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Strongest Growth
In Electronics

»Overall
growth rate
40%

> Electronic

growth rate
250%

»Increases
average
share of
electronics to
35% from
current 20%

>More than
600 000
new jobs
only in
Automotive
Electronics
in Europe
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Conseguences

»0OEMs will focus in-house development on branding
components

»Shared libraries for non-branding components

»distributed functions running on multiple ECUs
Developed by multiple sources

»Freedom in choosing boundary of in-house and
external development

»New forms of suppliers, Software as product

»Cross-organizational optimization of electronic
subsystems

»Re-Use at all levels
»Decouple function from implementation
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Rich Components

»A component : fully re-usable From/by higher
design artifact providing a well 4 design levels

defined functionality sk "

- Application level functionality

- “features” of application level
functions - level of granularity Promised
determined by need to customize _ from
application level function neighbors -5

- Middleware components Ll ——— to neighbors
- Hardware components
>"Rich”
- Explicates all assumptions and/or
dependencies on its design context
- Such that assessment to functional EL From/by lower

Assumed

and non-functional characteristics HLY design levels
can be made without assessing
component itself : System Layer
»Component Characterization : Functional Layer
- For all viewpoints : ECU Layer

Hardware Layer

- Safety, Reliability, Real-Time, Power,
Bandwidth, Memory consumption,
behaviour, protocols
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Rich Component Model 3 component Characterization

> Assumptions - For all viewpoints
- reflect incomplete knowledge of - Safety, Reliability, Real-Time,
actual design context Power, Bandwidth, Memory

- Determine boundary conditions consumption, behaviour,

on actual design context for each
view-point under which N From/by higher
component is promising its design levels

. SL
services N

- are decorated with confidence
levels

i Promised
> Promises from

- Are guaranteed if component is neighbors >
used in assumed design context >

> Tradeoff FL
- Accuracy of promises dependent
on stringency of assumptions
- High accuracy restricts
implementation space
> Viewpoint specific models
- Explicate dependency of promises | HL

on actual guarantees by design

context
_ OFF I S.0.0004.05.2005. 0000009 ________________________©prof.Dr.Werner.Damm . OFFIS .
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Rich Component Mod

els (Functional View)

Functional

[dist > opt_dist]

?a Stable |[opt_dist =< dist =<
~ opt_dist + Asf]

[opt_distAsf =<

dist =< opt\dist]

= Horizontal assumption:

Environment will provide the
requested data

= Vertical assumption:
The communication layer

guarantees the transmission of
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> every message
|
‘ A From/by higher
SL design levels
A
v
FL from Promised
neighbors —>
> V44 to
neighbors
EL Assumed T
From/by lower
HLV design levels




Rich Component Models (Real Time View)

Real-Time = explicate dependency of promises
on actual guarantees by design
context for real-time properties
using Live Sequence Charts

= Horizontal Assumptions:

Requested information will be
delivered within a specified time
frame

= Vertical Assumptions:

Worst case execution time is
within a specified range
v |

FL from Promised

neighbors —>
— |

Budgets for
Lower Design Levels

15 ms

10 ..

to
neighbors

* EL Assumed
Interface Interface T

Higher-Levels Neighbors

From/by lower
H
LV design levels
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Rich Component Models (Safety View)

Safety

= explicate propagation of failures in a con-
ceptual model for a preliminary safety
assessment

= Horizontal Assumptions:

Failure modes/rates for required infor-
mation

! |
! I
N 1 ! = Vertical Assumptions:
.'."- I - -
S 9:' ' Jalue| Failure rates for each failure mode
l T s
..... ,....,>|:| IZI Iﬁl AK I:I:> BR SLA design levels
; 1 PS Ttoo late N A
: 7 i
| 1 v
too late : 1 value : FL from Promised
..... '..>|:| SD_.' iahb
O] 1 neighbors —
| | I — |
0 I Va4 to
___________________ neighbors
EL Assumed T l
From/by lower
HLV design levels
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View Points Dependencies

| Real-Time |

AK

Safety
Port_VS VS
Port_DS Dl | AK
Port_S S

SYS

1 Port_AK




Interfaces: Example

INTERFACE:

(FUNC2SYSTEM, Direction:
:real:output, Signals:
SPEC_FUNC SYS)

up,
treact
Specifications:
SPEC_FUNC SYS:
(ViewPoint real-time,
(to_system:

