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Overall 
growth rate 
40%
Electronic 
growth rate 
250%
Increases 
average 
share of 
electronics to 
35% from 
current 20%
More than 
600 000 
new jobs
only in 
Automotive 
Electronics
in Europe

Scope of ARTEMIS

Strongest Growth 
in Electronics

©“The Coming Age of
Collaboration in the 

Automotive Industry”
Jan Dannenberg and
Christian Kleinhans, 
Mercer Management

Consulting
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Consequences

OEMs will focus in-house development on branding 
components
Shared libraries for non-branding components
distributed functions running on multiple ECUs
Developed by multiple sources
Freedom in choosing boundary of in-house and 
external development
New forms of suppliers, Software as product
Cross-organizational optimization of electronic 
subsystems
Re-Use at all levels
Decouple function from implementation



Rich Components

Approach
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Rich Components
A component : fully re-usable 
design artifact providing a well 
defined functionality

- Application level functionality 
- “features” of application level 

functions – level of granularity 
determined by need to customize 
application level function

- Middleware components
- Hardware components

“Rich”
- Explicates all assumptions and/or 

dependencies on its design context 
- Such that assessment to functional 

and non-functional characteristics 
can be made without assessing 
component itself

Component Characterization
- For all viewpoints

- Safety, Reliability, Real-Time, Power, 
Bandwidth, Memory consumption, 
behaviour, protocols

Assumed

From/by lower 
design levels

from 
neighbors

Promised

From/by higher 
design levels

to neighbors

EL

FL

SL

HL

SL: System Layer
FL: Functional Layer
EL: ECU Layer
HL: Hardware Layer
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Rich Component Model 
Assumptions

- reflect incomplete knowledge of 
actual design context

- Determine boundary conditions 
on actual design context for each 
view-point under which 
component is promising its 
services

- are decorated with confidence 
levels 

Promises
- Are guaranteed if component is 

used in assumed design context
Tradeoff

- Accuracy of promises dependent 
on stringency of assumptions

- High accuracy restricts 
implementation space

Viewpoint specific models
- Explicate dependency of promises 

on actual guarantees by design 
context

Component Characterization
- For all viewpoints

- Safety, Reliability, Real-Time, 
Power, Bandwidth, Memory 
consumption, behaviour, 

Assumed

EL

FL

SL

From/by lower 
design levels

from 
neighbors

Promised

From/by higher 
design levels

to neighbors

HL
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Rich Component Models (Functional View)

Horizontal assumption:
Environment will provide the 

requested data
Vertical assumption:

The communication layer 
guarantees the transmission of 

every message

Safety …Real-TimeFunctional

Stable

Brake

Accelerate

[dist > opt_dist]

[dist > opt_dist]

[opt_dist-∆sf =< 
dist =< opt_dist]

? a

[dist < opt_dist]

? a[opt_dist =< dist =<
opt_dist + ∆sf]

?a

[dist < opt_dist]

Assumed

HL

FL

SL

From/by lower 
design levels

from 
neighbors

Promised

From/by higher 
design levels

to 
neighbors

EL
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Rich Component Models (Real Time View)

5 .. 7 ms

2
 .

. 
3
 m

s

1
0
 .

. 
1
5
 m

s

1 .. 2 ms

Interface
Higher-Levels

Interface
Neighbors

Budgets for
Lower Design Levels

Functional Safety …Real-Time

Assumed

HL

FL

SL

From/by lower 
design levels

from 
neighbors

Promised

From/by higher 
design levels

to 
neighbors

EL

explicate dependency of promises 
on actual guarantees by design 
context for real-time properties 
using Live Sequence Charts
Horizontal Assumptions:
Requested information will be 
delivered within a specified time 
frame
Vertical Assumptions:
Worst case execution time is 
within a specified range
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Rich Component Models (Safety View)
Functional …Real-Time Safety

DS

VS

AK

too late

value

value

BR

S

too late

too late

Assumed

HL

FL

SL

From/by lower 
design levels

from 
neighbors

Promised

From/by higher 
design levels

to 
neighbors

EL

explicate propagation of failures in a con-
ceptual model for a preliminary safety 
assessment
Horizontal Assumptions:
Failure modes/rates for required infor-
mation
Vertical Assumptions:
Failure rates for each failure mode
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View Points Dependencies

Functional Safety …Real-Time

Functional …Real-Time Safety

Port_VS

Port_DS

Port_S

Port_AK

SYS

VS

DS

S

AK

AK

tdelay

Probability of failure:
SPECSYS: 

Pr{breakAK(t+tdelay) ≠ breakS(t) ∨ breakDS(t) } 
< 10-6
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Interfaces: Example
INTERFACE:

(FUNC2SYSTEM, Direction: up, Data (Attributes: Twb:real:input, ∆t:real:output, 
treact:real:output, Signals: wireless:input, brake:output, Operations: ), 
Specifications: SPEC_FUNC_SYS)
SPEC_FUNC_SYS:

