REFLI1X: A Processor Core with Native Support for Control-
Dominated Embedded Applications

Zoran Sdcic, Patha Roop, Morteza Biglari-Abhari, Abbas Bigddi
Department of Electrical and Electronic Engineering, University of Auckland,
Private Bag 92019, Auckland, New Zealand

e-mail: {z.salcic, p.roop, mabhari, a.bigdeli}@uckland.ac.nz

Abgract: Efficent and rdiable interaction with the environment (reactivity) is a key
feature for many embedded system applications. Current implementation technologies
tha incdlude standard microprocessors and microcontrdlers, or fully customized systems
ae not idedly suited to such reactive tasks dther in tems of ther peformance
condraints or in tems of desgn implementaion and programming. We propose a
microprocessor - architecture that has native EdtereMlike support for reactivity, flexibility
of udng programs and design gyles as used in Ederd programming language for reactive
embedded sysem implementation and provides time-predictable behaviors in reaction to
extend events The new processor, cdled REFLIX, is built around dready exising
processor core and explaits its flexibility in dlowing cusomization & much higher leve
than usud microprocessor cores REFLIX shows manifold improvement in speed and
memory footprint in dominantly reactive gpplications compared to the traditiond

M Croprocessors.

K eywor ds: reactive systems, processor core, embedded systems, FPGA

1 Introduction

Embedded sysems mos often have a dedicated microprocessor or a microcatroller that
executes a norHterminging control program, which controls its environment. The
environment conditutes of a s of sensors and actuaors, which the microprocessor
controls. The control program repegtedly determines the Satus of the environment (by
checking the datus of the sensors and actuators) and then reacts based on the current
gtatus (hence embedded systems are often called reactive systems) [1], [2] .

The enironment daus can be determined ether by polling (which checks for the
presence of ceatan dgnds routindy) or by usng interrupt mechanism (which is like an
dert mechanism when certain sgnds occur in the environment). Polling is dso known as
busy waiting snce CPU cycles are wasted while checking for the presence of sgndsin
environment. Interrupts avoid busy wating but have context switching overhead since the
occurrence of an interrupt requires the execuion of specific code (cdled an interrupt
savice routing) leading to a change in the standard control flow of the program. Hence,
the context of program execution needs to be saved prior to branching for interrupt
handling and has to be restored after interrupt handling is completed. Such context-
switching overhead can be condderable in an embedded sysem where environment
interaction is a key. Moreover, as interupt handling is executed concurrently with the
man control task, there is a damger of inconsggtent sysem behavior due to mishandling of
common resources (datd). Also, different events often have different level of importance
and priority-basad interrupt schemes have to be used.

While context switching is necessay for data dominated tasks, where return to main
program is important, it is not crucdd for many control-dominated tasks as it is illusrated
further in this pgper. Moreover, priority sgnd handling is done usng ether software
means (additiond polling through dasy-chaning) or hadware means (using
progranmeble peripherd devices or dasy chaning udng extend hadwae) both of
which are quite ineffident and indegant ways to handle priorities in control dominated
tasks.

This paper describes a nove processor core, cdled REFLIX, which is amed a reective
embedded applications. REFLIX provides a primitive st of features and indructions
uited to reective sysems in addition to a st of dandard st of indructions found in
common microprocessors and generic indructions to control externd hardware functiond
units. The proposed approach provides mechanism to avoid busy waiting associated with
polling, when required, and context switching associated with interrupts for control
dominated tasks. The environment interaction modd of a reective programming language
cdled Egerd [3] ingires this mechanism, but does not follow fully the Ederd
semantics. The mgjor cartributions presented in the paper are the following:

a) Support for reactivity through a st of naive indructions is incorporated in
REFLIX, which ae lacking in previous achitectures All indructions, induding
those that look like convertiond indructions for polling, peform in the same
time tick that is equd to 4 machine cycles contributing to both efficdency and
predictability of program execution.

b) Support for preemption and priority resolution based on externd events wsing a
new native indruction cdled ABORT, which can be nested to achieve priorities
of extend events. This is an extremey important festure for implementation of
control-dominated rea-time tasks.

c) Reusability of the core for different embedded applications and ther varidions is
achieved primaily by change of an goplication program; hence efficient
implementation of control-driven software with the ability for compiling new
Ederd-like spedficaions to REFLIX indructions directly. In case of need a
further hardware customization can be achieved usng parameterized nature of the
processor core description.

The paper is organized as follows. Sections 2 and 3 give an overview of the rdated work
and explan the background and motivation of REFLIX desgn and some of the mgor
features tha support reactivity. In section 4, we introduce the mgor REFLIX festures
with the emphass on those that support reactivity. Section 5 gives a flavor for REFLIX
programming when usng the reective indructions. In section 6 we describe the REFLIX

data path and control unit together with some implementation detalls Section 7 gives
some further performance comparison usng a st of goplication benchmarks. REFLIX is
fird compared to origind FLIX core and demondrates manifold speedtup in dominently
rective tasks. The same benchmarks are used to demondrate REFLIX's low memory
footprint compared to footprint of Standard microprocessors. Section 8 presents some
concdluding remarks related to the current implementation and limitations of the current
design and the scope for future work.

2 Rdated Work

One of the trends in implementation of embedded sysems, such as cdl phones, medicd
agopliances, home gppliances, and gmilar gpplications, is to rey on agoplicaion-specific
processors that better match requirements of those applications than generd-purpose
indruction processors [4]. There ae severd approaches suggested or used for
cusomization of those processors Some of them rdy on using exising architectures,
such as those from ARM or MIPS [5, 6, 7]. Standard fixed processor cores are connected
to programmable logic to implement additiond indructions and functions. Some of the
solutions employ parameterized processor cores that are customized a the time of ther
compilaion/synthess for FPGAs such as Altera NiOS processor [5], or in runtime
during sysem opeaion [8, 9. Some other processor cores [10,11] provide generic
mechanisms for new indruction implementation. These indructions ae executed in
functiond units externd to the processor core and are readily supported by software. A
further step towards generdization has been proposed in [12], where a number of
processor “templates’ is used to provide a framework for different customization
drategies. All above processors have generd-purpose RISC-type architecture with more
or less typicd indruction ssts common to RISC-type processors. None of those
processors addresses aspects of reactive gpplications by supporting generic mechanisms
for reectivity and preemption beyond usud interrupt dructures found in conventiond

jprocessors.