Data
wireless:input,

(Attributes: T,,:real:input, Adt:real:output,

brake:output, Operations: ),

(Assumptions: (SD_FREQ), Promises: (SD REACT)))

SD_FREQ SD_REACT
| E';W | [ Come [ Env | | Comp | | Env
[0,t E\ngmg;
! “react]
.................................. 7
FUNC2SYSTEM &+ Fort AS AR
Attributes input: T.,. real o R
output: At: real <<type>> Port VSDS -
t,o.0c-real
Sianals | input:  wireless()
J output: brake() port U1 AK Port_BR2
. Port AK_S
Operations bort R
<<Vertical Up>> Port_ S_AK

iiﬂLFiili

Port AK_SK




Interfaces for Black-Box View: Relevant Elements

Interface

a group of services the component is ready to perform and
services used by the component

Static Description - Data: Dynamic Description =
Specifications containing per

e attributes, the values of which viewpoint

are exchanged (read or written)
by the component and its e Declarative specifications

environment .
- (temporal) logic

e signals the component is ready
to receive from or emit to its
environment (asynchronous) And/or

- Sequence Diagrams

e operation calls the component is e Automata
ready to accept or invoke from its

environment (synchronous) suitably tailored to specific

viewpoints

Directions” considered Property “kinds”

- Interface direction: horizontal or

vertical, vertical = { up, down } - Assumptions

- Promises

- Data directions: input or output

=0FF 1S




Black Box View: the benefit of being Rich

»Assume-guarantee style interface specifications
completely defines substitutivity of components
- Component Cnew can replace Component C iff
.... Standard requirements on syntactic compatibility and
for all viewpoints v
for all interfaces i

- assumptions of C jointly establish assumptions of
Cnew

- promises of Cnew jointly establish promises of C

»Application relevance

- Defines space of allowed detailed specifications during
development

- Characterizes when component upgrades during product
lifetime are permissable
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Derived Notion: Input and Output Interfaces

An Interface is called input (output) if all its data elements a € Data
have directions input (output): DataDir(a)=input (DataDir(a)=output)

Input Interface contains:

- operation calls the component is
ready to accept

- attributes, the values of which
are read by the component

- signals the component is ready
to receive

Automata Specifications =
expected order, i.e. how the
environment

-calls its operations

- sets (global) attribute values
(read by the component)

- sends signals to the component

=0FF 1S

Output Interface contains:

- expected results of operations,
the component invokes from the
outside

- attributes, the values of which
are written by the component

- signals the component emits
into its environment

Automata Specifications =
guaranteed order, i.e. how the
component itself

- calls external operations

- sets (global) attribute values

- sends signals outside




Structural Specification: Gray Box View

SubSys1
ort VS AS
Port VSDS : Inl_A1 \ —Fl —l
Port BR : Outl_A1 VS LYsA Port AS_AK ]—|
Port S AK : Inl_A2 — , 50 R
Port_AK_S : Outl_A2 Port_VSDS Port GR
/ EE Port |AK_S or R S Port]

SAK : OUtI_S Port DS Port Bl

AKS : Inl_S , - N
VSAK : Outl_V |AKS /E:: | (A
AKBR : Inl_B S e PotSAK b bot K sk BR

Port S Bl

Compatible to UML 2.0 Composite Structure Diagrams
(for System level component)
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Gray-Box Specifications:

Path-Formula for RT View

CompKind ::= computation | connection | ...

_________________________________________________________________________________________________

Wireless =

.....................

~
g =

||

.....................

-]
|

> Brake actuator

____________________________________________________________________________________________________

Grayboxspec:?,
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=Pl Tl 7 (mS—>AK)+ Vg TF (mAK—>BR)+r BR

eact




C

lewpoin

Protocol Vi

Gray-Box Specifications

:ENV_Port1

:ENV_Port_S

S

AK

DS

VS

‘ENV_Port_DS

:ENV_Port_VS

B Ry AR

brake(acc)

