Embedded Software:
Better Models, Better Code

Tom Henzinger

University of California, Berkeley

Our Research Explores Three Paradigms

In modeling, use discounted quantitative measures.
In composition, treat inputs and outputs contra-variantly.

In implementation, preserve logical execution times.

Requirements

A

Verification

Programming
Model

Implementation

\4

Platform

Requirements

A

Verification automatic (model checking)

Programming
Model

Implementation | automatic (compilation)

\4

Platform

The LET (Logical Execution Time) Assumption

SN NS

Software Task

read sensor
input at time ¢

write actuator
output at time t+d

The LET (Logical Execution Time) Assumption

SN NS

Software Task

read sensor
input at time ¢

d>0 is the
task's "logical
execution time"

write actuator
output at time t+d,
for specified d

The LET (Logical Execution Time) Assumption

SN NS

time ¢ T/ | time t+d

possible physical
execution on CPU buffer output

Contrast LET with the Standard Practice

SN NS

output as soon
as ready

LET-based Real-Time Programming

The programmer specifies d to solve the control problem
at hand.

The compiler ensures that d is met on a given platform;
otherwise it rejects the program.

LET-based Real-Time Programming

The programmer specifies d to solve the control problem
at hand.

The compiler ensures that d is met on a given platform;
otherwise it rejects the program.

The proof that d is met (proof of “time safety”) produces a
schedule — Schedule Carrying Code [H, Kirsch, Matic].

Portability

SN NS

—}I—}I—} 50% CPU speedup

Composability

Predictability / Verifiability

-timing predictability: minimal jitter
-value predictability: no race conditions

Environment determined behavior!

Contrast LET with the Standard Practice

Race

GIOTTO:

LET for periodic tasks with time-triggered mode switching

('Mode 1) (" Mode 2 I

Condition 1.2
Task S 400 Hz Task S 400 Hz

Task C 200 Hz <::| Task C 200 Hz

Task A 1 kHz Condition 2.1 Task A’ 1 kHz

]

Task S 400 Hz
Task C 200 Hz
Task A 2 kHz

o) o J

| III
o

\ Task A” 1 kHz

=\
(@)
3
w

~

=\
(@]
%
N

~

Task C' 100 Hz

Task A 1 kHz

xGIOTTO:
Event-Triggered LET Programming [Ghosal, H, Kirsch, Sanvido]

If all events can happen at any time, then few
programs would be time-safe.

However, nested reaction blocks can specify the
selective listening to events (“event scoping”) —
Structured LET Programming.

xGIOTTO:
Event-Triggered LET Programming [Ghosal, H, Kirsch, Sanvido]

1. Schedule Instruction:

schedule Task by Event ;
f

logical deadline

2. Reaction Block:

react {
when Event do Block ;
whenever Event do Block ;
begin .. end ;
} until Event ;

Our Research Explores Three Paradigms

In modeling, use discounted quantitative measures.
In composition, treat inputs and outputs contra-variantly.

In implementation, preserve logical execution times.

In composition, treat inputs and outputs contra-variantly.

This seems obvious:

The "type" of a component should be
Inputs — Outputs

not
Inputs x Outputs.

(These two are the same in set theory,
but not in type theory!)

In composition, treat inputs and outputs contra-variantly.

Surprisingly, this is rather non-standard:

If your notion of composition is intersection or
product,

or your notion of refinement / abstraction is
simulation or language containment,

then you treat inputs and outputs co-variantly
(and are in good company)!

Input constraint:
not x=y=1

This is an assumption
about the environment.

Output constraint:
none

This is an abstraction
of the component.

Input constraint: Possible behaviors: Output constraint:
not x=y=1 M none

OO0~ ~00 X

- 2 00O OO0
O -~~0 -0 N

Compose with y=z, forgetting what is input, what output.