3 Background and Motivation

REFLIX processor operation is inspired by Esterd, which is a synchronous reactive
programming language that provides a neat st of condructs for modding, verification
and synthess of reactive sysems. Edterd language has been used in the pagt for
specification and verification of processors [13], generation of hardware circuits [14] and
for rgpid system prototyping [15]. The environment of any Ederd program condsts of a
st of sensors and dgnds, which can be modded abdtractly usng condructs avalable in
the language. The activation dock of the Edterd program is a predefined event cdled the
tick event. During every tick the Esterd kernd samples its environment and performs a
set of instantaneous reections based on the vaues present in its enviroment during the
present tick. The main congructs for interacting with the environment are await (which is
a dday condruct), emit (which peforms sgnd emissons to the environment), sustain
(which sugtains a dgnd forever), abort (which is preemption congruct), and trap (which
is dmilar to software interrupts). Ederd is dso a concurent language and its modd of
concurrency is known as synchronous broadcast which means that input and the
corresponding output both occur a the same indant fick) and adso an event generated in
any concurrent module is ingtantaneoudy broadcasted to dl other concurrent modules. In
addition to such condructs for control flow Egterd supports data handling through a
auitable host language such as C or Jawa Daa handling can be dther peformed
synchronoudy (cosumes no time) by peforming procedure cdls (which are defined in
the hogt language) or asynchronoudy (tekes time) using tasks (which are dso defined in
the hogt language).

REFLIX is a processor core dedgned to follow man idess of Egerd is environment
interaction modd. REFLIX provides a st of ndive indructions suitéble for reective
sysems in addition to providing standard ingructions for data processing. These include
native fadlities for delay, sgnal emisson, priorities, preemption and task execution
fadility usng functiond units The man unsupported Ederd fegture is concurrency
(pardld execution), which must be implemented in a smilar way as it has been done

when Ederd is compiled for execution on standard microprocessors. In order to meke its

implementation essy we used our cusomizeble FLIX core [10,11] as the bass for the
REFLIX design.

By adopting and supporting Ederetlike modd for reactivity on machine indruction
level, we achieve two mgor gods

a) the same processor core can be used to implement different reactive dgorithms
for different gpplications by changing only programs and not processor hardware
and

b) presave peaformance predictability by guaranteeing execution times for dl

primitive ingructions.

In this way we provide a generic plaform for implementation of a large cdass of
embedded applications, which would othewise be implemented eather by separady
gynthesized hardware (usudly finite sate machine - FSM) or by software means tha can
be implemented on standard microprocessors but with many difficulties.

Origind FLIX processor supports cusomizetion by dlowing the desgner to add new
indructions or resources to the datapath by implementing new functiond units (FUS).
This fegture is very convenient for desgning embedded gpplications as the core can be
cusomized based on the gpplication requirements. In REFLIX, we have extended FLIX
core by providing ndive indructions for preemption, priority, dday, suspenson ad
ggnd emisson while presarving its flexibility for cusomization of the data processng
pat. Some of the key features of the FLIX core have been preserved in order to support
the notion of its locd time and “time tick” by executing dl naive indructions in egud
time that corresponds to one “system tick”.

A quditaive comparison of different implementation drategies of embedded gpplications
and our mativaion for REFLIX devdopment are summarized in Table 1. Reactive
features in embedded sysems may be mapped into finite date machines (FSMs) and
ubsequently synthesized as custom logic. Alternatively, a generd purpose processor may

be used to implement such reective festures usng interrupts. The proposed goproach is a
novd intermediate approach that combines the efficiency of the FSMs and the flexibility

of conventiona processor.

Table 1 Qualitative comparison of embedded application implementations

Implementation Advantages Disadvantages
approach
Reactive behaviors mapped Not suitable for non-reactive
HDLs and hardware onto FSMs parts
implementation Small footprint and cheap Each application and
implementation modification requires full
Supports real parallelism synthesis
Good handling of non- Largefootprint (memory
High-Level reactive parts requirement)
Programming Easy for modification Often requires RT OS and
Languages High abstraction level appropriatescheduling
Sow in reacting to events
Difficult to integrate non-
standard interfaces
Complex compilation process
Complex context switching
increases overhead
Emulates parallelisms by
serialization of concurrent
activities
Smaller footprint (memory Low abstraction level
Native Standard regquirements) Unsuitable reactive behaviors
Microprocessor Ease of control of low-evel mechanisms
Assembly details Difficult to integrate non-
Languages Relatively easy for behavior standard interfaces
modification Emulates parallelisms by
Low abstraction level serialization of concurrent
Easier to integrate non- activities
standard interfaces Oftenrequiresrea-time
Faster reaction times operating system (RTOS) or
kernel
Small footprint Low abstraction level for
REFLIX Specialized support for data processing
reactive situations Lessflexiblefor algorithm
Fast reaction and response modifications than HLLs
times No support for true
Customization at both parallelism
hardware and software level Requires RT OS or kernel to
Ease of behavior support concurrency
modification
Generic support for
hardware implemented
functional units
Easy to verify behaviors
Can support reactive HLLs

4 REFLIX Core Features

In this section we introduce the main architectural features of the REFLIX processor and
describe the main idess that lead to its desgn. The current verson of REFLIX has
adopted origind FLIX core for its base with removd of the interrupt sructure and
asynchronous event handling dtogether. REFLIX presarves FLIX wad length (16 hits)
and indruction execution principles (4 machine cydes make one indruction cyde). Man
departures and extensons to the origind core that directly aim reective gpplications are:

Vaidde number of gngle-bit input sensor (Sin) and singe-bit output sensor
(Sout) lines The number of these lines is a dedgn parameter and can be
ingantiated for each specific application.

