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Our Research Explores Three Paradigms

In modeling, use discounted quantitative measures.
In composition, treat inputs and outputs contra-variantly.

In implementation, preserve logical execution times.
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The LET (Logical Execution Time) Assumption
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The LET (Logical Execution Time) Assumption

SN NS

Software Task

read sensor
input at time ¢

d>0 is the
task's "logical
execution time"

write actuator
output at time t+d,
for specified d



The LET (Logical Execution Time) Assumption
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Contrast LET with the Standard Practice
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LET-based Real-Time Programming

The programmer specifies d to solve the control problem
at hand.

The compiler ensures that d is met on a given platform;
otherwise it rejects the program.



LET-based Real-Time Programming

The programmer specifies d to solve the control problem
at hand.

The compiler ensures that d is met on a given platform;
otherwise it rejects the program.

The proof that d is met (proof of “time safety”) produces a
schedule — Schedule Carrying Code [H, Kirsch, Matic].
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Composability




Predictability / Verifiability

-timing predictability: minimal jitter
-value predictability: no race conditions

Environment determined behavior!



Contrast LET with the Standard Practice

Race




GIOTTO:

LET for periodic tasks with time-triggered mode switching
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xGIOTTO:
Event-Triggered LET Programming [Ghosal, H, Kirsch, Sanvido]

If all events can happen at any time, then few
programs would be time-safe.

However, nested reaction blocks can specify the
selective listening to events (“event scoping”) —
Structured LET Programming.



xGIOTTO:
Event-Triggered LET Programming [Ghosal, H, Kirsch, Sanvido]

1. Schedule Instruction:

schedule Task by Event ;
f

logical deadline

2. Reaction Block:

react {
when Event do Block ;
whenever Event do Block ;
begin .. end ;
} until Event ;



Our Research Explores Three Paradigms

In modeling, use discounted quantitative measures.
In composition, treat inputs and outputs contra-variantly.

In implementation, preserve logical execution times.



In composition, treat inputs and outputs contra-variantly.

This seems obvious:

The "type" of a component should be
Inputs — Outputs

not
Inputs x Outputs.

(These two are the same in set theory,
but not in type theory!)




In composition, treat inputs and outputs contra-variantly.

Surprisingly, this is rather non-standard:

If your notion of composition is intersection or
product,

or your notion of refinement / abstraction is
simulation or language containment,

then you treat inputs and outputs co-variantly
(and are in good company)!




Input constraint:
not x=y=1

This is an assumption
about the environment.

Output constraint:
none

This is an abstraction
of the component.




Input constraint: Possible behaviors: Output constraint:
not x=y=1 M none
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Compose with y=z, forgetting what is input, what output.

Input constraint: Possible behaviors: Output constraint:
not x=y=1 M none
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Compose with y=z, constraining only output (the component).

Input constraint: Possible behaviors: New output constraint:
not x=y=1 M z=y
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Compose with y=z, constraining only inputs (the environment).

Input constraint: Possible behaviors: Output constraint:
not x=y=1 none
X y V4
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1



Compose with y=z, constraining only inputs (the environment).

New input constraint: Possible behaviors: Output constraint:
x=0 none
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Traditional Behavioral Refinement:
Simulation or Language Containment

Speclnputs | | SpecOutputs
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Implnputs | ImpOutputs




Contra-variant Refinement:
Implementations can be substituted for Specifications

Speclnputs | | SpecOutputs

A VI
Implnputs | ImpOutputs
Implementation Implementation produces

accepts all legal inputs. only legal outputs.
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The Composite Interface
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We call a formalism with

-input-constraining composition
-contra-variant refinement

an interface theory [de Alfaro, H].



We call a formalism with

-Input-constraining composition
-contra-variant refinement

an interface theory [de Alfaro, H].

We have developed several interface theories, e.g. for

-message-passing components ("interface automata")
-synchronous hardware components [Chakrabarti, dA, H, Mang]
-possibly recursive software modules [C, dA, H, Jurdzinski, M]

-real-time components [dA, H, Stoelinga]
-resource-constrained components [C, dA, H, S]

They have been implemented in the CHIC tool.



Resource Interfaces

Available peak power: 3



Resource Interfaces
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In modeling, use discounted quantitative measures.
In composition, treat inputs and outputs contra-variantly.

In implementation, preserve logical execution times.



The Problem

Hybrid Model — Property




The Problem

Hybrid Model — Property
—X—

slightly perturbed model



The Problem
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The Problem

Hybrid
Automaton

—— Unsafe
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The Proposed Solution

value(Model,Property): States — {0,1}

. B

value(Model,Property): States — [0.1]



Discounting the Future

value(Model,Property): States — {0,1}
value(m,&>T) = pX. (T v pre(X))

. B

discountedValue(Model,Property): States — [0,1]
discountedValue(m,T) = uX. max(T, A-pre(X))

|

discount factor O<A<1



Robustness Theorem:

If discountedBisimilarity(m,,m,) > 1 - g,
then |discountedValue(m,,p) - discountedValue(m,,p)| < f(¢).




Robustness Theorem:

If discountedBisimilarity(m,,m,) > 1 - g,
then |discountedValue(m,,p) - discountedValue(m,,p)| < f(e).

Further Advantages of Discounting:

-approximability because of geometric convergence
(avoids non-termination of fixpoint iteration)

-applies also to probabilistic systems and to games
(enables control)



Our Research Explores Three Paradigms

In modeling, use discounted quantitative measures.
ICALP '03 [de Alfaro, H, Majumdar]

In composition, treat inputs and outputs contra-variantly.

www.eecs.berkeley.edu/~tah/chic
In implementation, preserve logical execution times.

www.eecs.berkeley/~tah/giotto