(ViewPoint real-time,
(to_system: (Assumptions:(SD_FREQ), Promises:(SD_REACT)))

Env Comp

wireless
≥Twb

wireless

SD_FREQ

Env Env

[0,treact]

Comp

brake

wireless

SD_REACT

Port_AS_AK

Port_S_AK

Port_AK_S

AK

Port_BR

Port_AK_SK

Port_BR2

Port_GR
Port_VSDS

Port_U1

input: Twb:   real
output: ∆t:    real

treact:real

input:    wireless() 
output:  brake()

FUNC2SYSTEM

<<Vertical Up>>

Specifications

Attributes
<<type>>

Signals

Operations
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Interfaces for Black-Box View: Relevant Elements

Interface
a group of services the component is ready to perform and 

services used by the component
Static Description – Data:

• attributes, the values of which 
are exchanged (read or written) 
by the component and its 
environment

• signals the component is ready 
to receive from or emit to its 
environment (asynchronous)

• operation calls the component is 
ready to accept or invoke from its 
environment (synchronous)

“Directions” considered

- Interface direction: horizontal or 
vertical, vertical = { up, down } 

- Data directions: input or output

Dynamic Description = 
Specifications containing per 

viewpoint

• Declarative specifications

- (temporal) logic

- Sequence Diagrams 

And/or

• Automata  

suitably tailored to specific 
viewpoints

Property “kinds” 

- Assumptions

- Promises



04.05.2005 16 © Prof.Dr.Werner Damm , OFFIS

Black Box View: the benefit of being Rich

Assume-guarantee style interface specifications 
completely defines substitutivity of components

- Component Cnew can replace Component C iff
…. Standard requirements on syntactic compatibility and
for all viewpoints  v
for all interfaces  i

- assumptions of C jointly establish assumptions of 
Cnew

- promises of Cnew jointly establish promises of C

Application relevance
- Defines space of allowed detailed specifications during 

development
- Characterizes when component upgrades during product 

lifetime are permissable
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Derived Notion: Input and Output Interfaces
An Interface is called input (output) if all its data elements a ∈ Data 
have directions input (output): DataDir(a)=input (DataDir(a)=output)

Input Interface contains:

- operation calls the component is 
ready to accept

- attributes, the values of which 
are read by the component 

- signals the component is ready 
to receive

Automata Specifications = 
expected order, i.e. how the 
environment

-calls its operations

- sets (global) attribute values 
(read by the component)

- sends signals to the component 

Output Interface contains:

- expected results of operations, 
the component invokes from the 
outside

- attributes, the values of which 
are written by the component 

- signals the component emits 
into  its environment

Automata Specifications = 
guaranteed order, i.e. how the 
component itself

- calls external operations

- sets (global) attribute values

- sends signals outside
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Structural Specification: Gray Box View

SK

Port_AS_AK

Port_S_AK

Port_AK_S

BR

GR

AKBR

AS

AK

Port_BR

Port_AK_SK

Port_BR2

Port_GRPort_VSDS

SubSys1

S

VS

DS

AKS

SAK

VSAK

Port1

Port_VS

Port_DS

Port_S

Port_VSDS : InI_A1

Port_S_AK : InI_A2
Port_AK_S : OutI_A2

. . .

Port_BR : OutI_A1

SAK : OutI_S
AKS : InI_S
VSAK : OutI_V
AKBR : InI_B

. . .

Compatible to UML 2.0 Composite Structure Diagrams 
(for System level component)
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Gray-Box Specifications: 
Path-Formula for RT View

CompKind ::= computation | connection | …

AK
DS

S BR

Sensor

Wireless Brake actuator

( ) ( ) BRBRAKAKAKSSextreact rmrrmrrrt +++++= →→:specbox Gray 
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Gray-Box Specifications: Protocol Viewpoint 

:ENV_Port_DS DS:ENV_Port_VS :ENV_Port_S :ENV_Port1

dist

v

brake(acc)

VS AK S

dist

a

speed

status

status

dist < safe



Rich Components

Analysing 
Compatibility
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Analysing Compatibility

RT

Sa
fe
ty

Protocol

Assumed

From/by lower 
design layers

from 
neighbors

Promised
to 

neighbors

From/by higher 
design layers

EL

FL

SL

HL
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Horizontal Verification

C1 C2

C3

SYS

S1

S2

Assume: A1, ..., An
Spec_3_3

S1

S2

Assume: A1, ..., An
Spec_2_1

S1

S2

Assume: A1, ..., An
Spec_1_2

S1

S2

Assume: A1, ..., An
Spec_1_1

S1

S2

Assume: A1, ..., An
Spec_3_2

S1

S2

Assume: A1, ..., An
Spec_3_1

S1

S2

Assume: A1, ..., An
Spec

C1 C3C2

SYS

Derive the global system specification
Spec from the local component
specifications:

