
Timing Analysis for Hard Real-Time Systems

Reinhard Wilhelm
Saarland University

Saarbrücken

ARTIST2 Cluster on
Compilation and Timing Analysis

Structure of the Talk
1. Timing Analysis, the problem,
2. architecture, static program analysis
3. Industrial experience
4. Future Work in ARTIST2

Industrial Needs
Hard real-time systems, often in safety-critical applications abound

– Aeronautics, automotive, train industries, manufacturing control

Wing vibration of airplane,
sensing every 5 mSec

Sideairbag in car,
Reaction in <10 mSec

Hard Real-Time Systems
• Embedded controllers are expected to finish their tasks

reliably within time bounds.
• Task scheduling must be performed
• Essential: upper bound on the execution times of all tasks

statically known
• Commonly called the Worst-Case Execution Time

(WCET)
• Analogously, Best-Case Execution Time (BCET)

Basic Notions

t
Best
case

Worst
case

Lower
bound

Upper
bound

Worst-case
guarantee

Measurement vs. Analysis
Pr

ob
ab

i li
ty

Execution Time

Best Case
Execution Time

Worst Case
Execution Time

Upper bound
Unsafe:
Execution Time
Measurement

Once upon a time,
the world was compositional

u_bound(if c then s1 else s2) =
u_bound(c) +max{u_bound(s1), u_bound(s2)}

u_bound(x:=y+z) =
time(mv y R1) +
time(mv z R2) +
time(add R1 R2) +
time(mv R1 x) 1mv Reg Reg

14mv Reg m
12mv m Reg

4add

Structure-based Approaches

• Historically first approaches to
Timing Analysis

• Based on the structure of the
program

• Easy to implement ☺
• Need compositionality /
• Do not deliver precision on

modern processors /

Modern Hardware Features
• Modern processors increase performance by using:

Caches, Pipelines, Branch Prediction
• These features make WCET computation difficult:

Execution times of instructions vary widely
– Best case - everything goes smoothely: no cache miss, operands

ready, needed resources free, branch correctly predicted
– Worst case - everything goes wrong: all loads miss the cache,

resources needed are occupied, operands are not ready
– Span may be several hundred cycles

Access Times

LOAD r2, _a

LOAD r1, _b

ADD r3,r2,r1

0

10

20

30

0 Wait
Cycles

1 Wait
Cycle

External
(6,1,1,1,...)

Execution Time depending on Flash Memory
(Clock Cycles)

Clock Cycles

0

50

100

150

200

250

300

350

Best Case Worst Case

Execution Time (Clock Cycles)

Clock Cycles

MPC 5xx PPC 755

x = a + b;

(Concrete) Instruction Execution
mul
Fetch
I-Cache miss?

Issue
Unit occupied?

Execute
Multicycle?

Retire
Pending instructions?

30

1

1

3

3

4

6

41
3

s1

s2

History Dependence

• Execution time of individual instructions
is (extremely) history dependent:
Has execution reached state s1 or s2?

• Needs consideration of the paths to this
instruction

• Invariant about a set of paths to this
instruction describes common properties
about execution states – cache contents,
pipeline occupancy, etc.

MUL R1 R2

s1
s2

Determination of Invariants

• Static program analysis
determines invariants

• Differentiation of contexts –
partition of this set of paths
– is important for precision.
Example: caches in loops

MUL R1 R2

Timing Accidents and Penalties
Timing Accident – cause for an increase of the

execution time of an instruction
Timing Penalty – the associated increase
• Types of timing accidents

– Cache misses
– Pipeline stalls
– Branch mispredictions
– Bus collisions
– Memory refresh of DRAM
– TLB miss

Overall Approach: Natural Modularization

1. Processor-Behavior Prediction:
• Uses static program analysis
• Excludes as many Timing Accidents as possible
• Determines WCET for basic blocks (in contexts)

2. Worst-case Path Determination
• Maps control flow graph to an integer linear program
• Determines upper bound and associated path

Overall Structure

CFG Builder

Value Analyzer

Cache/Pipeline
Analyzer

Executable
program

Static Analyses

ILP-Generator

LP-Solver

Evaluation

Path Analysis

CRL
File

PER
File

Loop Trafo

WCET
Visualization

Loop
bounds

AIP
File

Processor-Behavior
Prediction

Worst-case Path
Determination

Murphy’s Law in Timing Analysis
• Naïve, but safe guarantee accepts Murphy’s Law:

Any accident that may happen will happen
• Consequence: hardware overkill necessary to guarantee

timeliness
• Example: Alfred Rosskopf, EADS Ottobrunn, measured

performance of PPC with all the caches switched off
(corresponds to assumption ‘all memory accesses miss
the cache’)
Result: Slowdown of a factor of 30!!!

