Rich Components

A coarse grained Approach to the Integration of Non-functional Constraints and MoCC in the design of Electronic Components in Automotive Applications

Werner Damm

OFFIS Member Board of Directors & C.v.O. Universität Oldenburg Chair of Safety Critical Embedded Systems

Structure of Presentation

- Motivation
- Rich Components
- Analyzing Compatibility
- >The Safety Viewpoint
- Integrating multiple Models of ComputationConclusion

```
Joint work with
Eckard Böde<sup>1</sup>, Bernhard Josko<sup>1</sup>, Alexander Metzner<sup>2</sup>,
Thomas Peikenkamp<sup>1</sup>, Angelika Votintseva<sup>1</sup>
<sup>1</sup> OFFIS
```

and

² C.v.O. Universität Oldenburg

4.05.200

Motivation

Strongest Growth in Electronics		Value creation structure in 2015 OEM Suppliers ¹			5 ©"The C Collabo Automot	©"The Coming Age o Collaboration in the Automotive Industry'	
>Overall growth rate 40%	Chassis	16		91	Christia Mercer Co	Management	
Electronic growth rate	Power train	18		7	2	90	
Increases average share of electronics to 35% from current 20%	liary systems	4	18	٤	37	135	
	ody structure		30		20	50	
	dy (exterior)	20	20 5'		51	71	
	Interior	19		115	;	134	
More than 600 000 new jobs							
only in Automotive Electronics	s/electronics	52	264 Scope of ARTEMIS			316	
in Europe	del 2015	203		200		Total: 903	

Consequences

- OEMs will focus in-house development on branding components
- Shared libraries for non-branding components
- >distributed functions running on multiple ECUs Developed by multiple sources
- Freedom in choosing boundary of in-house and external development
- >New forms of suppliers, Software as product
- Cross-organizational optimization of electronic subsystems
- ≻Re-Use at all levels

Decouple function from implementation

NFFIS

Rich Components

Approach

Rich Components

- A component : fully re-usable design artifact providing a well defined functionality
 - Application level functionality
 - "features" of application level functions – level of granularity determined by need to customize application level function
 - Middleware components
 - Hardware components

≻"Rich"

OFFIS

- Explicates all assumptions and/or dependencies on its design context
- Such that assessment to functional and non-functional characteristics can be made without assessing component itself

Component Characterization

- For all viewpoints
 - Safety, Reliability, Real-Time, Power, Bandwidth, Memory consumption, behaviour, protocols 04.05.2005 8

Rich Component Model

Assumptions

- reflect incomplete knowledge of actual design context
- Determine boundary conditions on actual design context for each view-point under which component is promising its services
- are decorated with confidence levels

Promises

- Are guaranteed if component is used in assumed design context

➤ Tradeoff

- Accuracy of promises dependent on stringency of assumptions
- High accuracy restricts implementation space
- > Viewpoint specific models
- Explicate dependency of promises on actual guarantees by design context OFFIS

04.05.2005

Component Characterization

- For all viewpoints
 - Safety, Reliability, Real-Time, Power, Bandwidth, Memory consumption, behaviour,

Rich Component Models (Functional View)

10

Rich Component Models (Real Time View)

Rich Component Models (Safety View)

View Points Dependencies

Interfaces: Example

INTERFACE:

(FUNC2SYSTEM, Direction: up, Data (Attributes: T_{wb} :real:input, Δt :real:output, t_{react} :real:output, Signals: wireless:input, brake:output, Operations:), Specifications: SPEC_FUNC_SYS) SPEC_FUNC_SYS:

(ViewPoint real-time,

(to system: (Assumptions: (SD FREQ), Promises: (SD REACT)))

14

Interfaces for Black-Box View: Relevant Elements

Interface

a group of services the component is ready to perform and services used by the component

Static Description – Data:

• *attributes*, the values of which are exchanged (read or written) by the component and its environment

• *signals* the component is ready to receive from or emit to its environment (asynchronous)

• *operation calls* the component is ready to accept or invoke from its environment (synchronous)

"Directions" considered

- Interface direction: horizontal or vertical, vertical = { up, down }
- Data directions: input or output

Dynamic Description =

Specifications containing per viewpoint

- Declarative specifications
 - (temporal) logic
 - Sequence Diagrams

And/or

• Automata

suitably tailored to specific viewpoints

Property "kinds"