Furthermore: Interface 
specifications of connected  
port should match:

assume apromise p

� p implies a
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Horizontal Compatibility Test
Output interface

ComputeA

CompleteA

a

speed

tm(Tg)

ReadyA

tm(Ta)

speed : real

a():

OutI_V

dist : real
speed : real
a():
opt_dist(int spd):real
recover():real

InI_A1

<<input_horizontal>>

Failure

Compute

Ready

Complete

speed

adist

tm(Ta)

recover
tm(fail)

dist

tm(Tg) opt_dist

InI_A1 ENV

d

d

Td >20

assumption1 ENV OutI_V

d

d

Td >25

promise1

A(InI_A1)

Input interface

<<output_ horizontal >>
L(A(OutI_V)) ⊆ L(A(InI_A1))

&
Promises(OutI_V) ⇒ Assumptions(InI_A1)

A(OutI_V)
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Using Horizontal Analysis to establish Black-
Box Properties: timing

AK
DS

S BR

( ) ( ) BRBRAKAKAKSSextreact rmrrmrrrt +++++= →→:specbox Gray 

Env Comp

wireless
≥Twb

wireless

Env Env

[0,treact]

Comp

brake

wireless

Black box spec

Sensor

Wireless Brake actuator
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:ENV_Port_S_AK D:ENV_Port_VSDS :ENV_Port_BR :ENV_AK_S

d(pre)

a(my)

A C B

acc

my_status

Ta<5

change(acc)

Status=Ready Status=Ready
a(speed,dist)

Status=Compute Status=Compute

mode=nominal

Status=Complete Status=Complete

Status=Complete Status=Complete

Td<3

Tg1<2
Tg2<10

Establishing Black-Box Scenarios from Gray-
Box Scenarios :ENV_Port_VSDS AK :ENV_Port_S_AK :ENV_Port_BR :ENV_Port_AK_S

Status=Ready

Status=Compute

a(speed, dist)

acc

d(pre)

a(my)

Mode=NomNominal DegradeTHEN ELSE

Status=Complete

T_ad < 5

T_g < 10
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Mapping Example – Functional Layer → ECU 
Layer

AK
DS

S BRb

a

Sensor

Wireless Brake actuatorC3

C1

C2

ECU1 ECU2CAN

Functional Layer

ECU Layer

Map container of components to components of the lower 
layer
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Vertical Verification – Mapping

SYS´

C1

C31

SYS

C32

C21

C22

C1

C21

C32

C22

C31

assume a

promise p

• Establish the down assumptions of 
the upper layer SYS by the up 
promises of the lower layer SYS´

• Establish the up promises from the 
lower lower.
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Vertical Layer Reasoning for Real-Time 
System Layer

Function Layer

Level2

Level3

Level4

Derive values for symbolic time 
properties:

- Vertical assumptions from higher layer 
are typically symbolic instances of time 
properties,

- eg. calling periodicity, given in sequence 
diagrams

- Vertical promises to higher layer 
propagate real values for symbolic 
assumptions,

- eg. WCETECU1(τAK.d)=17ms

Promises down are collected from the 
leaf node‘s black box specifications
/ports
Promises up are collected from the top 
level black box specifications/ports
Vertical composition/verification is the 
mapping of container plus compliance 
checks on mapped ports

ECU Layer

Hardware Layer

Level3

Level2

Level1

symbolic
values
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Sample Reasoning for Real-Time
ECU Layer: Response time calculation for

- Task networks mapped on ECUs with given 
RTOS

- Message transmission mapped on bus systems 
with given bus specification (transport and 
higher layers)

- Take architectural topology into account

Hardware Layer: Time consumption of 
programs and messages

- Worst/Best Case Execution Time analysis on
Processors, memory hierarchies, etc.

- Message transmission latency on the base of 
physical layers of bus protocols

C
A

N

τS.a

τS.b

τAK.d

τAK.a

( )
2AKS IRIPmr →

Timer

NIU
Pipelin

e

Pipelin
e

I-
Cache

D-
Cache

ISR
I/O

τS.a

WCETWCETECU1ECU1((ττS.aS.a))

( ) dAKCAN
OSEK
switchj

ppECU j

jdAK

OSEK
switch

ppECU j

jdAKAK
cmethdAKdAK

Jcc
T

Jw

c
T

Jw
rwritecw

djj

djj

.
:

.

:

.
)(..

2

~(var)

)(1

)(1

+++⋅










 +
+

⋅










 +
+++=

∑

∑

>

<

ρ
τ

τ

τ

τ

a

a



Rich Component Model

Conclusion
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Conclusion

The Rich Component Model provides a 
comprehensive framework for the development of 
electronic components of automotive applications
Meets key industrial needs
- Seperation of function and implementation
- Cost Reduction
- Speculative design Processes
- Conservative extension of AutoSAR approach

Addresses key scientific challenges
- Early assessment of non-functional constrains
- Precise characterization of substitutivity
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