body terminates before this signal occurs. In this

example, since the body is an infinite loop, it never terminates and ABORT triggers only

when the signal NOT-RIGHT-METHANE occurs.

When ABORT triggers, current instruction in the body is completed and the next

instruction is automatically fetched from the continuation address provided with ABORT

(in this case ADDR). So, whenever, NOT-RIGHT-METHANE is detected the pump is

immediately stopped (by an EMIT statement) and the controller waits for methane level

to restore (RIGHT-METHANE is sensed using another SAWAIT) before resuming

normal operation.

5.2 Extended Pump Controller Example - Comparison with a Conventional Microprocessor

In this section we consider how two of most important reactive features, priority and

preemption, are supported in conventional microprocessors and how they compare with

REFLIX. We have selected Intel 8051 microcontroller [16] to illustrate the ideas.

Preemption. Consider the pump controller example, presented in the previous section.

now implemented using native instruction set of Intel 8051:

#setup interrupt vector
ORG addr
DD HighMethanLevel

#wait for high water level
start: MOV A, HIGH-WATER-LEVEL
loop1 CJNE A, PX, LOOP1

#water level high detect.start pump
MOV Px, START-PUMP
#wait for low water level
MOV A, LOW-WATER-LEVEL

loop2 CJNE PX, A, loop2
#water level low detected; stop pump

 16

MOV Px, STOP-PUMP
LJMP start

#Interrupt service routine (ISR)
HighMethaneLevel
#save registers to be used in ISR
PUSH A
#stop the pump
MOV Px, STOP-PUMP
#wait for right methane level
MOV A, RIGHT-METHANE

loop CJNE Px, A, loop
#restore registers
POP A
#return from interrupt
RETI

To handle preemption, an interrupt vector needs to be setup for handling high methane

level within the mine. The main routine samples the water level and starts or stops the

pump appropriately. The interrupt routine stops the pump when methane level is not right

and waits until right level is detected before returning to the main program. Even

ignoring the initialization and context-switching overhead, we have 13 instructions in

8051 compared to 9 instructions in REFLIX.

Priority. To handle priority conventional processors use either software mechanism

(daisy chaining) or hardware mechanism (external peripheral). Software mechanism is

very inefficient as it uses polling after interrupt to determine the highest priority device.

The hardware mechanism use external peripherals such as programmable interrupt

controller (Intel 8259 [17]) to resolve priorities and are quite inefficient. If, however, the

control dominated task is such that after handling an exception it is undesirable to return

to the main program, interrupt mechanism cannot be efficiently employed (as it forces the

return to the interrupted program).

Let us now consider a slightly modified pump controller specification as given below [8]:

A pump controller is used to control the operation of a pump inside a mine which may

have high methane levels. The pump is used to pump out water (whenever the water level

exceeds the desired level) provided the methane level is below the desired level (RIGHT-

METHANE). Whenever, methane level goes above this desired level (NOT-RIGHT-

 17

METHANE), the controller must stop the pump and wait until right methane level is

restored. If at any time, however, the methane level is too high (NOT-RIGHT-METHANE

is only marginally high) then the pump must be stopped immediately and an ALARM must

be generated. Pumping is stopped until right methane level is restored.

Note that in this specification there is a higher priority preemption condition triggered by

HIGH-METHANE over NOT-RIGHT-METHANE. Priority is implemented in REFLIX

using nesting of ABORTs with outer ABORTs having higher priority over inner

ABORTs. Let us consider the following implementation of this specification using

REFLIX instructions:

start:
ABORT HIGH-METHANE ADDR1
start1:
 ABORT NOT-RIGHT-METHANE ADD1
 #abort body
 loop:
 SAWAIT HIGH-WATER-LEVEL
 EMIT START-PUMP
 SAWAIT LOW-WATER-LEVEL
 EMIT STOP-PUMP
 JMP loop

#end of abort body
 ADDR:

#handle exception
EMIT STOP-PUMP
SAWAIT RIGHT-METHANE
resume normal operation
JMP start1