Introduction of internd timers tha generate user programmeable timing (TimeOut)
ggnds. Number of internd timers is customizable and is represented by a desgn
parameter. TimeOut dgnds can be used for interaction with the environment or
can be fed back to the REFLIX core itself and used for synchronization purposes.
Introduction of ABORT mechaniam for preemption, which is activated upon an
event occurrence. Any piece of code can be wrapped up in the ABORT dtatement
(@bort body) and immediady &bandoned in case tha an externd event on
oecified sensor input or timeout occurs. Usng nested aborts it is possble to
guarantee maximum one indruction cycle dday in response to a set of externd
events (including the time to resolve event priorities).

Introduction of other indructions that support reectivity in the native ingruction
St

These new features are primarily visble through the REFLIX programming modd and its
ingruction <.

REFLIX cores extand (inteface) view is presented in Fgure 1. In addition to the
common and above mentioned ports, it dso contains three specific ports

T, which provides information on the current processor machine cycle.

IRBUS, which provides the access to currently executed ingdruction operation
code and can be used by externd hardware (eg. to Sat operation of an externd

functiond unit).

EndFU, which provides feedback information on the status of externd hardware
(eg. functiond units) smilar to [10].

Din[15..0]

—

Sin[15..0]

—_—

EndFU[3..0] -
—.
Clk
I

REFLIX

Dout[15..0]

—
A[15..0]

RIW
—_ >
T[3..0]

—

IIRBUS [15..0]

—>

TimeOUT[3..0]

—

Sout[15..0]

—

4.1 Native Reactive I nstructions

Figure 1 REFLIX external view

The origind FLIX indruction set is gopended with new group of indructions that support

reactive processng. There are saven badc indructions in the reactive category and they
ae presented in Table 2. Mogt of REFLIX indructions are only one word long, but some
of the reactive indructions require two words for immediste operands or address

information.

Table2 REFLIX instructions supporting reactive processing

Feature Instruction syntax Instructi | Function/Description
on
Length
(words)
Preemption | ABORT signal, address 2 Preemption instruction. ABORT has
abody up to the instruction whose
address isindicated in the instruction
(called continuation address since
after preemption program continues
from thisaddress). signal can be
either an external one or aTimeOut
received from internal timer.
Signal EMIT signal 1 The specified signal is set high for one
emission instruction cycle
Signal SUSTAIN signal 1 Specified signa is set high forever
sustenance (indefinitely)
Signal SAWAIT signal 1 Wait until the specified signal occurs
polling
Delay TAWAIT delay 2 Immediate delay— wait until specified time
elapses (wait at least one system tick - timeis
expressed in the number of instruction cycles)
Conditional | CAWAIT signall, signal2, | 2 Wait until either signal 1 or
signal address signal 2 occurs. If signal1
polling occursthen execute instructions
from the address following this
instruction, else from specified address.
Signal PRESENT signal, address 2 If signal is present the next instruction is
presence fetched from the next consecutive address.
Otherwise, it is fetched from the specified
address.

Two indructions generate externa Sgnds (outputs), which can last one sygem tick
(EMIT) or indefinitdly (SUSTAIN). The next tree indructions, SAWAIT, TAWAIT and
CAWAIT, provide wating mechanism on events on extand dgnds and timeouts
(generated by internd timers) and are used for synchronization purpose. The duration of
time to wat is under the explicit program control. PRESENT indruction provides a
mechanian for conditiond execution depending on the presence of the specified sgnd.
Findly, ABORT is preemption and priority resolution ingruction which is explaned in
detall in the next section.

4.2 Semanticsand I mplementation of Preemption Support

Native ABORT indruction is introduced to support preemption with priorities In the
current REFLIX prototype ABORT indruction can work with up to 16 different externd
input sgnds and up to four internd timers generated Sgnds. ABORT indructions can be
neted to support up to four levds of priorites These numbes ae obvioudy
implementation dependent and can be changed as the design parameters for the REFLIX

parameterized core.

An ABORT indruction is active from the indant it is executed until its entire body is
executed or until an event on the sgnd occurs that preempts dl unexecuted indructions
within the body. Format of theingruction isasfollows:

OPCODE (10) Timer(2)/Signal(4)

Continuation-address (16)

Two different operation codes are used for abort operations one for an abort on an
extend sgnd and the other for an dort on a timer. The ABORT indruction is executed
in two stages with the support of a dedicaied hardware unit cdled the abort-handing
block (AHB):

Abort activation. It is executed immediaidy after fetching and decoding the
ABORT indruction, when REFLIX dats monitoring change (activation) of the
desgnated sgnd. Continuation address, from where the program will continue
execution if preemption hgppens is dored into the REFLIX abort hendling
block.

Abort termination Once the desgnated sgnd is activated, abort is teken and
an unconditiond jump to the continuation address is executed, or, if the
continuation address is reeched and the desgnaed dSgnd has not been
activated, the abort is automatically terminated.

