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ABSTRACT
Esterel is a system-level language for the modelling, verifica-
tion and synthesis of control dominated (reactive) embedded
systems. Existing Esterel compilers generate intermediate
C code that is subsequently mapped to a suitable target pro-
cessor. The generated code emulates the reactive features
of the language due to lack of support for these features
on traditional processors. The resultant code is thus inef-
ficient and bulky. Therefore, Esterel is not so effective for
resource constrained embedded systems. This paper describes
a reactive microcontroller called RePIC that has native sup-
port for reactive features of the language. Limited support
for concurrent Esterel programs is demonstrated through a
dual-processor RePIC architecture. A new benchmark suite
for comparing the reactive performance of processors called
the Auckland Reactive Benchmark (ARE-Bench) is used to
demonstrate significant performance improvement and code
compaction due to the proposed approach. This paper, thus,
paves the way for resource constrained embedded system de-
velopment using a subset of Esterel supported by RePIC like
architectures.

1. MOTIVATION AND BACKGROUND
Embedded systems are application specific digital sys-

tems that continuously interact with their immediate en-
vironment and react to external events (also called reactive
systems). Esterel is a synchronous language, which is used
for the specification [2], verification [3,4] and synthesis [3] of
large reactive embedded applications such as aircraft flight
controllers. Recently, Esterel is attracting a lot of atten-
tion from design automation community [13] due to its clan
semantics that not only enables automatic design but also
formal verification [3, 14] of safety-critical embedded appli-
cations.

Esterel supports the modelling of delay, preemption, sig-
nal emission, synchronous communication, software inter-
rupts and synchronous and asynchronous data handling.
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These features make Esterel an ideal choice for system-level
modelling of reactive embedded applications. Some of these
features are illustrated through the example of an ATM ma-
chine controller as shown in Figure 1.

1 loop
2 emit insertCard;
3 await cardInserted;
4 abort
5 abort
6 emit enterPin;
7 await pinEntered;
8 await processingDelay;
9 emit selectOption;

10 await
11 case withdrawdo
12 await sumEntered;
13 emit processTransaction;
14 await transactionOK;
15 emit releaseSum;
16 emit printReceipt;
17 case checkBalancedo
18 emit processTransaction;
19 await transactionOK;
20 emit printReceipt;
21 end await
22 when incorrectPin;
23 when invalidCard;
24 emit ejectCard;
25 end loop

Figure 1: An ATM Controller in Esterel

Esterel, being a synchronous language, assumes a global
synchronous clock that generates a tick event. An Esterel
program samples its environment every tick to determine
the status of signals and sensors and engages in a set of syn-
chronous reactions. Any Esterel program is a collection of
modules, each of which is a basic programming unit. Each
module has an interface declaration part which declares the
signals and sensors in the environment of the program. Sig-
nals carry pure control information and are either present
or absent in a given tick.

Following the interface declaration part is the body of the
program. Being a reactive program, the body is an infinite
loop that encloses the main behaviour of the ATM (line 1).
Lines 2 and 3 model the emission of signal insertCard (for



one tick) and then delay until a card is inserted (using the
await statement). While emit is instantaneous like a combi-
national logic block in hardware, await has at least one tick
delay and is like sequential logic blocks. Lines 4 to 23 model
the actual behaviour of a typical ATM. This behaviour has
two parts: normal behaviour (lines 6 to 21) when a valid
card is inserted and the associated PIN is correct or abnor-
mal exception handling (line 23) when either an invalid card
or incorrect PIN is detected.

One approach to handle exceptions in Esterel is through
the abort construct, which kills its body whenever a combi-
nation of signals (specified as abortion condition) is present
in the environment. In the ATM example, the outer abort
statement (line 4) kills its body (lines 5 to 21) when an in-
validCard is entered. In this case, control jumps to line 23
directly. Abort incorporates preemption with static priority
through nesting of aborts where outer aborts take prece-
dence. In the ATM example, if both incorrectPIN and in-
validCard are simultaneously present then the outer abort
takes precedence.

In addition to these features, Esterel supports the notion
of synchronous broadcast communication among concurrent
threads. Synchrony implies that an input and the corre-
sponding output occur at the same time instant. Moreover,
whenever any output is generated, it is synchronously broad-
casted to all concurrent threads that may lead to a sequence
of outputs all of which have the same time stamp.

