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Structure of the Talk
1. Timing Analysis, the problem, 
2. architecture, static program analysis
3. Industrial experience
4. Future Work in ARTIST2



Industrial Needs
Hard real-time systems, often in safety-critical applications abound

– Aeronautics, automotive, train industries, manufacturing control

Wing vibration of airplane, 
sensing every 5 mSec

Sideairbag in car,
Reaction in <10 mSec



Hard Real-Time Systems
• Embedded controllers are expected to finish their tasks 

reliably within time bounds.
• Task scheduling must be performed
• Essential: upper bound on the execution times of all tasks 

statically known 
• Commonly called the Worst-Case Execution Time 

(WCET)
• Analogously, Best-Case Execution Time (BCET)
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Once upon a time,
the world was compositional

u_bound(if c then s1 else s2) =
u_bound( c ) +max{u_bound(s1), u_bound(s2)}

u_bound(x:=y+z) = 
time(mv y R1) +
time(mv z R2) +
time(add R1 R2) +
time(mv R1 x) 1mv Reg Reg

14mv Reg m
12mv m Reg

4add



Structure-based Approaches

• Historically first approaches to 
Timing Analysis

• Based on the structure of the 
program

• Easy to implement ☺
• Need compositionality /
• Do not deliver precision on 

modern processors /



Modern Hardware Features
• Modern processors increase performance by using: 

Caches, Pipelines, Branch Prediction
• These features make WCET computation difficult:

Execution times of instructions vary widely
– Best case - everything goes smoothely: no cache miss, operands

ready, needed resources free, branch correctly predicted
– Worst case - everything goes wrong: all loads miss the cache, 

resources needed are occupied, operands are not ready
– Span may be several hundred cycles



Access Times

LOAD     r2, _a
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(Concrete) Instruction Execution
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History Dependence

• Execution time of individual instructions 
is (extremely) history dependent: 
Has execution reached state s1 or s2?

• Needs consideration of the paths to this 
instruction

• Invariant about a set of paths to this 
instruction describes common properties 
about execution states – cache contents, 
pipeline occupancy, etc.

MUL R1 R2

s1
s2



Determination of Invariants

• Static program analysis 
determines invariants

• Differentiation of contexts –
partition of this set of paths 
– is important for precision.
Example: caches in loops

MUL R1 R2



Timing Accidents and Penalties
Timing Accident – cause for an increase of the 

execution time of an instruction
Timing Penalty – the associated increase
• Types of timing accidents

– Cache misses
– Pipeline stalls
– Branch mispredictions
– Bus collisions
– Memory refresh of DRAM
– TLB miss



Overall Approach: Natural Modularization

1. Processor-Behavior Prediction: 
• Uses static program analysis
• Excludes as many Timing Accidents as possible
• Determines WCET for basic blocks (in contexts)

2. Worst-case Path Determination
• Maps control flow graph to an integer linear program
• Determines upper bound and associated path



Overall Structure
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Murphy’s Law in Timing Analysis
• Naïve, but safe guarantee accepts Murphy’s Law: 

Any accident that may happen will happen
• Consequence: hardware overkill necessary to guarantee 

timeliness
• Example: Alfred Rosskopf, EADS Ottobrunn, measured 

performance of PPC with all the caches switched off 
(corresponds to assumption ‘all memory accesses miss 
the cache’)
Result: Slowdown of a factor of 30!!!



Fighting Murphy’s Law
• Static Program Analysis allows the derivation of 

Invariants about all execution states at a program point
• Derive Safety Properties from these invariants : 

Certain timing accidents will never happen.
Example: At program point p, instruction fetch will 
never cause a cache miss

• The more accidents excluded, the lower the upper
bound

• (and the more accidents predicted, the higher the lower
bound)



Contribution to WCET
Information about cache contents sharpens timings.

while  . . .  do [max n]  ...
ref to s
...

od

time
tmiss

thit

loop time

n ∗ tmiss

n ∗ thit

tmiss + (n − 1) ∗ thit

thit + (n − 1) ∗ tmiss



• Execution time of a program =
∑ Execution_Time(b) x Execution_Count(b)