The aort handling block (AHB), which is a pat of the REFLIX datapath, supports
nesting and prioritizing of abort datements The AHB contains active abort signd
regiger (AASR) block with 4 regigers with a length that equas to the number of input
sensng sSgnds, which can abort curent program execution. Regisers are used to dore
the code of the sgnd line that darts to be monitored for sgnd activation. Each sgnd
line has a unique code generated using a one-hot encoding scheme (only one bit can have
a vaue 1). The addresses of the AASR registers, 0 to 3, a the same time represent, in
ascending order, priorities of dgnds tha ae monitored. The fird executed ABORT
indruction aways dores the monitored sgnd code into AASR(0), next neted ABORT
indruction dores its monitored dgnd code into AASR(1), and O on. Summay
information on dl currently montored sgnds that can abort program sequence is stored
in joint abort 9gnd regiger (JASR). Its vadue is obtained by bit-wise OR-ing vaues of dl
AASRs

JASR =AASR(0) + ...+ AASR() fori=0, 1, ..., 15

As JASR cannot presarve information on priorities of monitored dgnds, each AASR is
asociated with a sngle bit flag cdled abort flag (AF), and individud AF bits will be sat
if the corresponding AASR regigter (with the same address) is non-empty (with AF0)
being 1 for the highest priority monitored sgnd). The summary joint abort flag (JAF)
cortains information on the presence of monitored Sgnds, or

JAF = AF() + AR(1) + AF(2) + AF(3)

REFLIX control unit determines an action path during indruction execution based on the
vaue of the JAF bit asit is shown in section 6.

Ancther regiser block contains four active abort address regisers (AAARS), which are
used to dore the continuation addresses of currently active abort indructions. The highest
priority ABORT indrwction's (outermost one) continuation address is in AAAR(0), next
lower priority continuation address is in AAAR(1) and s0 on. Signd input regiger (SIR)

is used to capture (latch) ectivation of dgnds on individud input sendng lines This
information is used, together with the information on currently monitored Sgnds, to
identify the presence of pending (nonprocessed) abort events. For that purpose, another
flag, cdled the pending abort event flag (PAEF) is introduced and used by REFLIX
control unit to provide proper and immediae reection when events on monitored sgnd

lines occur. Itsvaueis derived as

PAEF = (SIRy JASR) + ...+ (SR15 JASR;5)

The abort termination stage is executed when a monitored event occurs, or when abort
indruction reeches its continuation address without occurrence of event. Termination of
an ABORT indruction causes adso the terminaion of dl other ABORT ingruction nested
within its body that are of the lower priority.

It should be noted that both JAF and PAEF flags are not programmer visble. However,
they can be made such and used in new currently non-implemented ingructions to enable

acertain leve of programmer’s control over reactive core fegtures.

Two pointers, cdled the aort read pointer (ARP) and the abort write pointer (AWP), are
used to up-date addresses of regigers within the AHB from which information will be
reed or written to. However, these pointers are not a part of the programming mode as
they are not user vishle They are used only by the control unit and can be conddered as
its part. They are effectively 2-bit (mod 4) counters, which are initidized to a vdue 0 on
the system power-up or reset.

Other pats of the progranmming modd include ggnd output regiger (SOR) with
individualy controllablefwrittable bits and pool of timers which gopear as memory
mapped regigers with some progranmable fegtures. The levd of their programmability is
goplication dependent and can be cudomized by the sdection of configuraion (VHDL
generics) parameters. Their meanings are more or less obvious and they are described
further in the following section where we discuss REFLIX data path.

5 Programming Examples

In order to get a flavor of programming a a low levdl when reactive ndive indructions
are avallable, in this section we congder afew smple code examples.

5.1 Pump Controller Example

Condder for example the following specification of asmple pump controller [8]:

A pump controller is used to control the operation of a pump inside a mine which may have high methane
levels. The pump is used to pump out water (whenever the water level exceeds the desired level) provided
the methane level is below the desired level (RIGHT-METHANE). Whenever, methane level goes above this
desired level (NOT-RIGHT-METHANE), the controller must stop the pump and wait until right methane

level isrestored.

An implementation of this specification usng REFLIX assembly language is asfollows

start1:
ABORT NOT- RI GHT- METHANE ADDR
#abort body
| oop:
SAWAI T HI GH WATER- LEVEL
EM T START- PUWP
SAVAI T LOW WATER- LEVEL
EM T STOP- PUWP
JMP | oop
#end of abort body
ADDR:
#handl e exception
EM T STOP- PUWP
SAVWAI T RI GHT- METHANE
#return to resune normal operation
JWP startl

The pump controller is implemented in two pats normd behavior, which is enclosed by
an ABORT daement (preemption mechanism in REFLIX), and exception behavior,
which is provided from the continuation address of the ABORT (when the body of the
ABORT is preempted, program control resumes from this address). The behavior of the
ABORT body has an SAWAIT daement (for usud polling of a sgnd) that samples the
water levd. Whenever water levd is high (HIGH-WATER-LEVEL triggers) sgnd
START-PUMP is emitted, to dat the pump. This water levd is checked agan till it

14

reeches the low levd (usng another SAWAIT). Then the pump is immediatedy stopped
using ancther EMIT Statement.

This norma behavior is continued until endosng ABORT triggers. ABORT triggers
ether when the dgnd NOT-RIGHT-METHANE occurs in the environment and the body
has not finished execution or when the body terminates before this sgnd occurs. In this
example, ance the body is an infinite loop, it never terminates and ABORT triggers only
when the sgnd NOT-RIGHT-METHANE occurs.

When ABORT triggers, current indruction in the body is compleéed and the next
indruction is autometicdly fetched from the continuation address provided with ABORT
(in this case ADDR). So, whenever, NOT-RIGHT-METHANE is detected the pump is
immediatdy stopped (by an EMIT datement) and the controller waits for methane leve
to redore (RIGHT-METHANE is sensed usng ancther SAWAIT) before resuming
norma operation.

5.2 Extended Pump Controller Example- Comparison with a Conventional Microprocessor

In this section we consder how two of most important reective fegtures, priority and
preemption, are supported in conventiond microprocessors and how they compare with
REFLIX. We have sdected Intel 8051 microcontroller [16] to illudrate the idess.