Conventionally, Esterel models of embedded systems are
either synthesized as software running on a microcontroller
[4-6, 13], hardware [7, 8] or a combination of the two us-
ing codesign as in POLIS [9]. Pure software implementation
involves the generation of intermediate code (in C, for exam-
ple) that is subsequently assembled to generate the desired
machine code. Such mapping of Esterel to intermediate code
is quite inefficient due to the requirement of indirectly sim-
ulating Esterel concurrency (through some form of schedul-
ing), inefficient mapping of signals and sensors to ports on
the microcontroller (through additional reaction code), in-
direct mapping of aborts and traps through interrupts and
polling. Thus, the generated code has huge memory foot-
print, even for simple applications, rendering Esterel inef-
fective for small hand-held embedded devices.

Direct compilation of Esterel to hardware obviously re-
sults in quite efficient realization supporting direct concur-
rency (unlike simulated concurrency in software). Pure hard-
ware implementation, however, has some problems like loss
of flexibility (new hardware needs to be synthesized for ev-
ery Esterel program) and higher cost. Hardware-software
solutions using codesign have been also proposed through
the POLIS tools. POLIS, however, uses a conventional mi-
crocontroller (such as PIC[1] and HC11[16]) for code gen-
eration using the automata compilers. This has the same
limitations of software compilers mentioned earlier. This
paper proposes an intermediate approach by extending a
commercial microcontroller (PIC [1]) to support direct exe-
cution of a subset of Esterel (so that the intermediate code
generation step can be bypassed). This is achieved by in-
corporating architectural extensions to PIC so that Esterel
can be executed directly on the new processor (RePIC, de-
noting Reactive PIC) preserving the semantics of a subset
of the language. A dual-processor RePIC based architecture
is also developed to demonstrate direct support for Esterel
concurrency. Table 1 provides a qualitative comparison of

existing Esterel compilation techniques with the intermedi-
ate approach (hardware support for flexible software gener-
ation from Esterel) suggested here.

Recently, a processor called REFLIX [10] has been pro-
posed to provide hardware and instruction set support for
mapping reactive embedded applications. REFLIX provides
direct support for pure signals, preemption, signal emission
and delay. It is demonstrated through a set of simple re-
active programs that REFLIX performs much faster and
generates more compact code compared to the original non-
reactive core. REFLIX, however, has no support for direct
execution of Esterel and does not preserve Esterel seman-
tics. Hence, Esterel programs could not be mapped on to
REFLIX directly. Moreover, REFLIX had no support for
handling real concurrency. As REFLIX did not support
Esterel semantics, only limited benchmarking comparison
was done using simple reactive programs without any data-
handling code.

The main contributions described in this paper are as fol-
lows:

1. A new reactive microcontroller called RePIC is devel-
oped by extending a commercial microcontroller called
PIC. RePIC supports direct execution of a subset of se-
quential Esterel code while preserving the synchronous
model of execution. A dual-processor RePIC architec-
ture is developed for the execution of concurrent Es-
terel programs while preserving synchronous broadcast
and the logical tick.

2. In order to measure the reactivity (efficient reaction
to external events) of processors, a new benchmark
suite called the Auckland Reactive benchmarks (ARE-
Bench) is developed for evaluating the performance of
processors. The ARE-Bench extends Estbench [11, 12]
(which was developed for the performance evaluation
of Esterel compilers) for the performance evaluation of
reactive processors.

3. Benchmarking comparisons using ARE-Bench demon-
strate that the proposed approach is superior in terms
of code size and execution time when compared to ma-
jor Esterel compilers. The huge compaction of the re-
sulting code suggests possible use of Esterel to develop
resource constrained embedded devices in the future.

The rest of the paper is organized as follows:
Section 2 presents the architectural extensions to PIC. Sec-
tion 3 presents how the proposed extensions preserve Esterel
semantics. Section 4 discusses some of the implementation
results and Section 5 presents the new benchmark, ARE-
Bench, and the results of benchmarking. The sixth and
final section is devoted to concluding remarks.