ADD1:
#handle high methane
EMIT STOP-PUMP
EMIT ALARM
SAWAIT RIGHT-METHANE
JUMP start

 In this implementation, HIGH-METHANE has higher priority over NOT-RIGHT-

METHANE. Hence, whenever HIGH-METHANE is detected, the pumping is stopped

and alarm is generated (if HIGH-METHANE and NOT-RIGHT-METHANE occur in the

same instant, the inner ABORT will be ignored and the outer ABORT will trigger). This

example illustrates the simplicity of priority handling in REFLIX. In a conventional

processor implementation of this would require several initialization steps (either to setup

 18

a programmable interrupt controller hardware or to setup vector addresses in a processor

that supports priority interrupt structure). ABORT provides an elegant mechanism to

incorporate priorities in control-dominated tasks using simple nesting of aborts. Also, the

overhead associated with context switching is completely eliminated, since this is not a

requirement for the task involved.

6 REFLIX Architecture and Implementation

The REFLIX data path with emphasized differences to the original FLIX data path [11] is

shown in Figure 2. The data path is organized around two internal buses, called ABUS

and DBUS, which are used for transfers of address and data information between internal

registers, respectively, and enable to carry two register transfers, between two pairs of

registers, at the same time (machine cycle). The abort handling block (AHB) is shown

with the shaded background in Figure 2.

One of the major issues in the overall REFLIX design was to fit it within the basic and

very simple FLIX framework and to preserve some of the original core features, which

have been found useful in a number of customization projects. The instruction cycle is

one of those features, which permits each of the instructions to be completely executed in

four machine cycles. This leads to an easy maintenance of time, both the REFLIX global

(absolute) time and individual timing relationships, especially those which use locally

generated relative times and timing based events. Both the global clock and locally

generated non-overlapping four clock phases are available to external logic to drive

external circuits (including FUs).

A conceptual REFLIX instruction execution cycle, which also depicts control unit

operation, is shown in Figure 3. Upon power-up or reset REFLIX goes through the

initialization phase to set initial conditions for all registers. Then, it enters instruction

execution cycles in which priority is given to the handling of preemptions that have been

awaited for by previously executed ABORT instructions. All events on monitored signals

(ABORT triggers) recorded during one instruction cycle will be given attention in the

 19

next instruction cycle (tick of time). In case of the absence of pending events, the control

unit performs two actions:

• Next instruction is fetched from memory and executed. Although there is no

special difference between instructions, the ABORT instruction is emphasized

in diagram of Figure 3, as it carries operations on the registers of the AHB.

• Non-preemptive termination of ABORT instruction, if any, is performed in

parallel with instruction fetching and execution.

For REFLIX implementation and prototyping we have used field-programmable logic

devices (FPLDs). There two major reasons for this: (a) FPLDs provide an ideal

prototyping environment with very fast turn-around time between two versions of the

design, and (b) with the appearance of huge FPLDs with millions of usable equivalent

gates, it becomes feasible to build whole systems on programmable chips (SoPC).

In addition, FPLDs are accompanied by advanced design tools and HDLs that enable

parameterization of designs, which can be relatively easily customized for specific

applications. This aspect of the REFLIX design has not been emphasized in the paper.

The first implementation is used as a proof of concept and incorporates only

parameterization of some of the resources, such as number of timers, number of sensing

input signals, number of output signals and number of priority levels of external events

(depth of nesting of ABORTs).

 20

Sin

Address

Dout

DBUS

ABUS

Original FLIX Core Data Path [11]

4 X 16
DEC

AF

JAF

AAAR

AASR

ARP

AWP

JASR

Timer Pool

SOR

SIR

AND
+

OR

+ PAEF

Din

IRBUS

JAF

PAEF

Sout

TimeOout

Abort
Handling

Block

Figure 2 REFLIX data path

 21

Figure 3 REFLIX control unit conceptual operation

7. Implementation of the ABORT Mechanism

The abort mechanism consists of two-stage process; abort activation performed by

ABORT instruction execution, and abort termination, performed when preemption occurs

or by natural expiration of the need for an event monitoring.