Preemption. Congder the pump controller example, presented in the previous section.
now implemented using netive indruction st of Intel 8051

#setup interrupt vector
ORG addr
DD Hi ghMet hanLevel

#wait for high water |evel
start: MOV A, HI GH WATER- LEVEL
| oopl CINE A, PX, LOOP1
#wat er | evel high detect.start punp
MOV Px, START- PUWP
#wait for |ow water |evel
MOV A, LOW WATER- LEVEL
Il oop2 CINE PX, A, |oop2
#wat er | evel |ow detected; stop punp

MOV Px, STOP-PUMP
LIMP start

#l nterrupt service routine (ISR
Hi ghMet haneLevel
#save registers to be used in ISR
PUSH A
#stop the punp
MOV Px, STOP-PUWP
#wait for right methane |evel
MOV A, RI GHT- METHANE
loop CINE Px, A, |oop
#restore registers
POP A
#return frominterrupt

RETI

To handle preemption, an interrupt vector needs to be satup for handling high methane
level within the mine. The man routine samples the water levd and dats or sops the
pump gppropriaidy. The interrupt routine stops the pump when methane leve is not right
and waits until right levd is detected before returning to the man program. Even
ignoring the initidization and context-switching overheed, we have 13 indructions in
8051 compared to 9 indructionsin REFLIX.

Priority. To handle priority conventiond processors use ether software mechanism
(dasy chaning) or hardware mechaniam (externad peripherd). Software mechanism is
vay indficient as it uses palling after interrupt to determine the highest priority device.
The bhadware mechanism use extend peripheds such as programmeble interrupt
controller (Inte 8259 [17]) to resolve priorities and are quite inefficient. If, however, the
control dominated task is such that after handling an exception it is undesirable to return
to the main program, interrupt mechanism cannot be efficiently employed (as it forces the
return to the interrupted program).

Let us now congder adightly modified pump controller specification as given below [8]:
A pump controller is used to control the operation of a pump insde a mine which may
have high methane levels. The pump is used to pump out water (whenever the water level

exceeds the desired level) provided the methane level is below the desired level (RIGHT-
METHANE). Whenever, methane level goes above this desred levd (NOT-RGHT-

16

METHANE), the controller must stop the pump and wait until right methane leve is
restored. If at any time, however, the methane level is too high (NOT-RIGHT-METHANE
is only marginally high) then the pump must be stopped immediately and an ALARM must
be generated. Pumping is stopped until right methane level isrestored.

Note thet in this specification there is a higher priority preemption condition triggered by
HIGH-METHANE over NOT-RIGHT-METHANE. Priority is implemented in REFLIX
usng neding of ABORTs with outer ABORTs haing higher priority over inner
ABORTs Let us congder the following implementation of this spedfication usng
REFLIX indructions.

start:
ABORT HI GH- METHANE ADDR1
start1:
ABORT NOT- RI GHT- METHANE ADD1
#abort body
| oop:
SAWAI T HI GH- WATER- LEVEL
EM T START- PUVP
SAWAI T LOW WATER- LEVEL
EM T STOP- PUWP
JWP | oop
#end of abort body
ADDR:
#handl e exception
EM T STOP- PUWP
SAVWAI T RI GHT- METHANE
resune normal operation
JMP startl
ADDL1:
#handl e hi gh met hane
EM T STOP- PUWP
EM T ALARM
SAWAI T RI GHT- METHANE
JUWP start

In this implementaion, HIGH-METHANE has higher priority over NOT-RIGHT-
METHANE. Hence, whenever HIGH-METHANE is detected, the pumping is stopped
and dam is geneaed (if HIGH-METHANE and NOT-RIGHT-METHANE occur in the
same indant, the inner ABORT will be ignored and the outer ABORT will trigger). This
exanple illudraes the gmplidty of priority hending in REFLIX. In a conventiond
processor implementation of this would require severd initidization seps (aither to satup

17

a programmable interrupt controller hardware or to setup vector addresses in a processor
that supports priority interrupt sructure). ABORT provides an eegant mechaniam to
incorporate priorities in control-dominated tasks usng smple neding of aborts. Also, the
overhead associated with context switching is completdly diminated, snce this is not a
requirement for the task involved.

6 REFLIX Architecture and Implementation

The REFLIX daa pah with emphasized differences to the origind FLIX data path [11] is
shown in Fgure 2. The data pah is organized around two internd buses, cdled ABUS
and DBUS, which are used for transfers of address and data information between internd
regisers, respectivey, and enable to cary two regider transfers, between two pairs of
regigers, a the same time (machine cycle). The abort handling block (AHB) is shown
with the shaded background in Figure 2.

One of the mgor issues in the overdl REFLIX desgn was to fit it within the basc and
vay dmple FLIX framework and to pressarve some of the origind core features, which
have been found useful in a number of cugtomization projects. The indruction cyde is
one of those features, which permits each of the indructions to be completely executed in
four machine cydes. This leads to an easy mantenance of time, both the REFLIX globd
(dbsolute) time and individud timing reaionships egpeddly those which use locdly
generated rdative times and timing bassd events. Both the globd dock and locdly
generated non-overlapping four clock pheses are available to externd logic to drive
externd dircuits (including FUS).

A oconceptud REFLIX indruction execution cycle, which dso depicts contrd unit
operation, is shown in Fgure 3. Upon powe-up or reset REFLIX goes through the
intidization phase to set initid conditions for al regigers Then, it enters indruction
execution cydes in which priority is given to the handling of preemptions tha hawe been
awaited for by previoudy executed ABORT ingructions. All events on monitored sgnds
(ABORT triggers) recorded during one indruction cycle will be given dtention in the

next indruction cyde (tick of time). In case of the disence of pending events, the control
unit performstwo actions

Next indruction is fetched from memory and executed. Although there is no
goecid difference between indructions, the ABORT indruction is emphasized
in diagram of Figure 3, asit carries operations on the reggers of the AHB.
Nortpreemptive termination of ABORT indruction, if any, is peformed in
pardld with ingruction fetching and execution.