- Assumptions
- Promises

Black Box View: the benefit of being Rich

Assume-guarantee style interface specifications completely defines substitutivity of components

- Component Cnew can replace Component C iff
 - Standard requirements on syntactic compatibility and for all viewpoints v

for all interfaces i

- assumptions of C jointly establish assumptions of Cnew
 - promises of Cnew jointly establish promises of C
- Application relevance
 - Defines space of allowed detailed specifications during development
 - Characterizes when component upgrades during product lifetime are permissable

Derived Notion: Input and Output Interfaces

An Interface is called *input* (*output*) if all its data elements $a \in Data$ have directions input (output): DataDir(a)=input (DataDir(a)=output)

Input Interface contains:

- operation calls the component is ready to accept

- attributes, the values of which are read by the component

- signals the component is ready to receive

Automata Specifications = expected order, i.e. how the environment

-calls its operations

sets (global) attribute values (read by the component)

- sends signals to the component

Output Interface contains:

- expected results of operations, the component invokes from the outside

- attributes, the values of which are written by the component

- signals the component emits into its environment

Automata Specifications = guaranteed order, i.e. how the component itself

- calls external operations
- sets (global) attribute values
- sends signals outside

Structural Specification: Gray Box View

Compatible to UML 2.0 Composite Structure Diagrams (for System level component)

Gray-Box Specifications: Path-Formula for RT View

CompKind ::= computation | connection | ...

Grayboxspec:
$$t_{react} = r_{ext} + r_S + r(m_{S \to AK}) + \underline{r_{AK}} + r(m_{AK \to BR}) + r_{BR}$$

Gray-Box Specifications: Protocol Viewpoint

Rich Components

Analysing Compatibility

Analysing Compatibility

Horizontal Verification

Furthermore: Interface specifications of connected port should match:

Derive the global system specification *Spec* from the local component specifications:

Horizontal Compatibility Test

Using Horizontal Analysis to establish Black-Box Properties: timing

Establishing Black-Box Scenarios from Gray-**Box Scenarios** :ENV_Port_VSDS AK ENV_Port_S_AK ENV_Port_BR

Map container of components to components of the lower layer

27

04.05.2005

Vertical Verification – Mapping

- Establish the down assumptions of the upper layer *SYS* by the up promises of the lower layer *SYS* '
- Establish the up promises from the lower lower.

Vertical Layer Reasoning for Real-Time

Derive values for symbolic time properties:

- Vertical assumptions from higher layer are typically symbolic instances of time properties,
- eg. calling periodicity, given in sequence diagrams
- Vertical promises to higher layer propagate real values for symbolic assumptions,
- eg. WCET_{FCU1}($\tau_{AK,d}$)=17ms
- > Promises **down** are collected from the leaf node's black box specifications /ports
- Promises up are collected from the top level black box specifications/ports
- Vertical composition/verification is the mapping of container plus compliance OF checks on mapped ports 29

Sample Reasoning for Real-Time

ECU Layer: Response time calculation for

- Task networks mapped on ECUs with given RTOS
- Message transmission mapped on bus systems with given bus specification (transport and higher layers)
- Take architectural topology into account

$$w_{AK.d} = c_{AK.d} + write(var) + \tilde{r}_{meth(c)}^{AK} + \sum_{\tau_j \mapsto ECU_1: p_j < p_{\tau(d)}} \left[\frac{w_{AK.d} + J_j}{T_j} \right] \cdot c_{switch}^{OSEK}$$
$$+ \sum_{\tau_j \mapsto ECU_1: p_j > p_{\tau(d)}} \left[\frac{w_{AK.d} + J_j}{T_j} \right] \cdot \left(c_j + 2c_{switch}^{OSEK}\right) + \rho_{CAN} + J_{AK.d}$$

Hardware Layer: Time consumption of programs and messages

- Worst/Best Case Execution Time analysis on Processors, memory hierarchies, etc.
- Message transmission latency on the base of physical layers of bus protocols

 $\tau_{S,a}$

τ_{AK.a}

^τAK.d

 $\tau_{S,b}$

Rich Component Model

Conclusion

Conclusion

- The Rich Component Model provides a comprehensive framework for the development of electronic components of automotive applications
- Meets key industrial needs
 - Seperation of function and implementation
 - Cost Reduction
 - Speculative design Processes
 - Conservative extension of AutoSAR approach
- >Addresses key scientific challenges
 - Early assessment of non-functional constrains
 - Precise characterization of substitutivity