2. ARCHITECTURAL EXTENSIONS FOR
REACTIVITY

2.1 Features of the RePIC Core
The RePIC design is obtained by extending PIC while

preserving all its original features. RePICs external inter-
face and datapath are shown in Figures 2 and 3 respectively.
In order to accommodate the new reactive instructions, the
original PICs instruction length has been extended by one
bit. Other key extensions required to facilitate reactive ap-
plications are summarized as follows:



Table 1: Qualitative comparison of Esterel compilation techniques

Esterel Compilation Advantages Disadvantages

1. Reactive behaviours mapped onto FSMs. 1. Higher cost.

2. Small footprint and cheap implementation.

2. Loss of flexibility (each Esterel program and any 
modification requires resynthesis).

3. Supports real concurrency.

3. More difficult to map the C programs used in data 
handling.

1.Lower cost. 1. Large footprint (memory requirement).

3. More flexible (same microcontroller can run any Esterel 
program).

2. Scheduling overhead for simulation of concurrency.

4. Easy mapping of data-handling code. 3. Overhead for mapping of signals and sensors.

4. Complex compilation process.

5. Overhead for abort translation.

6. Overhead for priority resolution.

7. Emulates parallelisms by serialization of concurrent 
activities. 

1. Same cost as software (B). 1.Lower efficiency compared to hardware.

2. No overhead for signal mapping. 2. Complex approach to concurrency support compared to 
direct hardware.

3. No overhead for abort.

4. No overhead for priority resolution.

5. Fast reaction and response times compared to software.

6. Very compact code compared to software. 

7. Higher flexibility compared to hardware.

8. Limited concurrency support through dual-processor 
architecture.

RePIC and Direct Code Generation 
(C) 

Hardware implementation (A)

Software Implementation (B)

1. Introduction of four user-programmable internal timers
to generate four single-bit internal input signals upon
timer overflows.

2. Four I/O ports have been added (SIGINA, SIGINB,
SIGOUTA and SIGOUTB) to provide a total of six-
teen single-bit input signal lines (in which 12 are ex-
ternal input signals and the other 4 are the internal
timer-generated signals) and twelve single-bit external
output signal lines. These signal lines enable direct
mapping of Esterel pure signals to RePIC.

3. ABORT mechanism is introduced to handle Esterel
aborts and traps. This mechanism can replace stan-
dard interrupts when fast preemption is vital and there
is no requirement to return to the exact context.

4. Other new instructions, including EMIT, SUSTAIN,
PRESENT, TAWAIT, SAWAIT and CAWAIT are added
to support other Esterel-like reactive instructions (Sec-
tion 2.2).

5. Emission of multiple signals within a single instruction
cycle is supported in order to support the instantaneity
principle of Esterel.

6. Introduction of a logical tick in RePIC to preserve the
predefined tick event in Esterel(Section 3.1).

7. A dual-processor architecture is developed to demon-
strate support for concurrent Esterel programs.

RePIC 

Core

progdata[14:0] progadr[12:0]

ramdtin[7:0]
ramtout[7:0]

readram

ramadr[8:0]

writeram

porta_in[4:0]

porta_out[4..0]

porta_dir[4..0]

portb_in[7:0]

portb_out[7..0]

portb_dir[7..0]

rbpu

signal_inA[7:0]

signal_inB[3:0]

signal_outA[7..0]

signal_outB[3..0]

Int[3:0]

ponrst_n powerdown

startclkinmclr_n

clkin clkout

Note:
 Program ROM Data Bus / 

Address Bus

 Data RAM Data Bus / 

Address Bus/ Control Signals

 I/O Ports

 PORT-B Interrupt Inputs

 CPU Reset / Clock / Stop or 

Start Indicators

Figure 2: External View of RePIC

This is a prototype implementation and customizable im-
plementation of RePIC for a given Esterel program is easy.
The core has been fully described in VHDL with the use of
generics (parameters) to enable direct customisation to the
requirements of the program that will run on the processor.



2.2 Instruction Set Architecture for RePIC
RePIC contains 7 new Esterel-like reactive instructions:

EMIT, SUSTAIN, TAWAIT, SAWAIT, CAWAIT, PRESENT and
ABORT.A more detailed description of each of them is pre-
sented in Table 2. Most of the new reactive instructions
are implemented as a single-word instruction, CAWAIT,
PRESENT and ABORT, however, require two words for
immediate operand or address information.