For REFLIX implementaion and prototyping we have used fidd-programmable logic
devices (FPLDs). There two mgor reasons for this (a8 FPLDs provide an ided
prototyping environment with very fast turnaround time between two versons of the
desgn, and (b) with the appearance of huge FPLDs with millions of usable equivdent
gates, it becomes feasble to build whole systems on programmeable chips (SoPC).

In addition, FPLDs are accompanied by advanced design tools and HDLs tha enable
paandeizaion of dedgns which can be rddivdy essly cusomized for gpecific
goplications. This aspect of the REFLIX design has not been emphasized in the paper.
The fird implementation is used a a proof of concgpt and incorporates only
parameterization of some of the resources, such as number of timers, number of sensng
input 9gnds, number of output sgnds and number of priority levels of externd events
(depth of nesting of ABORTS).

Dout

Din Original FLIX Core Data Path [11] Address
IRBUS
g
/
4X16 /
DEC /
Abort
AF .
e > Handling
' Block
i JAF
i JAF >
! AAAR
) »
I
']
i |
ARP |
AWP RS -
A 4
> AASR
—» PAEF
< JASR B AND PAEF
| + _| > [
/ |- »
7 > SIR » OR
Sout
»l SOR / 5
»”| / .
o TimeOou
> Timer Pool t=
ABUS
DBUS

Figure2 REFLIX data path

Initialize FLIX part (PC, SP,
PR, PD)
Initialize Reactive part (AWP,
ARP, JAF, PAEF, SIR, SOR)

A

Fetch next instruction

Check for
non-

1 termination of
 RLIX ABORT (de-
instruction ABORT activate if
execution execution necessary)

cycle (activation)

1
1
1
1
1
1
1
1
1
1
1
1
:
1
preemptive :
1
1
1
1
1
1
1
1
1
1
1
1
1
1

A

Preemptive
termination of
ABORT

Figure 3REFLIX control unit conceptual operation

7. Implementation of the ABORT M echanism

The &ort mechanisn consds of twodage process, abort activation peformed by
ABORT indruction execution, and abort termination, performed when preemption occurs
or by naturd expiration of the need for an event monitoring.

7.1 ABORT instruction execution

Activation of the abort mechanism and dat of monitoring of specific sgnd is initiated
explicitly by progranmer usng the ABORT indruction. The ABORT indruction
execution is dmilar to dl other indructions. Once ABORT indruction is fetched and
decoded, it is executed in two machine cydes (T2 and T3) asillugrated in Figure 4.

[ABORT Instruction]

.

AASR(AWP) € decoded(signal)
AAAR(AWP)< M[PC]

JASR< JASR + decoded(SIGNAL) T2
AFAWP)<1
PC< PC+1 T3

AWP < AWP +1

1

[Start new instruction cycle]

Figure4 ABORT instruction execution

Frs, the one-hot-encoded code of the sgnd that will be monitored is stored to the next
location in AASR and continugtion address is trandferred from memory (second
indruction word) to the next location in AAAR. The JASR is updated to record dl
monitored sgnds, and corresponding abort flag is s&t. In the next cyce (T4), the vaues
of program counter and AWP pointer are updated.

7.2 Preemptiveabort termination

The dgorithm for preemptive termination of abort indruction is presented in Figure 5.
The dgorithm first checks the vaues of abort flags in the order of ther priority. The firg

active one corresponding to a pending ABORT sgnd that triggers will be taken. Program
execution continues from the corresponding continuation address. Abort write and read
pointers are updaed accordingly and abort flags renitidized. For example, if an event
with the highest priority has occurred, its index i is st equd to O, and dl abort flags are
cleared. In case of any other event, dl abort flags with equa or the same priority will be
cdeared, and those with higher priority will be l€ft intact.

FORi=0TO3

IFAF(®)=1THEN
; Check event occurrence
IFAASR()) AND SIR <> 0THEN
PC < AAAR(i); continuation addressinto PC
AWP & i; update AWP and ARP

ARP & i;
FORk=3TOIi
AF(K) € O; reinitialize abort flags
NEXT k;
CLEAR SIR; clear signal input register
EXIT FOR,;
END IF;
END IF;
NEXT i;

Figure5 Preemptive abort ter mination

7.3 Non-preemptive abort termination

A non-preemptive abort termination hgppens whenever program execution reaches any
continuation address The only action, which has to be caried out, in this cae is to
deactivate corresponding abort and update dl internd registers (AF, AWP and ARP).
This operation can be peformed in padld with any other indruction execution except
with the ABORT indruction itsdf. For this purpose, a sepaae finite state machine
(FSM) checks the vaue of the joint abort flag (JAF). In case the JAF is s, the FSM
checks whether any of the ABORT indructions has to be deactivated (naturdly
terminated) and up-dates gppropriate regigers within AHB. This FSM can be consdered
& a pat of the AHB itdf. The dgorithm implemented within the FSM is shown in
Fgure 6.

TEMP € FC;
IFJAF=1THEN
FORi=0to3
IF TEMP=AAAR() THEN
AWP < i; update AWP and ARP
ARP < i
FOR k=3TOI
AF(K) €< O; reinitialize abort flags
NEXT k;
EXIT FOR;
END IF;
NEXT i;
END IF;

Figure 6 Non-preemptive abort termination

The dgorithm darts a the beginning of each indruction cycle The current ingtruction
address (program counter) must be temporarily saved in the TEMP regider as it has to be

compared with the continuation addresses gtored in the active abort address regigers. The
vdue of the progran counter itsef will be changed by execution of the current
indruction. If the vdues of TEMP and any of AAARs mach, corresponding abort must
be deactivated by up-dating values of appropriate registers

8 Results of Performance Comparison

In this section, we present comparisons of REFLIX core to some smilar standard

microprocessors. As the benchmarks we used the following typica control dominated
goplications, initidly written in Ederd and subsequently mapped to a number of standard

MiCroprocesors:

Trangmisson control protocol (TCP) trangmitter [18]: TCP is a connection-
oriented protocol used in the TCPIP which uses three way handsheking for

24

connection edablishment and termination. This involves sending and recalving
severd synchronizing messages and is control dominated. We have modded the
transmitter behavior here.