Reset

Initialize FLIX part (PC, SP,
PR, PD)

Initialize Reactive part (AWP,
ARP, JAF, PAEF, SIR, SOR)

JAF

PAEF

Fetch next instruction

ABORT

1

1

Preemptive

termination of
ABORT

Check for
non-

preemptive
termination of
ABORT (de-

activate if
necessary)

1

ABORT
execution
(activation)

FLIX

instruction
execution

cycle

 22

7.1 ABORT instruction execution

Activation of the abort mechanism and start of monitoring of specific signal is initiated

explicitly by programmer using the ABORT instruction. The ABORT instruction

execution is similar to all other instructions. Once ABORT instruction is fetched and

decoded, it is executed in two machine cycles (T2 and T3) as illustrated in Figure 4.

Figure 4 ABORT instruction execution

First, the one-hot-encoded code of the signal that will be monitored is stored to the next

location in AASR and continuation address is transferred from memory (second

instruction word) to the next location in AAAR. The JASR is updated to record all

monitored signals, and corresponding abort flag is set. In the next cycle (T4), the values

of program counter and AWP pointer are updated.

7.2 Preemptive abort termination

The algorithm for preemptive termination of abort instruction is presented in Figure 5.

The algorithm first checks the values of abort flags in the order of their priority. The first

T2

T3

AASR(AWP) ß decoded(signal)
AAAR(AWP)ß M[PC]

JASRß JASR + decoded(SIGNAL)
AF(AWP)ß1

PC ß PC +1
AWP ß AWP +1

ABORT Instruction

Start new instruction cycle

 23

active one corresponding to a pending ABORT signal that triggers will be taken. Program

execution continues from the corresponding continuation address. Abort write and read

pointers are updated accordingly and abort flags reinitialized. For example, if an event

with the highest priority has occurred, its index i is set equal to 0, and all abort flags are

cleared. In case of any other event, all abort flags with equal or the same priority will be

cleared, and those with higher priority will be left intact.

Figure 5 Preemptive abort termination

7.3 Non-preemptive abort termination

A non-preemptive abort termination happens whenever program execution reaches any

continuation address. The only action, which has to be carried out, in this case is to

deactivate corresponding abort and update all internal registers (AF, AWP and ARP).

This operation can be performed in parallel with any other instruction execution except

with the ABORT instruction itself. For this purpose, a separate finite state machine

(FSM) checks the value of the joint abort flag (JAF). In case the JAF is set, the FSM

checks whether any of the ABORT instructions has to be deactivated (naturally

terminated) and up-dates appropriate registers within AHB. This FSM can be considered

as a part of the AHB itself. The algorithm implemented within the FSM is shown in

Figure 6.

FOR i = 0 TO 3

IF AF(i) = 1 THEN
 ; Check event occurrence
 IF AASR(i) AND SIR <> 0 THEN

PC ß AAAR(i); continuation address into PC
AWP ß i; update AWP and ARP
ARP ß i;
FOR k=3TO i

AF(k) ß 0; reinitialize abort flags
 NEXT k;

CLEAR SIR; clear signal input register
EXIT FOR;

 END IF;
END IF;

NEXT i;

 24

Figure 6 Non-preemptive abort termination

The algorithm starts at the beginning of each instruction cycle. The current instruction

address (program counter) must be temporarily saved in the TEMP register as it has to be

compared with the continuation addresses stored in the active abort address registers. The

value of the program counter itself will be changed by execution of the current

instruction. If the values of TEMP and any of AAARs match, corresponding abort must

be deactivated by up-dating values of appropriate registers.