Fighting Murphy’s Law
• Static Program Analysis allows the derivation of

Invariants about all execution states at a program point
• Derive Safety Properties from these invariants :

Certain timing accidents will never happen.
Example: At program point p, instruction fetch will
never cause a cache miss

• The more accidents excluded, the lower the upper
bound

• (and the more accidents predicted, the higher the lower
bound)

Contribution to WCET
Information about cache contents sharpens timings.

while . . . do [max n] ...
ref to s
...

od

time
tmiss

thit

loop time

n ∗ tmiss

n ∗ thit

tmiss + (n − 1) ∗ thit

thit + (n − 1) ∗ tmiss

• Execution time of a program =
∑ Execution_Time(b) x Execution_Count(b)

• ILP solver maximizes this function to determine
the WCET

• Program structure described by linear constraints
– automatically created from CFG structure
– user provided loop/recursion bounds
– arbitrary additional linear constraints to exclude

infeasible paths

Basic_Block b

Path Analysis
by Integer Linear Programming (ILP)

if a then
b

elseif c then
d

else
e

endif
f

a

b
c

d

f

e

10t

4t

3t

2t

5t

6t

max: 4 xa + 10 xb + 3 xc +

2 xd + 6 xe + 5 xf

where xa = xb + xc

xc = xd + xe

xf = xb + xd + xe
xa = 1

Value of objective function: 19
xa 1
xb 1
xc 0
xd 0
xe 0
xf 1

Example (simplified constraints)

Industrial Experience

Tools used in the aeronautics,
astronautics, and automotive

domains

Analysis Results (Airbus Benchmark)

Interpretation

• Airbus’ results obtained with legacy method:
measurement for blocks, tree-based composition,
added safety margin

• ~30% overestimation
• aiT’s results were between real worst-case

execution times and Airbus’ results

Tidorum’s Bound-T Tool in Space Applications

• Mission-critical systems
• Experiments gave hints time leaks, led to

redesign
• Supports rather simple processors as used in

space applications, no caches, no deep
pipelines, no speculation

Timing-Analysis Case Studies in Sweden
Performed by Mälardalen University with aiT

Analysis of different types of code
• time-critical, but not hard real time
• often parametric in system parameters

ENEA operating system on ARM7TDMI

Time-critical code parts:
System calls, context switches, disable interrupt
regions

Results (published in ISOLA 2004)
• Much manual annotation and expert knowledge of

code needed
• Overestimation of 0 – 7% against measured execution

times
• very parametric bounds – depending on system state,

e.g. number of tasks

Not the typical application of Timing Analysis

Volcano Communications Technologies
Data-commun. Software on MC9S12DP256

(MC68HCS12)
Results (submitted to Euromicro 2005):
• Quite parametrical behavior, e.g. in system

parameters
• Hard to automate analysis, annotations needed
• Interesting to analyze bounds under certain

system conditions
• Lower bounds interesting for determining

jitter

Conclusions (from Volcano study)
MS Thesis S. Byhlin, Mälardalen

Unsafe WCET results
Difficult for small code snippets
Undetailed results
Program execution required
Target machine required
Error Prone
Time ConsumingSimple

DisadvantagesAdvantages
Dynamic Analysis (measurement)

Conclusions (from Volcano study)

Theoretically guaranteed safe WCETs

Incorrect annotations =>
incorrect results

Correct annotations =>
correct results

Compiler dependentSimple for small code snippets

Expensive if different analysis tools are
required

Detailed results

Good knowledge about the analyzed
system required

User—friendly tools available

Time consuming in the beginningNo program execution required

DisadvantagesAdvantages

Static Analysis

Subject of ongoing work

Who needs Timing-Analysis Tools?
• TTA

• Synchronous languages

• Stream-oriented people

• UML real-time profile

• Hand coders

Conclusion
Existing Timing-Analysis tools enable the

development of complex hard real-time systems
on state-of-the-art hardware

• Increase safety
• Save development time
• No over-provisioning

precise timing predictions enable the use of cost-
efficient hardware

aiT WCET Analyzer
European Perspective

� Europe is leading in program analysis and WCET research.
� AbsInt actively participates in the definition of a European WCET

research framework (NoE).

IST Project DAEDALUS final review report:
"The AbsInt tool is probably the
best of its kind in the world and it
is justified to consider this result
as a breakthrough.”

Conclusion II

• ARTIST2 gathers most of the Timing-Analysis
research worldwide and most available tools

• Problem for the mono-processor solved
• Tool development complex – Support in German

transregional research center AVACS
• Usability needs improvement – Work in ARTIST2

cluster on Timing Analysis

