

ARTIST2 – Year 1 Review

Grenoble, October 3rd-4th, 2005

Cluster

Adaptive Real-Time

Cluster leader: Giorgio Buttazzo (Univ. of Pavia)

Outline of the Presentation

The ART cluster

- Goal
- Partners

Cluster integration

- Organized events and mobility
- Participation in other cluster activities
- Joint publications

Industrial Needs and Experience

- Applications domains
- Problems, State of practice
- Research challenges

> ART Activities

- Achievements in Year 1
- 18 month perspective

ARTIST2

The ART Cluster

Goal

Investigate novel methodologies to provide <u>predictability</u> and <u>flexibility</u> for systems where resources requirements are inherently unstable and difficult to predict in advance.

Application domains

Consumer Electronics

ARTIST2

Multimedia systems

Telecommunication systems

ART Partners

Cluster Leader

Univ. of Pavia:

RT scheduling and RT kernels

Core Partners

Univ. of Aveiro: Malardalen Univ.: Univ. of Cantabria: Univ. of York: UP Madrid: PI Porto:

networking, distributed applications video streaming, scheduling schedulability analysis and OS standards real-time languages QoS and resource management heterogeneous networks

Affiliated Partners

SSSA Pisa: Evidence: UP Catalonia: Univ. of Catania: UC3 Madrid: RT scheduling and resource management kernels and tools for RT systems control methodologies for RT systems distributed systems QoS and resource management

Cluster Integration (selected)

Seminars

- ARTIST2 seminar on Adaptive RT Systems with emphasis on RT Control Systems, Barcelona, June 20-23, 2005.
- RT Operating Systems, Univ. of Pavia.

Workshops

- OSPERT Workshop on Operating Systems, at ECRTS 05, Palma, July 5, 2005.
- The First SHARK Workshop, Pisa, Feb. 28 Mar. 4, 2005.

Cluster Integration (selected)

Intra-cluster collaborations and exchange

- Malardalen Univ. & Univ. of Catania Distributed systems
- Lund & Univ. of Pavia RT & Control
- Catalonia & Lund RT & Control
- Cantabria & Pisa Schedulability Analysis

Overseas collaborations

- Univ. of Virginia RT and Control and Sensor Networks
- Univ. of Illinois (UIUC) RT scheduling and wireless networks
- Univ. of North Carolina @ Chapel Hill Sched. Analysis

Interaction with other clusters

Real-Time and Control

- Participation in a Graduate Course on Embedded Control Systems, Valencia, April 5-8, 2005.
- Participation in a workshop on Real-Time and Control in Lund, June 13-15, 2005
- Participation in a workshop on Real-Time and Control at ECRTS 05, Palma, July 5, 2005.
- ARTIST2 seminar on Adaptive RT Systems with emphasis on RT Control Systems, Barcelona, June 20-23, 2005.

Participation in cluster meetings

- Modelling and Components
- Compilers and Timing Analysis
- Hard Real-Time Systems

Joint Publications (selected)

Books

- All: The Industrial Information Technology Handbook, CRC Press, 2004.
- All: The Industrial Communication Technology Handbook, CRC Press, 2005.
- York-Pavia-USA: Handbook of Networked and Embedded Control Systems, Birkhauser, Boston, 2005.

Journals

- Aveiro-Pavia: IEEE Trans. on Industrial Informatics, 1(3), 2005.
- Pavia-Lund-York-USA: Real-Time Systems, 28(2-3), 2004.
- MDH-Philips: Int. Jou. On Embedded Systems, 2005.

International Conferences

- Pavia-Aveiro: IEEE RTSS, Lisbon, Portugal, 2004.
- Lund-Pavia: RTCSA, Gothenburg, Sweden, 2004.
- Pisa-Pavia: ECRTS, Palma, Spain, 2005.
- **Pavia-Aveiro**: IEEE ETFA, Catania, Italy, 2005.
- Pavia-Catalonia-MDH: ECRTS, Catania, 2004
- Catania-MDH: ETFA, Catania, 2005.

Interaction with Industry

Within ARTIST we collaborated with several industries that use RT embedded systems in different application domains:

Consumer electronics

Philips, Ericsson

> Telecommunications

Ericsson, PTI, Nokia

Industrial automation

Equipos Nucleares S.A., Desin Instruments S.A., MAPS S.A., SPIN S.A., Centre CIM, Thales

> Automotive

Lear Automotive, Magneti Marelli

Facts

- Embedded systems are getting too complex.
- SW code is constantly increasing. Applications consists of several million lines of code involving large number of concurrent activities.