ABORT, which is introduced to support preemption, is
the most important among all the new instructions. Its
implementation follows one of REFLIX [10]. Up to four
priorities of nesting of ABORTs are allowed in the current
design. Following the semantics of Esterel aborts, the out-
ermost ABORT will always have the highest priority while
the innermost one has the lowest. ABORT in RePIC can
currently work with up to twelve external and four internal
timer-generated signals. The Abort Handling Block (AHB
in Figure 3) is a dedicated hardware implemented to con-
trol the activation, operation and termination of ABORTs
in RePIC.

An implementation of the ATM example presented in Fig-
ure 1 in RePIC assembly language is shown below.

1 loop:

2 EMIT insertCard

3 SAWAIT cardInserted

4 %Load Abort Address and initiate abort

5 LDAADDR L0

6 ABORT invalidCard

7 %Load Abort Address and initiate abort

8 LDAADDR L1

9 ABORT incorrectPin

10 EMIT enterPin

11 SAWAIT pinEntered

12 EMIT selectOption

13 LDCADDR L1

14 CAWAIT withdraw, checkBalance

15 SAWAIT sumEntered

16 EMIT processTransaction

17 SAWAIT transactionOK

18 EMIT releaseSum, printReceipt

19 GOTO L0

20 L1: EMIT processTransaction

21 SAWAIT transactionOK

22 EMIT printReceipt

23 L0:

24 EMIT ejectCard

25 GOTO loop

It can be seen that the assembly code resembles the origi-
nal Esterel code. Two instructions are needed to implement
the abort mechanism (line 5,6 and 8,9) LDAADDR [addr]
and ABORT [signal]. The former is used to specify the
continuation address of the abort (the address of the next
instruction to execute if the body is aborted) while the latter
specifies the signal which the abort is sensitive to. No con-
text switching occurs when an abort is taken and there is no
need to write a separate interrupt service routines. Such a
mechanism allows Esterel abort statements to be easily con-
verted to the equivalent RePIC machine code. Also worth
noting is the ability to emit multiple signals in the same
instruction(line 18).

Figure 3: RePIC’s Data Path for ABORT Handling

3. OPERATIONAL SEMANTICS OF ESTEREL
IN REPIC

This section presents an operational approach for preserv-
ing Esterel semantics on a set of reactive processors. Ini-
tially, execution of sequential programs on a single RePIC
is discussed. Subsequently, a dual-processor RePIC archi-
tecture is presented and Esterel execution on this platform
is discussed. The Esterel subset handled in RePIC does not
include:

1. Detection of concurrent signal presence (using PRESENT
condition) in a concurrent thread when that signal is
generated in another thread.

2. Support for immediate awaits.

3. Support for valued signals of arbitrary types (only in-
teger type is supported).

We also assume that the Esterel programs to be executed
on RePIC are free of causal cycles.

3.1 Preserving the Synchrony Hypothesis
The synchronous model implies that reactions to input

signals are instantaneous and occur at discrete logical in-
stants called ticks. As a result, a sequence of actions may
need to be performed within the duration of a single tick.
In order to model the logical tick of Esterel in RePIC, a
tick with variable length in terms of absolute time is imple-
mented. The duration of one tick is determined by the time
required to execute all the instantaneous instructions that
are placed between any two consecutive await (i.e. TAWAIT,
SAWAIT or CAWAIT) or halt instructions which are the tick
delimiting instructions. Whenever one such instruction ap-
pears, the current tick is said to have elapsed and a new tick
starts. A local tick counter is used to keep track of the com-
pletion of each logical tick. The tick counter is also used for
correct implementation of strong and weak aborts.In case of



Table 2: New RePIC Instructions for Supporting Reactivity

Length
15-bit word

Signal Emission EMIT signal(s) EMIT signal(s) 1 Signal(s) is/are set high for one tick.

Signal Sustenance SUSTAIN signal(s) SUSTAIN signal(s) 1 Signal(s)  is/are set high forever. 

Delay TAWAIT delay TAWAIT delay 1 Wait until delay (number of instruction
cycles) elapses.