Input constraint: Possible behaviors: Output constraint:
not x=y=1 M none

+~ -~ 0O O P o
©CO -~ PP OO X
L~ O 2O+~ O N

Compose with y=z, constraining only output (the component).

Input constraint: Possible behaviors: New output constraint:
not x=y=1 M z=y

+~ -~ 0O O P o
©CO -~ PP OO X
L~ O 2O+~ O N

Compose with y=z, constraining only inputs (the environment).

Input constraint: Possible behaviors: Output constraint:
not x=y=1 none
X y V4
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1

Compose with y=z, constraining only inputs (the environment).

New input constraint: Possible behaviors: Output constraint:
x=0 none

A OO OO X
©OP -~ P~ PO K
O 2O+~ O N

Traditional Behavioral Refinement:
Simulation or Language Containment

Speclnputs | | SpecOutputs

VI VI

Implnputs | ImpOutputs

Contra-variant Refinement:
Implementations can be substituted for Specifications

Speclnputs | | SpecOutputs

A VI
Implnputs | ImpOutputs
Implementation Implementation produces

accepts all legal inputs. only legal outputs.

msg ok ail

send ack nack

msg msg ok fail ok ail

send ack nack

The Composite Interface

-~

~

|

_)O

msg e send!

ok

m<

ack?

ack?
nack? >O send!

send

?_?_/

ack nack

ok fail

msg
—s ————
l GCk GCk?
ms 7 send! j hack? send!
= >0
faill —~ nack?

= J

send ack nack

>C)

once msg ok fail

send ack nack

We call a formalism with

-input-constraining composition
-contra-variant refinement

an interface theory [de Alfaro, H].

We call a formalism with

-Input-constraining composition
-contra-variant refinement

an interface theory [de Alfaro, H].

We have developed several interface theories, e.g. for

-message-passing components ("interface automata")
-synchronous hardware components [Chakrabarti, dA, H, Mang]
-possibly recursive software modules [C, dA, H, Jurdzinski, M]

-real-time components [dA, H, Stoelinga]
-resource-constrained components [C, dA, H, S]

They have been implemented in the CHIC tool.

Resource Interfaces

Available peak power: 3

Resource Interfaces

N
a? \b? cc
c? d?
d 4 @ dd @
Y

Available peak power: 3

4)
« @ avé> Y?
b—-@ d

\ J

The composite interface.

Our Research Explores Three Paradigms

In modeling, use discounted quantitative measures.
In composition, treat inputs and outputs contra-variantly.

In implementation, preserve logical execution times.

The Problem

Hybrid Model — Property

The Problem

Hybrid Model — Property
—X—

slightly perturbed model

The Problem

Hybrid
Automaton

— Safe

The Problem

Hybrid
Automaton

—— Unsafe

X = 3+¢
o

The Proposed Solution

value(Model,Property): States — {0,1}

. B

value(Model,Property): States — [0.1]

Discounting the Future

value(Model,Property): States — {0,1}
value(m,&>T) = pX. (T v pre(X))

. B

discountedValue(Model,Property): States — [0,1]
discountedValue(m,T) = uX. max(T, A-pre(X))

|

discount factor O<A<1

Robustness Theorem:

If discountedBisimilarity(m,,m,) > 1 - g,
then |discountedValue(m,,p) - discountedValue(m,,p)| < f(¢).

Robustness Theorem:

If discountedBisimilarity(m,,m,) > 1 - g,
then |discountedValue(m,,p) - discountedValue(m,,p)| < f(e).

Further Advantages of Discounting:

-approximability because of geometric convergence
(avoids non-termination of fixpoint iteration)

-applies also to probabilistic systems and to games
(enables control)

Our Research Explores Three Paradigms

In modeling, use discounted quantitative measures.
ICALP '03 [de Alfaro, H, Majumdar]

In composition, treat inputs and outputs contra-variantly.

www.eecs.berkeley.edu/~tah/chic
In implementation, preserve logical execution times.

www.eecs.berkeley/~tah/giotto