8 Results of Performance Comparison

In this section, we present comparisons of REFLIX core to some similar standard

microprocessors. As the benchmarks we used the following typical control dominated

applications, initially written in Esterel and subsequently mapped to a number of standard

microprocessors:

• Transmission control protocol (TCP) transmitter [18]: TCP is a connection-

oriented protocol used in the TCP/IP which uses three way handshaking for

TEMP ß PC;
IF JAF = 1 THEN

FOR i = 0 to 3

 IF TEMP = AAAR(i) THEN

AWP ß i; update AWP and ARP
ARP ß i;
FOR k=3TO i

AF(k) ß 0; reinitialize abort flags
 NEXT k;

EXIT FOR;

 END IF;

NEXT i;
END IF;

 25

connection establishment and termination. This involves sending and receiving

several synchronizing messages and is control dominated. We have modeled the

transmitter behavior here.

• TCP receiver [18]: We have modeled the TCP receiver behavior here.

• Startup benchmark which builds a segment of the call mode modem startup

procedure [19]: This application models the startup procedure of the call-mode

modem. It is control dominated and involves sending and receiving specific

streams of characters (of specific length) during startup.

• Pump controller application [20]: This is an application which controls the

working of a pump inside a mine with high methane levels and is a typical control

dominated application with both preemption and priority.

• An automatic teller machine (ATM) controller [21]: This models a subset of the

ATM behavior focusing on control dominated actions and preemption and

priority.

• A traffic light controller [22]: This code was available as part of POLIS co-design

tool distribution [23]. We slightly upgraded it by adding a bus-lane and

incorporated priorities.

• A lift controller [21]: We have modeled this application which is control

dominated involving sampling of signals, signal emission etc.

In all these applications, we abstracted the data handling code and only focused on the

reactive code (as a result the benchmarks are small). As our first comparison, we

compared the execution time for FLIX and REFLIX over the same application programs.

They are compiled and executed for both REFLIX and FLIX. Table 3 indicates the total

number of instruction cycles for each of these benchmarks. Since the instruction cycle

duration of FLIX and REFLIX are identical, comparing the number of instruction cycles

is equivalent to the execution time. On an average, REFLIX turns out to be 5.92 times

faster than FLIX while executing these control-dominated programs. This shows that an

existing processor can be modified to enable more efficient implementation of the same

control dominated application programs.

 26

Table 3 Comparison of execution time of REFLIX and FLIX in instruction cycles

Application

Levels of
ABORT
nesting

REFLIX

FLIX

Speedup

TCP Transmitter 0 10 46 4.6
TCP Receiver 0 9 41 4.55
Startup
benchmark

25 25 102 4.43

Pump Controller 2 14 83 5.92
ATM Machine 3 26 244 11.9
Traffic Light
Controller

2 25 152 6.6

Lift Controller 0 29 116 4.14
Average 5.92

We have made comparisons between REFLIX and a number of popular processors in

terms of their code size (which plays an important role for embedded applications [24])

and execution times for the same set of control dominated applications which have

initially been written in Esterel and then manually translated into the native code of each

of those processors (Motorola 68HC11 [25], Intel 8051 [16] and 16-bit NiOS [26]). Table

4 shows a clear advantage of REFLIX in terms of compactness of code and small

memory footprint. The execution times, shown in Table 5, are expressed in the number of

system clock cycles for each of the processors. Absolute execution times may be

calculated by multiplying these figures with system clock period, which depends on the

concrete processor implementation. We should note that figures used for FLIX and

REFLIX are for the non-pipelined version of the processors (implemented in the current

prototype). If pipelined version is used, those figures will be reduced by a factor of 3.