Signal Polling SAWAIT signal SAWAIT signal 1 Wait until signal  occurs in the environment

LDCADDR address

CAWAIT signa11 , 
signal2
BTFSS register , bit

GOTO address

LDAADDR address

ABORT signal

Preemption ABORT signal , 
address

2 Program finishes its current tick and jumps
to address  in the occurrence of signal  

Signal Presence PRESENT signal , 
address

2 Instruction at the address immediately
followed will be executed if signal is 
present, or else at the specified address 

Conditional Signal 
Polling

CAWAIT signal1 , 
signal2,  address

2 Wait until either signal1 or signal2 occurs.
If signal1 occurs, execute instruction at the
address immediately followed, or else at the
specified address . 

Esterel Feature Assembly Syntax RePIC Instruction(s) Description

strong abort, the body doesn’t get control in the abortion
instant unlike a weak abort.

The Esterel to RePIC code generator also reorders some
of the Esterel instructions during its pre-processing stage.
This is done to ensure that trivial read/write dependencies
are resolved. For example observe the code below.

emit a

present d then emit c;

present b then emit d;

emit b

According to Esterel semantics all of a,b,c and d should
be emitted to the environmentits. To ensure this while ex-
ecuting sequentially on RePIC, the Esterel to RePIC pre-
processor reorders the instructions as shown below.

emit a

emit b

present b then emit d;

present d then emit c;

3.2 Example of synchronous execution
All Esterel output signals are emitted instantaneously and

last for one logical instant (till the start of the next tick).
Similarly, signals in RePIC will be set high after an EMIT
instruction is executed and will be cleared when the next
tick delimiting instruction is decoded. In this sense, the
instantaneity of signal broadcasting within a logical tick is
preserved in RePIC through the introduction of a variable
tick depending on how frequent the await instructions occur
in the program.

Figure 4 shows how signals A and B are emitted at dif-
ferent instances as soon as they are decoded and executed
in real time. Although signal A is emitted slightly earlier
than signal B, as they both belong to the same tick, they
are cleared together when the first tick elapses. The second
tick is consumed by the TAWAIT instruction followed by
the emission of signal C. Note that signal S is present in all
ticks (has been set high).

3.3 Example of SUSTAIN and ABORT

EMIT A BTFSS S GOTO TAWAIT 1 EMIT C

PRESENT S

EMIT B

Signal A

Signal B

Signal C

Signal S

RePIC Assembly:

      EMIT A

      BTFSS S

      GOTO L0

      EMIT B

L0: TAWAIT TICK

      EMIT C

Tick 1 Tick 2

Esterel Code

emit a;

present S then

    emit b

end

pause;

emit c

Figure 4: Implementation of Esterel Tick in RePIC

SUSTAIN instruction causes the specified signal(s) to re-
main high for the lifetime of either an ABORT body or the
entire program depending on where the instruction is placed
within the program. The former case occurs when the SUS-
TAIN instruction is located within an ABORT body and
the specified signal(s) will automatically be cleared when
the ABORT is preempted. The latter case happens if the
SUSTAIN instruction is outside an ABORT body. Figure
5 depicts the execution of a SUSTAIN instruction within
an ABORT body (a weak abort construct in Esterel). For
the first two ticks S in not high and hence A is sustained.
In the third tick when S occurs abortion happens while the
body gets a chance to execute one last time, leading to the
emission of both A and B.



Sustain A Sustain A Sustain A EMIT B

Signal A

Signal B

Signal S

Esterel

weak abort

      sustain A 

when S

emit B

Tick 1

RePIC Assembly:

       LDAADDR L0

       ABORT S

       SUSTAIN A 

L0:  EMIT B;

Tick 2

Instruction Cycle

Tick 3

Figure 5: Implementation of Signal Sustenance in
RePIC

3.4 Dual-processor architecture
In order to demonstrate real concurrency and synchronous

broadcast, a dual processor RePIC architecture, as shown
in Figure 6, was developed for handling Esterel programs
with two parallel threads. Since valid Esterel programs have
no data dependency, the two processors concurrently access
and execute their respective threads from a shared memory,
implemented as a cycle shared memory, within the same
machine cycle. Synchronisation among local ticks of threads
and the global system tick is managed using global and local
tick counters. Global tick counter determines when the next
tick starts in the global system and also ensures that signals
are prolonged until the global tick elapses. AWAITS are also
synchronised with global ticks.

