
Real-time: TT and ET © Gerhard Fohler 2005 1

Off-line Scheduling;
Time Triggered and Event Triggered;

Gerhard Fohler

Mälardalen University, Sweden

gerhard.fohler@mdh.se



Real-time: TT and ET © Gerhard Fohler 2005 2

Activation Paradigms

• activation of activities - tasks
– when are events recognized?
– who initiated activities?
– when are decisions taken?

• event triggered – ET
– event initiates activities in system immediately

• time triggered – TT
– activities initiated at predefined points in time



Real-time: TT and ET © Gerhard Fohler 2005 3

Time triggered - Rationale

activities initiated at predefined points in time

everything planned before system is deployed

How?
offline scheduling - scheduling table

– complex algorithm

– retries possible

• slots – time triggered activation of dispatcher

– period of dispatcher minimum granularity in system

• runtime dispatcher executes decision in table



Real-time: TT and ET © Gerhard Fohler 2005 4

Which cost?

“everything planned before system is deployed”
• need to know everything

– all environmental situations
…and time of occurrence

– all task parameters
…including arrival times

– all system parameters
…for entire lifetime

• very high cost



Real-time: TT and ET © Gerhard Fohler 2005 5

Which benefit for that price?

“everything planned before system is deployed”
• know everything before runtime

– schedulability test
• implicit in offline schedule, “constructive proof”

• not proven that there is no situation where timing could be
violated, but show that in this one are met

• complex demands, distributed, end-to-end, jitter, …

– testing, certification
• test space reduced dramatically

• deterministic, i.e., know exact what is going on when

• low runtime overhead

– very simple runtime dispatching, table (list) lookup



Real-time: TT and ET © Gerhard Fohler 2005 6

• simple fault-tolerance
replica determinism

• network
receiver based error detection

• non temporal constraints easy to integrate

– energy, cost

• high resource utilization

– no pessimism in scheduling overhead
don’t have to assume worst case, but know actual case



Real-time: TT and ET © Gerhard Fohler 2005 7

Issues

“everything planned before system is deployed”

• anything that is not completely known cannot be
handled at all

• zero flexibility

• assumes periodic world

• pessimism due to worst case assumptions, lack or
reclaiming

MARS, TTP, TU Vienna, TTTECH Kopetz et. al.



Real-time: TT and ET © Gerhard Fohler 2005 8

How long to schedule?

• standard OS schedulers work on strategies without guarantees

– handle “task transition graph” waiting - ready - executing…

– select one out of the ready tasks to execute

– perhaps prevent deadlocks etc.

– go on until shutdown or system lock/crash, e.g., windows

• off-line guarantees: before, for entire mission lifetime

– minutes

– hours, days, more

– need to guarantee every one of them

– combinatorial explosion



Real-time: TT and ET © Gerhard Fohler 2005 9

Shorten analyzed lifetime

• analyze only single, selected part of lifetime

– worst case proofs

– need to ensure assume worst case is worst case
• restrict complete freedom of task parameters

• periods

• analyze repeating patterns during lifetime

– typically periods

– if harmonic, enough to analyze for duration of longest period

– if not, least common multiple LCM of all involved periods

– can be large

– execute repeatedly



Real-time: TT and ET © Gerhard Fohler 2005 10

How to schedule within LCM?

• Cyclic scheduling

– tasks in period classes

– schedule tasks within classes

– group task class schedules

– …until all tasks scheduled

• easy to handle, historically popular

very different from offline scheduling!

less powerful, more restrictive, etc

often mixed up



Real-time: TT and ET © Gerhard Fohler 2005 11

• off-line scheduling
static, pre run-time

– construct schedule of length LCM

– apply smart method

– fulfill all constraints

– not limited to “period concatenation”



Real-time: TT and ET © Gerhard Fohler 2005 12

Off-line Scheduling Methods

What do we want to achieve?

• we want to find solutions

– NP hard in more than trivial cases
can take very long time

• have to optimize search to find solutions fast

but

• once we find solution, we are done

• likely that first try will not work, maybe solution does not exist

• what if we don’t find one/does not exist?

• total time spent in schedule design:
time of not (finding * #failures) + (1*time of finding)
not finding at least as important as finding



Real-time: TT and ET © Gerhard Fohler 2005 13

we need

• algorithm for

– fast detection of no solution/not finding

– fast finding of feasible solution

• strategy to

– select tradeoffs

– choose time spent

– allow for detection of why no solution found (difficult)

– good redesign for next schedule attempt

• designer support

most current algorithms concentrate on finding solution only



Real-time: TT and ET © Gerhard Fohler 2005 14

Directions

How to construct a schedule?

• simple solution: use online scheduling, e.g., EDF

– still better than online - can backtrack or redesign

– better utilization because resource conflicts are known, don’t
need to assume worst case

– testing

– etc.

