
Embedded Software:
Better Models, Better Code

Tom Henzinger
University of California, Berkeley

In modeling, use discounted quantitative measures.

In composition, treat inputs and outputs contra-variantly.

In implementation, preserve logical execution times.

Our Research Explores Three Paradigms

Programming
Model

Requirements

Platform

Verification

Implementation

Programming
Model

Requirements

Platform

Verification

Implementation

automatic (model checking)

automatic (compilation)

The LET (Logical Execution Time) Assumption

Software Task

read sensor
input at time t

write actuator
output at time t+d

The LET (Logical Execution Time) Assumption

Software Task

read sensor
input at time t

write actuator
output at time t+d,
for specified d

d>0 is the
task's "logical
execution time"

The LET (Logical Execution Time) Assumption

time t time t+d

possible physical
execution on CPU buffer output

Contrast LET with the Standard Practice

output as soon
as ready

LET-based Real-Time Programming

The programmer specifies d to solve the control problem
at hand.

The compiler ensures that d is met on a given platform;
otherwise it rejects the program.

LET-based Real-Time Programming

The programmer specifies d to solve the control problem
at hand.

The compiler ensures that d is met on a given platform;
otherwise it rejects the program.

The proof that d is met (proof of “time safety”) produces a
schedule → Schedule Carrying Code [H, Kirsch, Matic].

Portability

50% CPU speedup

Composability

Task 2

Task 1

Predictability / Verifiability

-timing predictability: minimal jitter
-value predictability: no race conditions

Environment determined behavior!

Contrast LET with the Standard Practice

Race

Mode 1

Mode 4Mode 3

Mode 2

Task S 400 Hz

Task C 200 Hz

Task A 1 kHz

Task S 400 Hz

Task C 200 Hz

Task A’ 1 kHz

Task C’ 100 Hz

Task A 1 kHz

Task S 400 Hz

Task C 200 Hz

Task A 2 kHz

Task A” 1 kHz

Condition 1.2

Condition 2.1

GIOTTO:
LET for periodic tasks with time-triggered mode switching

If all events can happen at any time, then few
programs would be time-safe.

However, nested reaction blocks can specify the
selective listening to events (“event scoping”) →
Structured LET Programming.

xGIOTTO:
Event-Triggered LET Programming [Ghosal, H, Kirsch, Sanvido]

xGIOTTO:
Event-Triggered LET Programming [Ghosal, H, Kirsch, Sanvido]

1. Schedule Instruction:

schedule Task by Event ;

2. Reaction Block:

react {
when Event do Block ;
whenever Event do Block ;
begin … end ;
} until Event ;

logical deadline

In modeling, use discounted quantitative measures.

In composition, treat inputs and outputs contra-variantly.

In implementation, preserve logical execution times.

Our Research Explores Three Paradigms

In composition, treat inputs and outputs contra-variantly.

This seems obvious:

The "type" of a component should be

Inputs → Outputs

not

Inputs × Outputs.

(These two are the same in set theory,
but not in type theory!)

In composition, treat inputs and outputs contra-variantly.

Surprisingly, this is rather non-standard:

If your notion of composition is intersection or
product,

or your notion of refinement / abstraction is
simulation or language containment,

then you treat inputs and outputs co-variantly
(and are in good company)!

x

z
y

Input constraint:
not x=y=1

Output constraint:
none

This is an assumption
about the environment.

This is an abstraction
of the component.

x

z
y

Input constraint:
not x=y=1

Output constraint:
none

Possible behaviors:

x y z

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1

x

z
y

Input constraint:
not x=y=1

Output constraint:
none

Possible behaviors:

x y z

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1

Compose with y=z, forgetting what is input, what output.

x

z
y

Input constraint:
not x=y=1

New output constraint:
z=y

Possible behaviors:

x y z

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1

Compose with y=z, constraining only output (the component).

x

z
y

Output constraint:
none

Possible behaviors:

x y z

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1

Compose with y=z, constraining only inputs (the environment).

Input constraint:
not x=y=1

x

z
y

New input constraint:
x=0

Output constraint:
none

Possible behaviors:

x y z

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1

Compose with y=z, constraining only inputs (the environment).

Traditional Behavioral Refinement:
Simulation or Language Containment

SpecInputs

ImpInputs ImpOutputs

SpecOutputs
≤ ≤

Contra-variant Refinement:
Implementations can be substituted for Specifications

SpecInputs

ImpInputs ImpOutputs

SpecOutputs

≤
≤

Implementation
accepts all legal inputs.

Implementation produces
only legal outputs.

msg? send! send!nack?

nack?fail!

ok! ack?

ack nacksend

msg failok

ack?

msg? send! send!nack?

nack?fail!

ok! ack?

ack nacksend

msg failok

msg!

ok?

msg ok fail

ack?

msg send! send!nack?

ok ack?

ack nacksend

The Composite Interface

ack?

msg? send! send!nack?

nack?fail!

ok! ack?

ack nacksend

msg failok

msg? send! send!nack?

nack?fail!

ok! ack?

ack nacksend

msg failok

send! once?

fail!

ok!

nack?

ack?

once

≤

ack?

ack?

We call a formalism with

-input-constraining composition
-contra-variant refinement

an interface theory [de Alfaro, H].

We call a formalism with

-input-constraining composition
-contra-variant refinement

an interface theory [de Alfaro, H].
We have developed several interface theories, e.g. for

-message-passing components ("interface automata")

-synchronous hardware components [Chakrabarti, dA, H, Mang]

-possibly recursive software modules [C, dA, H, Jurdzinski, M]

-real-time components [dA, H, Stoelinga]

-resource-constrained components [C, dA, H, S]

They have been implemented in the CHIC tool.

2

1 2

12

a

b

ca?

d!

b?

c!

c 1

2 2

c? d?

d d

Resource Interfaces

Available peak power: 3

Resource Interfaces

2

1 2

12

a

b

ca?

d!

b?

c!

c 1

2 2

c? d?
d d

Available peak power: 3

3

2 3

34

a

b

a?

d

b?

c

The composite interface.

In modeling, use discounted quantitative measures.

In composition, treat inputs and outputs contra-variantly.

In implementation, preserve logical execution times.

Our Research Explores Three Paradigms

The Problem

Hybrid Model Property

The Problem

Hybrid Model Property

slightly perturbed model

The Problem

Safe

Hybrid
Automaton

x = 3

The Problem

Unsafe

Hybrid
Automaton

x = 3+ε

The Proposed Solution

value(Model,Property): States → {0,1}

value(Model,Property): States → [0.1]

Discounting the Future

value(Model,Property): States → {0,1}

value(m, T) = µX. (T ∨ pre(X))

discountedValue(Model,Property): States → [0,1]

discountedValue(m, T) = µX. max(T, λ⋅pre(X))

discount factor 0<λ<1

Robustness Theorem:

If discountedBisimilarity(m1,m2) > 1 - ε,
then |discountedValue(m1,p) - discountedValue(m2,p)| < f(ε).

Robustness Theorem:

If discountedBisimilarity(m1,m2) > 1 - ε,
then |discountedValue(m1,p) - discountedValue(m2,p)| < f(ε).

Further Advantages of Discounting:

-approximability because of geometric convergence
(avoids non-termination of fixpoint iteration)

-applies also to probabilistic systems and to games
(enables control)

In modeling, use discounted quantitative measures.

ICALP '03 [de Alfaro, H, Majumdar]

In composition, treat inputs and outputs contra-variantly.
www.eecs.berkeley.edu/~tah/chic

In implementation, preserve logical execution times.

www.eecs.berkeley/~tah/giotto

Our Research Explores Three Paradigms