Figure 6: Implementation of synchronous broadcast

Using this architecture, two threaded Esterel programs
may be executed efficiently. In case of more then two threads,
automata style compilation is employed to convert programs
with more than two threads to two threaded programs (small

threads are merged). This design is an initial prototype and
work is in progress to develop a scalable multiprocessor ar-
chitecture using RePIC cores.

4. IMPLEMENTATION
The VHDL model for the PIC processor[1] was extended

to create the Reactive PIC (RePIC) VHDL model. Both
cores were synthesized using Alteras Quartus II version 2.2.
The target FPGA used for synthesis was the EP20K200EFC484-
2 which is a member of the APEX20KE family. the results
of synthesis are presented in Table 3.

Due to additional logic components in the data path for
reactivity support, the modified RePIC system consumes
nearly double the logic resources than the non-reactive PIC[1]
processor.

Table 3: Sythesis results for RePIC and PIC

PIC RePIC
Number Used 1082 2068
Total Available 8320 8320
Percentage Used 13% 24%

45.83Mz 40.27Mhz

Microprocessor System (i.e. Core + Data 
RAM + Program ROM)

Maximum operating frequency

Logic Elements

5. BENCHMARKING
All benchmarks used were based on the subset of Esterel

supported by RePIC. These benchmarks were compiled for
RePIC as well as the other architectures mentioned in this
section. Benchmarking results may be summarized as fol-
lows:

• A significant reduction in code size was achieved on
RePIC compared to PIC. Code size comparisons were
done for both manually translated code as well as those
compiled using various Esterel compilers.

• A significant improvement in execution time was also
achieved for both manually translated code as well as
those translated using the Esterel compilers.

• A significant advantage over some other microproces-
sors in terms of code size was also noticed.

5.1 ARE-Bench A New Benchmark Suite
In [10] a set of pure reactive applications were developed

to analyse the performance of processors while executing re-
active tasks. These benchmarks ignored the fact that reac-
tive programs are normally a combination of data dominated
and control dominated parts. Edwards developed Estbench
[11,12] to compare the performance of Esterel compilers. Es-
tbench contained many real Esterel programs with combina-
tion of data dominated and control dominated parts. How-
ever, we felt a need to create a benchmark suite to compare
the reactive performance of processors due to the following
reasons.

• Reactive performance depends on the efficiency of pre-
emption and priority resolution. In order to measure
these effectively, varying levels of nesting of aborts and
priorities were encoded in our benchmarks.



• Different combinations of programs ranging from pure
reactive to mostly data dominated and a combination
of data and control-oriented behaviours were created
to evaluate the performance of processors. ARE-Bench
combines benchmarks from Estbench [12], [10] and the
Polis distribution [9] where the programs have been
customised appropriately to enable objective compar-
ison of reactivity.

Table 4: Code size comparison in words for pure
reactive benchmarks and manual code generation

Application RePIC PIC 8051 68HC11 NIOS-16
ATM 22 74 102 163 219
Elevator 23 70 45 79 116
Pump 
Controller 15 50 35 56 80

Startup 
Benchmark 24 64 48 76 94

TCP Receive 7 27 28 18 41
TCP Transmit 10 29 20 31 46
Traffic Light 18 71 70 114 147
Average 17 55 50 77 106

Table 5: Execution time comparison PIC vs RePIC
using manual code generation

RePIC PIC 
ATM 2.68 8.73 3.26
Elevator 2.38 5.85 2.4
Pump Controller 1.99 5.76 2.89
Startup Benchmark 3.97 7.33 1.85
TCP Receiver 0.7 2.36 3.37
TCP Transmitter 1 2.53 2.53
Traffic Light 2.28 7.51 3.29

Average 2.78 6.74 2.7

Application
Execution Time (us) Total Speed 

Up

5.2 The Benchmarking Process
The benchmarking process was divided into two separate

parts:

1. Subsets of applications from ARE-Bench were manu-
ally translated into the machine code of a number of
microprocessors. The selected benchmarks were small
purely reactive applications, since manual translation
of larger benchmarks is a very tedious process. Both
the execution time and the code size were compared.