 27

Table 4 Code size comparison for some benchmarking examples in words

Application

REFLIX

FLIX

8051

68HC11

NIOS-16

TCP Transmitter 10 46 20 31 46
TCP Receiver 9 41 28 18 41
Startup
benchmark

25 102 48 76 94

Pump Controller 14 83 35 56 80
ATM Machine 26 244 102 163 219
Traffic Light
Controller

25 152 70 114 147

Lift Controller 29 116 45 79 116
Average 19.7 112 46.7 77.8 106.1

Table 5 Execution time comparison (in the number of system clock cycles)

Application

REFLIX

FLIX

8051

68HC11

NIOS-16

TCP Transmitter 40 184 240 64 46
TCP Receiver 36 164 216 58 41
Startup benchmark 100 408 972 200 94
Pump Controller 56 332 708 146 80
ATM machine 104 976 2040 446 219
Traffic light controller 100 608 1320 275 147
Lift controller 116 464 732 188 116
Average 78.8 448 889.7 196.7 106.1

Finally, Table 6 presents some example implementation figures for FLIX, REFLIX and

Altera NiOS processors in the same FPLD device (APEX EP20K200EFC484-2). As can

be seen from these figures, implementation of reactive features in REFLIX processor

requires very small increase of logic elements compared to non-reactive version of the

processor with a minimal impact on maximal clock frequency.

 28

Table 6 Resource requirement comparison for some of the FPGA implemented processors

Processor

Maximal
clock

frequency
(MHz)

Minimal
machine

cycle timeT
= 1/f (µs)

Logic
elements

LE
utilisation

Embedded
memory
blocks
(ESB)

NIOS 1.1 Reference
design

37.5MHZ 0.0266 µs 25% 14%

FLIX 31.8MHz 0.0314 µs 11% 0%
REFLIX 30.5MHz 0.0327 us 13% 0%

9 Conclusions

The REFLIX approach proposes a novel way for supporting reactive systems at the

processor hardware level. Inspired by the Esterel language, the first REFLIX

implementation supports dealing with input and output signals in a Esterel-like model of

computation, without true concurrency. However, by supporting constructs for

synchronization and preemption on random and timing signals, REFLIX enables writing

programs, which can be easily verified. REFLIX programs are predictable in their

temporal performance and provide guaranteed reaction times on external events without

unnecessary overheads and context-switching found in conventional microprocessors.

Processor supports notion of time, which can easily be derived based on the fact that each

instruction performs in time equal to 4 machine cycles.

We built a prototype processor, REFLIX, by extending the open source FLIX processor

core with native support for reactivity and a new preemption mechanism called ABORT.

We then compared execution time of the same processor core without and with reactivity

support (FLIX vs REFLIX) on a set of control dominated applications and obtained an

average speedup of 5.92 times. We made memory footprint comparisons of REFLIX and

a set of conventional processors. This comparison clearly shows the advantage of using

native reactive instructions over using common instructions to deal with reactivity.

REFLIX produced considerably more compact code compared to all these processors.

Execution time comparisons are relative (in terms of system clock cycles) and obviously

depend on the maximum system clock frequency. Maximal system clock has been found

for FPLD-implemented processors, and it shows no disadvantage of the REFLIX

 29

architecture. Finally, as the new processor is implemented in an FPLD, we have shown

its feasibility and low resource requirements compared to the requirements of initial

processor core and standard microprocessor implementation in the same device.

REFLIX architecture is based on a concept of flexible instruction execution unit, which is

well suited to embedded systems by keeping the core simple and small (essential for

embedded systems) and providing facilities for interaction with a set of functional units

to achieve more complex tasks (which is also very similar in spirit to the Esterel tasking

model).

The major limitation of the current implementation is that it does not support fully Esterel

model of computation, which is one of our goals, particularly true concurrency and

valued signals. Despite of that, we have found a number of applications that can be

described much more clearly and concisely than with the native/assembly languages of

the conventional processors, which do not have similar support for reactivity, and also

verified using formal methods.