• ILP solver maximizes this function to determine 
the WCET

• Program structure described by linear constraints
– automatically created from CFG structure
– user provided loop/recursion bounds
– arbitrary additional linear constraints to exclude 

infeasible paths

Basic_Block b

Path Analysis 
by Integer Linear Programming (ILP)



if  a then 
b

elseif c then
d

else
e

endif
f
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max: 4 xa + 10 xb + 3 xc +

2 xd + 6 xe + 5 xf

where xa =  xb +  xc

xc =  xd +  xe

xf =  xb +  xd +  xe
xa =  1

Value of objective function: 19
xa 1
xb 1
xc 0
xd 0
xe 0
xf 1

Example (simplified constraints)



Industrial Experience

Tools used in the aeronautics, 
astronautics, and automotive 

domains



Analysis Results (Airbus Benchmark)



Interpretation

• Airbus’ results obtained with legacy method:
measurement for blocks, tree-based composition, 
added safety margin

• ~30% overestimation
• aiT’s results were between real worst-case 

execution times and Airbus’ results



Tidorum’s Bound-T Tool in Space Applications

• Mission-critical systems
• Experiments gave hints time leaks, led to 

redesign
• Supports rather simple processors as used in 

space applications, no caches, no deep 
pipelines, no speculation 



Timing-Analysis Case Studies in Sweden 
Performed by Mälardalen University with aiT

Analysis of  different types of code 
• time-critical, but not hard real time
• often parametric in system parameters



ENEA operating system  on  ARM7TDMI

Time-critical code parts: 
System calls, context switches, disable interrupt 
regions

Results (published in ISOLA 2004)
• Much manual annotation and expert knowledge of 

code needed
• Overestimation of 0 – 7% against measured execution 

times
• very parametric bounds – depending on system state, 

e.g. number of tasks

Not the typical application of Timing Analysis



Volcano Communications Technologies
Data-commun. Software  on  MC9S12DP256 

(MC68HCS12)
Results (submitted to Euromicro 2005):
• Quite parametrical behavior, e.g. in system 

parameters
• Hard to automate analysis, annotations needed
• Interesting to analyze bounds under certain 

system conditions
• Lower bounds interesting for determining 

jitter



Conclusions (from Volcano study)
MS Thesis S. Byhlin, Mälardalen

Unsafe WCET results
Difficult for small code snippets
Undetailed results
Program execution required
Target machine required
Error Prone
Time ConsumingSimple 

DisadvantagesAdvantages
Dynamic Analysis (measurement)



Conclusions (from Volcano study)

Theoretically guaranteed safe WCETs

Incorrect annotations => 
incorrect results

Correct annotations => 
correct results

Compiler dependentSimple for small code snippets

Expensive if different analysis tools are 
required

Detailed results

Good knowledge about the analyzed 
system required

User—friendly tools available

Time consuming in the beginningNo program execution required

DisadvantagesAdvantages

Static Analysis

Subject of ongoing work



Who needs Timing-Analysis Tools?
• TTA

• Synchronous languages 

• Stream-oriented people

• UML real-time profile

• Hand coders



Conclusion
Existing Timing-Analysis tools enable the

development of complex hard real-time systems
on state-of-the-art hardware

• Increase safety
• Save development time
• No over-provisioning

precise timing predictions enable the use of cost-
efficient hardware



aiT WCET Analyzer
European Perspective

� Europe is leading in program analysis and WCET research.
� AbsInt actively participates in the definition of a European WCET 

research framework (NoE).

IST Project DAEDALUS final review report: 
"The AbsInt tool is probably the
best of its kind in the world and it 
is justified to consider this result 
as a breakthrough.”



Conclusion II

• ARTIST2 gathers most of the Timing-Analysis 
research worldwide and most available tools

• Problem for the mono-processor solved
• Tool development complex – Support in German 

transregional research center AVACS
• Usability needs improvement – Work in ARTIST2 

cluster on Timing Analysis


