

ARTIST2 - Year 1 Review

Grenoble, October 3rd-4th, 2005

Activity

Joint Programme of Research Activities

Component Modeling and Composition

Activity leader : Bengt Jonsson (Uppsala)

Outline of the Presentation

Industrial Needs and Experience

Year 1 Activities

- Achievements & Ongoing Work
- Interaction and Building Excellence Between Partners
- Management Perspective

18 Month Perspective

- Work planned for the next 18 months
- Achievements expected

Industrial Needs and Experience

- Artist2 Interaction with Industry
 - (almost) all partners carry out projects in collaboration with industry.
- Industrial Needs
 - "Manage complexity" by component-based modeling and design
 - Handling non-functional requirements throughout the design cycle
 - Problems: Cross-cutting non-functional requirements,
 - Heterogeneous systems
- Possible Global Impacts of Research Results
 - Techniques for handling timing- and other non-functional properties compositionally,
 - Handling dependence of non-functional properties on platform (computational resources).
 - Tools for design of heterogeneous component-based systems.

Year 1 activities Aims

Brief State of the Art

- Current component technologies support syntactical aspects of composition.
- There are several languages for expressing QoS and non-functional requirements, but we lack a coherent framework for their semantics.

Aims

- Techniques for handling non-functional properties in component-based systems:
 - Specification of rich interfaces (in particular timing),
 - Handling dependence on platform (resources),
 - Relation between required and guaranteed properties
 - Composability (will new component interfere with system?)
 - Compositionality (predicting system properties)
- 2. Coherent theory for design of **heterogeneous** component-based systems.

Achievements & Ongoing Work

Identification of and consensus on key issues

- separation of different types of properties (timing, resources, ...)
- Flexible relation between required and guaranteed properties
 - -> connections with work by OFFIS, ETHZ
- abstraction of simple timing properties from system description

Surveys on

- Compositional techniques for timing properties [Timisoara, Uppsala]
- Classification of non-functional properties on the basis of compositionality properties [ABB, Mälardalen]
- Techniques for expressing and predicting different classes of QoS properties [group effort, in progress]
- Book on Component-Based Software Engineering [Eindhoven, Mälardalen]

Achievements & Ongoing Work

- 1. A framework for composition of heterogeneous systems is being developed into *IF for components*. [Verimag]
 - Comparison and Start of collaboration with Metropolis team [Parades, submission of European projects, ...]
- 2. Bridge between INRIA's non-functional contract model and IF semantics [INRIA, VERIMAG]
- 3. SaveCCM, a simple component model for automotive applications [Mälardalen, Uppsala, CC Systems, ABB]
- Component model for the MAST framework focusing on schedulability analysis [Cantabria, CEA]
- Techniques to generate behavior descriptions from observations [Dortmund, Uppsala]
- Industrial Case studies
 - CC Systems [Mälardalen]
 - Man B&W [Aalborg, OFFIS]

Fruitful Research Collaborations: Example

Cluster meeting, Jan. 05:

- T. Henzinger [EPFL] presents his work on Interface Specifications, allowing to derive Required functional properties form Guaranteed, and vice versa.
- L. Thiele [ETHZ] presents his RT-calculus, where computation resources are first-class citizens (separation of concerns)

Spring 05:

 Thiele et al. extend RT-calculus, allowing to derive requirements on workload and computation resources, from guarantees/requirements, and vice versa [EMSOFT 05]

Autumn 05:

 Ongoing collaborations to combine timed-automata based tool support with RT-calculus 'concepts, to develop techniques for flexible analysis of the relation between timing properties, computation resources, and scheduling [ETHZ, Timisoara, Uppsala]

Interaction & External Collaboration

Interaction Between Partners

ARTIST2

- Several new cooperations [ETHZ, Timisoara, Uppsala], [Aalborg, INRIA]
- Joint projects under evaluation between Artist partners [CEA, EFPL, INRIA, Parades, Verimag, Uppsala, ...],

Overseas Collaboration:

- Monash Univ [H. Schmidt]: Reliability,
- SEI [K. Wallnau]: PECT (Prediction-enabled composition technology)
- NTU (Taipei) [Y.-K. Tsay] (Required/Guaranteed properties)

Management Perspectives

What worked well

- Establishing connections with activities in this and several other clusters (HRT, Verification, Platforms).
- Discussions and comparisons between different approaches at meetings.

Difficulties encountered

• In full generality, problems concerning compositional specification and reasoning about timing properties are hard; they may become easier in specific design contexts.

Structural changes in the activity

Stronger integration with other activities in ARTIST2, in particular with the HRT cluster.

Next 18 Month Perspective

Work Planned for the next 18 months

- Work on timing properties
 - Continue work to develop, relate, and combine existing approaches
 - Completion of work on
 - •Techniques for joint analysis timing analysis, computation resources, required/guaranteed properties,
 - Workshop for comparing different approaches (Lorentz)
 - Survey of different types of QoS properties,
 - •Adopting timed automata techniques (IF) for implementing QML contracts,
 - Case studies,
- Theory and tools for composing heterogeneous systems
 - Develop an execution platform for IF for Components,
 - Use it as a basis in new collaboration projects,