References

[1] Harel D. Statecharts: A Visual Formalism for Complex Systems, Sci. Comput. Prog.,

8; 1987, pp. 231-274
[2] Pnueli A. Application of temporal logic to the specification and verification of

reactive systems: a survey of current trends, Lecture notes in computer science, 224;
pp. 510-584. Springer Verlag, 1986

[3] Berry G. and Gonthier G. The ESTEREL synchronous programming language, Sc.
Comput. Prog., 19; 1992, pp. 87-152

[4] Fisher J.A. Customized instruction sets for embedded processors. In Proc. 36th
Design Automation Conference, 1999, pp. 253–257

[5] Altera Corporation. Excalibur Embedded Processor Solutions, http://www.altera.com
[6] Triscend. The Configurable System on a Chip, http://www.triscend.com
[7]] Xilinx Corporation. IBM and Xilinx team to create new generation of integrated

circuits, http://www.xilinx.com/prs rls/ibmpartner.htm
[8] Wirthlin M and Hutchings B. A dynamic instruction set computer. In Proc. IEEE

Symp. on Field Programmable Custom Computing Machines, pp. 99–107. IEEE
Computer Society Press, 1995.

[9] Donlin A. Self modifying circuitry - a platform for tractable virtual circuitry. In Field
Programmable Logic and Applications, LNCS 1482, pp. 199–208. Springer, 1998

 30

[10] Salcic Z. and Maunder B. “CCSimP - an Instruction-level Custom-Configurable
Processor for FPLDs”, in Field-Programmable Logic FPL ‘96, Lecture notes in
Computer Science 1142 (R.Hartenstein, M.Gloessner and M.Servit editors), Springer,
1996, pp. 280-289

[11] Salcic Z. and Mistry T. FLIX Environment for Generation of Custom-Configurable
Machines in FPLDs for Embedded Applications, Elsevier Journal on Microprocessors
and Microsystems , vol.23(8-9), December 1999, pp. 513-526

[12] Peng S. P., Luk W. and Cheung P.K.Y. Flexible instruction set processors.
Proceedings CASES’00, November 17-19, 2000

[13] Ramesh S. and Bhaduri P. Validation of pipelined processor designs using Esterel
tools, Proceedings of the 11th International Conference on Computer Aided
Verification, Springer Verlag, 1999, pp. 84 - 95

[14] Girault A. and Berry G. Circuit generation and verification of Esterel, International
Symposium on Signals, Circuits and Systems, Tech. Univ. Iasi., Romania, 1999, pp.
85-90

[15] Belachew M. and Shyamasundar RK. MSC/sup +/: From requirement to prototyped
systems, Proceedings of the 13th EUROMICRO conference on real-time systems, IEEE
Comput. Soc., 2001, pp. 117-124

[16] M. E. Schrader, R. Sridhar, T. Buechner, and P. P. K. Lee, “VHDL design of
 embedded processor cores: the industry standard microcontroller 8051 and 68HC11”,
 in IEEE International ASIC Conference, 1998, pp. 256–259
[17] “Intel Peripheral Datasheets for 82C59 Programmable Peripheral Interface”,
 http://developer.intel.com/designer/datasheets, 1995.
[18] Kurose J. F. and Ross K. W., Computer Networking: A Top Down Approach
 Featuring the Internet, Addison Wesley, 1999.
[19] International Teleommunication Union, ITU-T recommendation v.32 edition, 1993.
[20] Gomaa H., Software design methods for concurrent and real-time systems,
 Addison-Wesley, 1993.
[21] Gomaa H., Designing concurrent distributed and real-time applications with
 UML, Addison-Wesley, 2000.
[22] Mead C. and Conway C., Introduction to VLSI systems, Addison-Wesley, 1980.
[23] Balarin F., Chiodo M., Guisto P., Hsieh H., Jurecska A., Lavagno L., Passerone C.,
 Sangiovanno-Vincentelli A., Sentovich E., Suzuki K., and Tabbara B., Hardware

Software Codesign of Embedded Systems - The POLIS Approach, Kluwer, 1997.
[24] Furber S., ARM system-on-chip architecture, Addison-Wesley, 2000.
[25] Spasov P., Microcontroller Technology: The 68HC11, Prentice Hall, 1999.
[26] NIOS Embedded Processor: 16-bit Programmer’s Reference Manual,
 www.altera.com.