TCP receiver [18]: We have modded the TCP receiver behavior here.

Satyp benchmark which buillds a ssgment of the call mode modem sartup
procedure [19]: This gpplication modds the dartup procedure of the cal-mode
modem. It is control dominated and involves sending and receiving pecific
streams of characters (of specific length) during Sartup.

Pump controller gppliction [20]: This is an gpplication which controls the
working of a pump indde a mine with high methane levels and is a typicd control
dominated application with both preemption and priority.

An automdic tdler machine (ATM) controller [21]: This modds a subsst of the
ATM behavior focusng on control dominated actions and preemption and
priority.

A traffic light controller [22]: This code was avalable as pat of POLIS codesign
tool digribuion [23]. We dightly upgraded it by adding a bus-lane and
incorporated priorities

A lift controller [21): We have modded this goplicaion which is control
dominated involving sampling of 9gnas Sgnd emisson ec.

In dl these gpplications, we abdracted the data handling code and only focused on the
reective code (as a result the benchmarks are smdl). As our firdg comparison, we
compared the execution time for FLIX and REFLIX over the same gpplication programs.
They are compiled and executed for both REFLIX and FLIX. Table 3 indicates the totd
number of indruction cycles for each of these benchmarks Since the indruction cycle
duration of FLIX and REFLIX ae identicd, comparing the number of indruction cydes
is equivdent to the execution time. On an average, REFLIX turns out to be 592 times
fager than FLIX while executing these control-dominated programs. This shows that an
exiging processor can be modified to enable more efficient implementation of the same
control dominated gpplication programs.

Table 3 Comparison of execution time of REFLIX and FLIX in instruction cycles

Levelsof
Application ABORT REFLIX FLIX Speedup
nesting
TCP Transmitter 0 10 46 4.6
TCP Receiver 0 9 11 4.55
Startup 25 25 102 443
benchmark
Pump Controller 2 14 83 5.92
ATM Machine 3 26 244 11.9
Traffic Light 2 25 152 6.6
Controller
Lift Controller 0 29 116 414
Average 5.92

We have made comparisons between REFLIX and a number of popular processors in
terms of thelr code Sze (which plays an important role for embedded goplications [24])
and execution times for the same st of control dominaied agpplications which have
initidly been written in Ederd and then manudly trandated into the native code of each
of those processors (Motorola 68HC11 [25], Inte 8051 [16] and 16-bit NiOS [26]). Teble
4 shows a clexr advantage of REFLIX in tems of compactness of code and smdl
memory footprint. The execution times, shown in Table 5, are expressed in the number of
sysem dock cyces for each of the processors. Absolute execution times may be
cdculated by multiplying these figures with sysem dock period, which depends on the
concrete processor implementation. We should note that figures used for FLIX and
REFLIX are for the non-pipdined verson of the processors (implemented in the current
prototype). If pipeined verson is usad, those figures will be reduced by afactor of 3.

Table4 Code size comparison for some benchmarking examplesin words

Application REFLIX FLIX 8051 68HC11 NIOS-16
TCP Transmitter 10 46 20 31 46
TCP Receiver 9 41 28 18 41
Startup 25 102 48 76 A9
benchmark
Pump Controller 14 83 5B 56 80
ATM Machine 26 204 102 163 219
Traffic Light 25 152 0 114 147
Controller
Lift Controller 29 116 5 79 116
Average 19.7 112 46.7 778 106.1
Table5 Execution time comparison (in the number of system clock cycles)
Application REFLIX FLIX 8051 68HC11 NIOS-16
TCP Transmitter 40 184 240 64 46
TCP Receiver 36 164 216 58 11
Sartup benchmark 100 408 972 200 A
Pump Controller 56 332 708 146 s8]
ATM machine 104 976 2040 446 219
Trafficlight controller 100 608 1320 275 147
Lift controller 116 464 732 188 116
Average 788 448 889.7 196.7 106.1

Findly, Table 6 presents some example implementation figures for FLIX, REFLIX and

Altera NiOS processorsin the same FPLD device (APEX EP20K200EFC484-2). Ascan

be seen from these figures, implementation of reactive featuresin REFLIX processor

requires very smdl increase of logic dements compared to non-reective version of the

processor with a minima impact on maxima clock frequency.

Table 6 Resour cerequirement comparison for some of the FPGA implemented processor s

Maximal Minimal Logic Embedded

Pr ocessor clock machine elements memory

frequency cycletimeT LE blocks

(MH2) =1/f (ns) utilisation (ESB)

NIOS 1.1 Reference 37.5MHz 0.0266 ns 25% 14%
design
FLIX 3L8MHz 0.0314 ns 11% 0%
REFLIX 305MHz 0.0327 us 13% 0%
9 Conclusons

The REFLIX gpproach proposes a nove way for supporting resctive systems a the
hadware levd. Ingoired by the Eded laguage, the fird REFLIX
implementation supports deding with input and output sgnds in a Ederd-like modd of
computation, without
synchronization and preemption on random and timing dgnds REFLIX enables writing

pr CES0r

true concurrency. However, by supporting condructs for

pragrams, which can be eadly veified REFLIX programs ae predictable in ther
tempord performance and provide guaranteed reection times on externd events without
unnecessaty overheads and context-switching found in conventiona microprocessors.
Processor supports notion of time, which can eaesily be derived based on the fact that each
ingruction performsin time equd to 4 machine cycles.