2. A subset of larger applications was compiled using
standard Esterel compilers to produce first C code and
then the commercial PIC compiler and assembler were
used to produce PIC machine code. For Esterel to
RePIC code generation a simple RePIC code genera-
tor was developed and used. These two contrasting
approaches were used to highlight the inefficiencies of
typical code generators and also to highlight that man-
ual code generation, though more direct and efficient,
is only possible for toy programs and compilers have
to be used for real programs.

Table 6: Code size comparison between various com-
pilers

Benchmark
Maximum 
Nesting of 

Aborts

Colombia 
Esterel 

Compiler 0.3

Esterel 
Studio 4.0

Esterel 
Compiler 

V5

Esterel 
Compiler 

V3

REPIC 
Compiler 

(Single/Dual 
Processor)

ATDS-100 0 11289 17827 19735 5816 282
Driver 0 510 1540 1588 1575 68
Elevator 0 378 1147 1192 474 23
Filter 0 109 308 303 231 9
LONG_ACC_CAL 0 101 504 518 366 25
LONG_ACC_DER 0 225 554 578 431 32
PumpController 2 692 811 945 346 15
Runner 0 594 979 1035 500 23
SpeedSense 0 193 493 501 352 22
Startup 1 140 869 1143 305 24
TCPReceive 0 301 498 499 293 7
TCPTransmit 0 681 588 593 260 10
TrafficLight 2 107 1008 1188 373 18
VER_ACC_CAL 0 260 306 301 229 9
VER_ACC_DIAG 0 260 675 661 522 28

5.2.1 Comparison using manual translation of Es-
terel

The first comparison was done by translating some of the
purely reactive benchmarks from ARE- Bench to the native
code of RePIC, PIC [1], Motorola 68HC11 [16], Intel 8051
[17] and 16-bit NiOS [18]. Table 4 summarizes these results
and shows a clear advantage of RePIC in terms of code size.
Though generating code by hand significantly reduces any
overhead incurred by compilers, we can still see a significant
reduction in code size for RePIC. This is mainly due to the
native support for Esterel in RePIC. This is evident since
benchmarks having a higher number of nested aborts (ATM
and Traffic Light) result in the greatest reduction in code
size. On an average, the original PIC processor requires
three times larger memory to store the same program func-
tionality than RePIC. The execution time of original PIC
and RePIC was also compared (as shown in Table 5). On
an average, a speedup of 2.7 was achieved. However, appli-
cations that contain many levels of nested aborts (ATM and
Traffic Light) show a speed up of approximately 3.2.

5.2.2 Comparison using Esterel compilers
a) Code size comparison
A comparison was done between the code generated by

traditional Esterel compilers and code produced for RePIC
(by using the RePIC code generator). Out of the 44 ARE-
Bench programs a subset used in the comparison is shown
in Tables 6 and 7.

The performance of four Esterel compilers was compared
with the direct code generation of the RePIC compiler. The
selected compilers were, Colombia Esterel Compiler V0.3[18],
Esterel Studio V4.0 by Esterel technologies [8], the Esterel
V5 compiler [3] and the automata based Esterel V3 com-
piler[3]. The Colombia Esterel Compiler performed best
among all Esterel compilers though direct machine code gen-
erated by RePIC was much more compact. The Esterel V3
compiler performed well for single threaded programs but its
performance degraded drastically as the number of threads
grew. A summary of the results are shown in Table 6 which
shows that that the percentage reduction in code size using
various compilers in the high nineties compared to the 76%
reduction achieved using manual translation.

Since traditional architectures have no notion of Esterel
tick, extra software support is needed to ensure that signals



Table 7: Execution time (us) for various compilers

Benchmark
Maximum 
Nesting of 

Aborts

Colombia 
Esterel 

Compiler 0.3

Esterel 
Studio 4.0

Esterel 
Compiler 

V5

Esterel 
Compiler 

V3

REPIC 
Compiler 

(Single/Dual 
Processor)