A A A i,

status

v
dist

T s s L D D D L D D D

B s
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Analysing Compatibility

SL

FL

EL
HL
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A

From/by higher

design layers

v Promised
to

neighbors

from
neighbors

Assumed

From/by lower
design layers

Protocol

4




Horizontal Verificatian

Derive the global system specification
Spec from the local component

C C c specifications:
C, C, Spec
Assume: A1, ..., An

C C1— so T =\

SYS

C3
Spec_1_2 Spec_2_1 Spec_3_3
Spec 1 1 Assume: A1, ..., An “ Speé 32
Furthermore: Interface s| Assume:At,...An sl (| |{Fsmer
specifications of connected S 2| |s ey {{ Assume:A1,... An
port should match: —s2[ T SV |

P C1 C2
assume a

— - O p implies a
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Horizontal Compatibility Test

Input interface Output interface

A1 & Ooutl vV &
dist - real <:::::] speed : real
speed : real a():
a(): L(A(Outl_V)) < L(A(Inl_A1))
opt_dist(int spd):real & <<output _horizontal >3
recover():real . .
<<input_horizontal>>| Promises(Outl_V) = Assumptions(InI_A1)

promisel
_ENV [ | OutlV]

ITd>25

assumptionl

CInlLA1| | ENV |
T
de >20

X
e N W
i N Ny
W\l

[ B
(o8

%
T e e T T

recover

speed




Using Horizontal Analysis to establish Black-
Box Propertles timing

[ Ew ] [ Comp]

Black box spec

Env | | Comp| | Env
W
act]
PSR A Pyttt ffofodsaliofigtile ooty fitisegaps gl e | sl gyl lpapfilpltsfogi el fugileiogopfinll
Sensor | » i
Wireless ==l S RR = Brake actuator

Gray box spec:¢,,,., =7, trg+r (mS—>AK )+ Yak +r (mAK—>BR )+ Fpr
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V_Port_AK_S‘

| 3 ’:EN

_AK| ’ENV_Port B

ENV_Port_S_AK

P

AK

:ENV_Port_VSD

Establishing Black-Box Scenarios from Gray-

Box Scenarios
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Mapping Example - Functional Layer — ECU

Sensor ]DS

Wireless T[] [}i Brake actuator

______________________________________________________________________________________________

Functional Layer

ECU Layer

ECU1 CAN ECU2

»Map container of components to components of the lower
layer
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Vertical Verification — Mapping

SYS

assume a

SYS”

e Establish the down assumptions of
the upper layer SYS by the up
promises of the lower layer SYS”’

e Establish the up promises from the
lower lower.

=0FF 1S




Vertical Layer Reasoning for Real-Time

>Derive values for symbolic time System Layer
properties: Function Layer
- Vertical assumptions from higher layer
are typically symbolic instances of time
properties,
- eg. calling periodicity, given in sequence
diagrams

- Vertical promises to higher layer
propagate real values for symbolic
assumptions,

- €g. WCET,1(tax g)=17ms
»Promises down are collected from the

leaf node's black box specifications
/ports

»Promises up are collected from the top
level black box specifications/ports

»Vertical composition/verification is the
mapping of container plus compliance

-0|F|@Qw

Level3

ECU Layer

Hardware Layer



Sample Reasoning for Real-Time

»ECU Layer: Response time calculation for

Ts 5 AK,
- Task networks mapped on ECUs with given r >
4

RTOS \‘}@‘ ple—> .0 Ts.b
- Message transmission mapped on bus systems i __/

with given bus specification (transport and 5'_’311?‘5 | A

higher layers) Td 4
- Take architectural topology into account v‘_’ 3

w4 J. r(mIPSalRAKz)
Waka = Cag.q T write(var) + f’;;nIZtIZ(c) + Z = - g%
Z'jHECUlipj<pT(d) TJ

Wika T Jj OSEK
T Z { . (C ;T 2¢, e )+ Peav +J axa

T, ECUp;>D 4y T}

»Hardware Layer: Time consumption of
programs and messages

- Worst/Best Case Execution Time analysis on
Processors, memory hierarchies, etc.

- Message transmission latency on the base of
physical layers of bus protocols

WCETECUl(Ts.a)
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Rich Component Model

Conclusion
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Conclusion

»The Rich Component Model provides a
comprehensive framework for the development of
electronic components of automotive applications

»Meets key industrial needs
- Seperation of function and implementation
- Cost Reduction
- Speculative design Processes
- Conservative extension of AutoSAR approach

»Addresses key scientific challenges
- Early assessment of non-functional constrains
- Precise characterization of substitutivity
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