We built a prototype processor, REFLIX, by extending the open source FLIX processor
core with naive support for reactivity and a new preemption mechanisn cdled ABORT.
We then compared execution time of the same processor core without and with reactivity
support (FLIX vs REFLIX) on a set of control dominated agpplications and obtained an
average oeedup of 592 times We made memory footprint comparisons of REFLIX and
a st of conventiona processors. This comparison dearly shows the advantage of using
native reactive indructions over usng common indructions to ded with reectivity.
REFLIX produced consderably more compact code compared to dl these processors.
Execution time comparisons are rddive (in teems of sysem dock cydes) and obvioudy
depend on the maximum sysem dock frequency. Maximd system dock has been found
for FPLD-implemented processors, and it shows no dissdvatage of the REFLIX

architecture. Findly, as the new processor is implemented in an FPLD, we have shown
its feeshility and low resource reguirements compared to the requirements of initid

processor core and standard microprocessor implementation in the same device.

REFLIX architecture is based on a concept of flexible indruction execution unit, which is
wel suited to embedded sysems by keeping the core smple and smdl (essentid for
embedded sysems) and providing fadlities for interaction with a set of functiond units
to achieve more complex tasks (which is dso very dmilar in soirit to the Esterd tasking
modd).

The mgor limitation of the current implementation is that it does not support fully Eserd
modd of computation, which is one of our gods paticulaly true concurrency and
vdued sgnds Despite of tha, we have found a number of applications that can be

described much more dealy and concisdy than with the naive/assembly languages of
the conventional processors, which do not have smilar support for reectivity, and dso
verified usng forma methods.

Refer ences

[1] Had D. Saechats A Visud Formdism for Complex Systems Sc. Comput. Prog.,
8; 1987, pp. 231-274

[2] Prudi A. Applicaion of tempord logic to the specification and verification of
reective syfems a survey of current trends, Lecture notes in computer science, 224;
pp. 510-584. Springer Verlag, 1986

[3] Bary G. and Gonthier G. The ESTEREL synchronous programming language, Sc.
Comput. Prog., 19; 1992, pp. 87-152

[4 Fsher JA. Cudomized indruction sets for embedded processors. In Proc. 36th
Design Automation Conference, 1999, pp. 253257

[5] Altera Corporation. Excalibur Embedded Processor Solutions, http:/mww.atera.com

[6] Triscend. The Configurable System on a Chip, http://Awww.triscend.com

[7]] Xilinx Corporation IBM and Xilinx team to creste new generdtion of integrated
creuits, http:/Avww xilinx.conv/prs risibmpartner.ntm

[8] Wirthlin M and Hutchings B. A dynamic indruction set computer. In Proc. |EEE
Symp. on Hdd Progranmeble Cusom Computing Machines pp. 99-107. |EEE
Computer Society Press, 1995.

[9] Donlin A. Sdf modifying dreuitry - a plaform for tractable virtud circitry. In Fed
Programmeable Logic and Applications, LNCS 1482, pp. 199-208. Soringer, 19938

[10] SHdc Z. and Maunder B. “CCSmP - an Indructionlevd Cugom-Configurable
Processor for FPLDsS’, in Fidd-Programmable Logic FPL ‘96, Lecture notes in
Computer Science 1142 (R.Hartengein, M.Gloessner and M.Searvit editors), Springer,
1996, pp. 280-289

[11] Sdcdc Z. and Midry T. FLIX Environment for Generation of Cugstom-Configurable
Machines in FPLDs for Embedded Applications, Elsevier Journal on Microprocessors
and Microsystems, vol.23(89), December 1999, pp. 513-526

[12] Peng S P, Luk W. and Cheung PK.Y. Hexible indruction st processors.
Proceedings CASES 00, November 17-19, 2000

[13] Ramesh S. and Bhaduri P. Vdidaion of pipdined processor designs usng Esterd
tools, Proceedings of the 11" International Conference on Computer Aided
Verification, Springer Verlag, 1999, pp. 84 - 95

[14] Girault A. and Bery G. Circuit generation and verification of Edterd, Internationd
Symposum on Signds, Circuits and Sysems, Tech. Univ. las., Romania, 1999, pp.
890

[15] Bdachew M. and Shyamasundar RK. MSC/aup +/: From requirement to prototyped
systems, Proceedings of the 13" EUROMICRO conference on real-time systems, IEEE
Comput. Soc., 2001, pp. 117-124

[16] M. E. Schrader, R. Sridhar, T. Buechner, and P. P. K. Lee, “VHDL design of
embedded processor cores: the industry standard microcontroller 8051 and 68HC11”,
in |EEE International ASC Conference, 1998, pp. 256—259

[17] “Intel Peripherad Datasheets for 82C59 Programmable Peripherd Interface’,
http://devel oper.intel .con/desi gner/datasheets, 1995.

[18] Kurose J. F. and Ross K. W., Computer Networking: A Top Down Approach
Featuring the Internet, Addison Wedey, 1999.

[19] International Teleommunication Union, ITU-T recommendation v.32 edition, 1993.

[20] GomaaH., Software design methods for concurrent and real-time systers,
Addison+Wedey, 1993.

[21] GomaaH., Designing concurrent distributed and real-time applications with
UML, Addison-Wedey, 2000.

[22] Mead C. and Conway C., Introduction to VLS systems, Addison-Wedey, 1980.

[23] Bdain F., Chiodo M., Guigo P., Hseh H., Jurecka A., Lavagno L., Passerone C.,,
Sangiovanno-Vincentdli A., Sentovich E., Suzuki K., and TebbaraB., Hardware
Software Codesign of Embedded Systems- The POLIS Approach, Kluwer, 1997.

[24] Furber S, ARM systemon-chip architecture, Addison-Wedey, 2000.

[25] Spasov P., Microcontroller Technology: The 68HC1 1, Prentice Hall, 1999.

[26] NIOS Embedded Processor: 16-bit Programmer’ s Reference Manual,
www.altera.com

