Do **SAFETY-CRITICAL SYSTEMS**
really need to be **STATIC**?

Luís Almeida

DET – IEETA
Universidade de Aveiro
Aveiro-Portugal

DATE 2005, Munich, Germany
11 March 2005
Background

Nowadays, current complex embedded systems are distributed (DES)

☑ Cars, planes, industrial machinery ...

There is also a trend to increase integration among subsystems as a way to

☑ Improve efficiency in using systems resources
☑ Reduce number of active components and costs
☑ Manage complexity
Background

Higher integration and distribution lead to a **stronger impact of the network** on the global system properties:

- Composability, timeliness, flexibility, dependability...

We will focus on the network services
Do SAFETY-CRITICAL SYSTEMS really need to be STATIC?
Luís Almeida

Current approach

Safety concerns have typically led to static approaches in the design of DES.

- Static implies we **always know** what we **should be observing** at each instant (conflict flexibility versus safety).
- Fault-tolerance mechanisms become **simpler**.
- Proliferation of **static Time-Triggered** architectures using **TDMA** with pre-allocated slots (TTP, TT-CAN, FlexRay, SAFEbus, SwiftNet).
Do SAFETY-CRITICAL SYSTEMS really need to be STATIC?
Luís Almeida

However

Static approaches:

✓ Tend to be **inefficient** in the use of system resources → potential for higher costs

✓ Do not easily accommodate **changes** in the **operational environment** or **system configuration**
Moreover

There is a growing interest in using DES in **dynamic operational scenarios**:

- Systems with **variable number of users**, either humans or not (traffic control, radar...)
- Systems that operate in **changing physical environments** (robots, cars...)
- Systems that can **self-reconfigure dynamically** to cope with hazardous events or evolving functionality (cars, planes, ...)

QoS adaptation, graceful degradation, survivability
Network requirement

Dynamic (flexible) management of bandwidth while guaranteeing both real-time and safety constraints.

- Act upon periodic communication, e.g. related to control information (potentially bandwidth consuming)
- Adapt transmission rates according to effective needs
- Explore subsystems that operate occasionally
- Explore variable sampling/tx rates according to the current system control stability state
Do SAFETY-CRITICAL SYSTEMS really need to be STATIC?
Luís Almeida

Problem

How to implement such level of **flexibility** without jeopardizing **timeliness** and **safety**?

Hints

- Combining **flexibility** with **timeliness** requires the use of adequate **communication paradigms and protocols**

- Combining **flexibility** with **safety** requires **constraining flexibility** and guaranteeing sufficient resources
Do SAFETY-CRITICAL SYSTEMS really need to be STATIC?

Luís Almeida

Flexibility and timeliness

The communication protocol must exhibit/support:

- **Bounded** communication delays
- On-line changes to the communication requirements → **dynamic traffic scheduling**
- On-line **admission control**
 (based on appropriate schedulability analysis)

Dynamic planning-based scheduling paradigm
Flexibility and safety

A form of constraining flexibility must be supported:

✓ Possible solution – **Mode change protocols**
 ✓ set of **predefined modes**
 ✓ on-line mode switching
 ✓ requires **a priori definition of all** possible modes

10 subsystems with 2 states each → 2^{10} possible modes!
Each being independently verified
Flexibility and safety

Alternatively, flexibility can also be constrained by extending the characterization of message streams with:

- **safety constraints**
 Nominal rate, level of criticality

- **change attributes**
 Permitted changes

→ **Resources are reserved** according to safety constraints
 (one mode to verify off-line)

Online, subsystems can **use more or less resources** if they are **available** and that **change is permitted**
Do SAFETY-CRITICAL SYSTEMS really need to be STATIC?

Luís Almeida

Constraining Flexibility

Rates for safe operation

Exclusive streams

Tx rate

Instantaneous operating mode

Nominal rate

Other allowed rates

Periodic message streams

Communication requirements

Criticality (decreasing)
Architectural requirements

✓ Maintain a Communication Requirements Database (CRDB)

✓ Support for:

 ✓ on-line changes to either message set as well as scheduling policy with low latency
 ✓ on-line admission control and bandwidth management with low latency
 ✓ Replication
Possible architecture

Master-slave paradigm, for flexibility control

- **Transmits periodic trigger messages with adequate schedule**
- **System nodes transmit according to specific triggers**

BM – Bandwidth Manager, Redistributes bandwidth according to some policy
Enforces timeliness using schedulability analysis

TS – Traffic Scheduler, Constantly scans CRDB, building traffic schedules
Do SAFETY-CRITICAL SYSTEMS really need to be STATIC?

Luís Almeida

Possible architecture

Fault-tolerance features

- Detection of omissions
- Master/network replication
- Fail-silent nodes
 - System nodes: time domain (BGs)
 - Masters: time and value domains (internal replication)

Coherency between databases:
- consistency in change requests
- CRDB / scheduler_state transfer
- verification of trigger schedules

Network possibly replicated

Bus Guardians, programmed via trigger messages
Implementation

This architecture is the basis of the **FTT** (Flexible Time-Triggered) architecture

Two protocols have already been developed according to this architecture

- **FTT-CAN** and **FTT-Ethernet**
 - Efficient master-slave implementation
 - Efficient combination of sync(TT)/async(ET) traffic
Conclusion

Concerning DES we have observed:

- Growing interest in dynamic operational scenarios (QoS adaptation, graceful degradation, survivability)
- This requires flexible (dynamic) bandwidth management (particularly wrt the periodic traffic)
 - Increased bandwidth efficiency → more functionality or better service with same bandwidth

We have shown a possible architecture that

- Supports such flexible management of the periodic traffic with
 - Guaranteed timeliness
 - High safety level