Goals

Efficiency, robustness, predictability, complexity control, simple user interface.

Achieving these goals with an increased complexity requires new software technologies.

State of practice

- Current real-time embedded systems have very limited capabilities for adaptation.
- They are built on top of commercial components that do not offer the possibility of being reconfigured at runtime.
- At any level, scheduling, resource management, and communication protocols rely on static management strategies that cannot be modified at runtime.
- Some adaptation is done at the application level.

Required features

- Strong focus on application <u>portability</u>, security, <u>power consumption</u> and size
- Support for complexity control:
 - \Rightarrow <u>Flexible scheduling</u> to adapt to dynamic changes
 - \Rightarrow <u>QoS management</u>
- Increasing SW dimension requires
 - \Rightarrow optimized resource usage
 - \Rightarrow <u>overload management</u>
- Rapid systems evolution requires highly configurable, reusable, and scalable platforms

ART Cluster Activities

JPIA Platforms

A common infrastructure for adaptive RT systems

JPRA NoE Integration

- Adaptive real-time, HRT and Control
- QoS Aware Components
- Merging the E-T and T-T paradigms
 Postponed
- Semantic framework for hard RT design flow OUT
- Timing analysis for adaptive RT systems

JPRA Cluster Integration

- Flexible Scheduling Technologies
- Adaptive Resource Management for Consumer Electronics

OUT

• Real-Time Languages 🛛 🖛 🛛 🕬

ARTIST2

Overview of the activities of the ART cluster

Applications: Consumer Electronics

Adaptive Real-Time and Control	Middleware: QoS Management
	Flexible Scheduling Technology

Common OS Infrastructure

ARTIST2

Overview of the activities of the ART cluster

Applications: Consumer Electronics

Adaptive Real-Time, Hard RT and Control	Middleware: QoS Management
	Flexible Scheduling Technology

Common OS Infrastructure

Activity 3: JPRA NoE Integration Adaptive Real-Time and Control

Objectives

RT for Control

- Improve the performance of control systems by integrating feasibility analysis in the design of complex control applications
- Use flexible scheduling technologies to make control systems more adaptive

Control for RT

- Use feedback control techniques to make RT embedded systems more reactive to environmental changes
- Improve system adaptivity by integrating the results of control theory and real-time scheduling

Activity 3: JPRA NoE Integration Adaptive Real-Time and Control

Approach

- 1. Organize meetings and workshops for brainstorming
- 2. Mobility: invite people in Control to work with people in RT, and viceversa
- 3. Use the common OS platform to implement and experiment new algorithms for control applications

Activity 3: JPRA NoE Integration Adaptive Real-Time and Control Achievements in Year 1

- Participation in a Graduate Course on Embedded Control Systems, Valencia, April 5-8, 2005.
- Participation in a workshop on Real-Time and Control in Lund, June 13-15, 2005
- ARTIST2 seminar on Adaptive RT Systems with emphasis on RT Control Systems, Barcelona, June 20-23, 2005.
- Participation in a workshop on Real-Time and Control at ECRTS 05, July 5, 2005.
- Implementation of the elastic scheduling method for rate adaptation into the Shark kernel (Pavia – Lund)
- Developed a design methodology for managing QoC in overloaded systems.

ARTIST2

Activity 3: JPRA NoE Integration Adaptive Real-Time and Control Plan for the next 18 months

- Evaluate the effect of jitter and delay in RT applications
- Investigate scheduling policies to reduce jitter and delay
- Implement and experiment such policies using Shark and True Time
- Feedback-based scheduling for rate adaptation
- Integration of QoS management with model-based control

New activity

Applications: Consumer Electronics

Real-Time Languages

Adaptive Real-Time and Control	Middleware: QoS Management
	Flexible Scheduling Technology

Common OS Infrastructure

Real-Time Languages Activity Leader: Alan Burns (Univ. Of York)

Objective

• Supporting RT functionality via language constructs rather than OS calls eases the programmer's task in writing complex applications.

Approach

- Combine the efforts and skills of the leading group to define flexible RT technologies that support multi-language development.
- Initial focus will be on Ada, Java, and POSIX standards.

Expected Results

- Modifications to the standards
- Development of patterns for the use of language abstractions
- Development of guidelines for using RT programming languages