ATDS-100 0 1250.92 2361.63 2576.57 875.09 68.12
Driver 0 57.79 191.36 195.99 220.95 15.29
Elevator 0 46.79 147.01 152.69 59.8 2.38
Filter 0 11.79 37.27 36.84 26.53 1.59
LONG_ACC_CAL 0 11.09 61.93 63.21 43.73 4.67
LONG_ACC_DER 0 25.75 68.18 70.19 53.6 6.16
PumpController 2 78.48 105.19 122.22 45.83 1.99
Runner 0 67.83 125.1 131.91 64.86 3.77
SpeedSense 0 22.09 61.11 61.9 43.12 4.07
Startup 1 16.24 114.45 149.81 38.15 3.97
TCPReceive 0 33.79 63.55 63.99 37.62 0.7
TCPTransmit 0 77.87 74.99 75.78 30.81 1
TrafficLight 2 11.61 132.34 154.87 51.33 2.28
VER_ACC_CAL 0 28.63 37.1 36.67 26.36 1.59
VER_ACC_DIAG 0 28.63 82.93 81.63 63.55 6.06

are emitted and polled for correct time durations. Further-
more, instruction- scheduling overhead is also introduced
when converting multiple concurrent Esterel code segments
into C code (using the suspend-resume approach [8] or the
fork-join approach [18]).

The conversion of Esterel abort statement also leads to a
significant increase in code size. An interrupt service routine
needs to be implemented for each signal that causes preemp-
tion. Moreover, each interrupt has an overhead involved in
initialization. Although the handling of abort priorities is
done using hardware in RePIC, PIC code needs to be gen-
erated to handle this in software.

b) Execution time comparison
Since the execution can take any one of many different

execution paths (i.e. paths in the underlying finite state
machine), calculations were based on the assumption that
each benchmark executes each state of the underlying finite
state machine only once. This is a fair assumption since
we are only interested in the speed up achieved by the pro-
posed approach. Table 7 gives a summary of the timing data
that was obtained for some of the benchmarks. The average
speed up was 28.96.

c) Summary
It is evident that regardless of the Esterel compiler used,

the execution time on RePIC is significantly shorter than
that for PIC. The average speed up was approximately 28.96,
although for some benchmarks RePIC was almost 100 times
as fast as PIC. These results show that by providing an
appropriate framework for directly compiling Esterel mod-
els into machine code, the proposed approach not only re-
duces the code size considerably but also obtains a signifi-
cant speed up compared to traditional methods.

In summary, in comparison to PIC and other microcon-
trollers, RePIC achieves an average speed up of 2.7 and
an average a reduction in code size of 76% for applications
that are manually translated to both PIC and RePIC. Much
higher improvements were achieved when comparisons were
done using traditional compilation methods. When com-
pared to conventional Esterel compilers, the RePIC compiler
produced code that was on an average 97% more compact.

One major reason for such huge speedup compared to effi-
cient Esterel compilers like CEC[7] is that unlike these com-
pilers, we only handle a subset of Esterel where complicated

constructs of Esterel such as checking for signals emitted by
concurrent threads using Esterel’s present constructs are not
handled. We are currently developing a synchronous multi-
processor architecture to handle full Esterel.

6. CONCLUSIONS
This paper presents a new approach for the support of

Esterel execution on a microprocessor while preserving most
of the semantics of the language. Existing compilers for a
concurrent and reactive language like Esterel, first compile
programs to an intermediate high-level language, which is
then compiled and executed on a conventional sequential
processor. Typically the resulting code is both bulky and
inefficient. As a result, Esterel is rarely used in the design
of resource constrained embedded systems. Our approach
remedies these shortcomings by proposing a new reactive
microcontroller (RePIC) that supports features of Esterel
and enables the direct conversion of Esterel into the ma-
chine code of the microcontroller. In order to study the
efficacy of the approach, a new benchmark suite (ARE-
Bench) has been proposed for comparing the performance
of reactive applications running on different microproces-
sors. Benchmarking results reveal significant improvement
in performance, in terms of execution time and code size,
when using RePIC.

Though RePIC design shows an alternative approach to
Esterel execution, work is in progress to overcome some
shortcomings. Currently the dual processor architecture is
limited in only being able to execute Esterel programs with
two concurrent threads (or use automata compilers to com-
pact small threads to create a two threaded program). Work
is in progress to develop a real multiple processor architec-
ture based on RePIC that will allow execution of Esterel
programs with arbitrary number of concurrent threads while
preserving the semantics of the Esterel language. Moreover,
we have handled a subset of Esterel in this paper. A possi-
ble use of efficient static analysis (conventional compilation)
supported by reactive processors is an interesting area of
research for the future.
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