• search

– popular

– easy to change constraints

– easy algorithm

– problems with feedback problem - source in search tree



Real-time: TT and ET © Gerhard Fohler 2005 15

• genetic algorithms
e.g., simulated annealing

– simple

– does not get stuck easily with hard sub problems

– can handle large task sets

– difficulties with complex constraints

– good for allocation of tasks to nodes in distributed system

• “by hand”

– sometimes really fully by hand

– with support
• resolve difficult parts by hands

• extend existing schedules

• place some tasks by hand



Real-time: TT and ET © Gerhard Fohler 2005 16

Making a periodic world

• “naturally periodic”, e.g., control, sampling
• aperiodic tasks, i.e., without any restriction on arrival
no way

• sporadics
transform into pseudo periodic tasks
assumptions about events
– maximum rate of change, minimum inter arrival interval, mint
– maximum delay of reaction, react
– computation time, comp

• determine period and deadline
• have to ensure that

1. reaction is not late
2. no event missed



Real-time: TT and ET © Gerhard Fohler 2005 17

• worst case:
event happens right after task start - misses data just by

react

event

comp

event gets reacted by task only at next instance invocation

event reaction completed



Real-time: TT and ET © Gerhard Fohler 2005 18

• deadline
dl=comp+s, s 0

• next instance completes no later than react after event

– event starts at t +

– reaction finishes at t + p + dl

– t + p + dl - t - react

p + dl react + or p + comp + s react +

react

event

comp

event reaction completed

period pt dl

s



Real-time: TT and ET © Gerhard Fohler 2005 19

• maximum value for p - not react too late
p < react + - dl or p < react + - comp - s

• maximum value for p - not miss event
p < mint

react

event

comp

event reaction completed

period pt dl



Real-time: TT and ET © Gerhard Fohler 2005 20

• assume dl=comp; s=0

react

event

comp

event reaction completed

period pt dl

mint

comp-react
p



Real-time: TT and ET © Gerhard Fohler 2005 21

• Utilization:

• assume dl=comp+s; s>0

• U0<Us !

compreact

comp

p

comp
U 0

scompreact

comp

p

comp
U s



Real-time: TT and ET © Gerhard Fohler 2005 22

• period and deadline dependent on each other

• tradeoff

– large period:
• low utilization demand

• tight deadline - schedulability problems

– small period:
• relaxed deadline

• high utilization demand



Real-time: TT and ET © Gerhard Fohler 2005 23

• if events are rare, but urgent when they occur transformation
inefficient, high utilization demands
e.g.,
mint=1000*comp; react=2*comp:
p < react + - comp = comp +

• monopolization of CPU

• actual need to handle event without pseudo periodic transformation

1
comp

comp
U

001.0
*1000 comp

comp
U



Real-time: TT and ET © Gerhard Fohler 2005 24

Off-line Scheduling and the Real World

• Many algorithms assume tasks, messages, slots, constant
operating system overhead

• real-world demands

– interrupts

– threads, chains

– micro kernel OS
• system threads

• task ensembles for tasks, e.g., message transmission

• depending on scheduling and allocation

• dynamic creation of threads

• do not fit into off-line schedule in straightforward way



Real-time: TT and ET © Gerhard Fohler 2005 25

Threads

• threads are shorter than granularity of slots

• better utilization of slots

• scheduling/dispatching happens not only at slot boundaries

• scheduler needs to construct chains as well

• offline scheduler does “micro scheduling”, e.g., thread
cumulating within slot

• backtracking, heuristic etc only at slot boundaries

• not optimal, but tractable

slots



Real-time: TT and ET © Gerhard Fohler 2005 26

Interrupts

• interrupts have to be considered

• cannot

– ignore them - too much time demand

– handle them as tasks/threads -
too high overhead, too long response times

– have to account for in analysis during schedule construction

– minimum inter arrival time - maximum overhead

• naïve approach

– assume each task can be hit by a worst case arrival of
interrupts

– ala exact analysis

– very high overhead



Real-time: TT and ET © Gerhard Fohler 2005 27

• if task is shorter than minimum inter arrival time
interrupt overhead is considered too often for two consecutive
tasks

interrupt

overhead

assumed worst case arrival pattern

interrupt

overhead

actual worst case arrival pattern



Real-time: TT and ET © Gerhard Fohler 2005 28

Time triggered vs. event triggered

Who is doing what, when?

• Run-time dispatching is performed according to a set of rules.

• Off-line analysis and testing has to ensure that the provided
rules for the run-time dispatcher are correct:

– when the dispatcher takes scheduling decisions according to
the given rules, all timing constraints are kept.

– off-line guarantees



Real-time: TT and ET © Gerhard Fohler 2005 29

TT:

• offline scheduling

• rules for runtime dispatcher expressed as scheduling table

ET:

• online scheduling, priority driven

• rules applied at runtime, e.g.,

– earliest deadline first (dynamic priority)

– fixed priority



Real-time: TT and ET © Gerhard Fohler 2005 30

activities initiated at predefined points in time
everything planned before system is deployed

• offline constructed scheduling table
• runtime dispatcher executes decision in table

 deterministic – exact behavior known beforehand
 test space dramatically reduced
 complex demands: distributed, jitter, engineering practice, …
 low runtime overhead – table

 inflexible – can only handle what is completely known before
 inefficient – based on worst base

widely used in safety critical, e.g., automotive, avionics

Properties – Time Triggered



Real-time: TT and ET © Gerhard Fohler 2005 31

• online scheduling, priority driven
• event activates scheduler which takes decision
• priority rules + test

– earliest deadline first (dynamic priority)
– fixed priority

 flexible – not completely known activities can be added easily
 widely used

 only simple demands
 high runtime overhead for semaphores, blocking, ...
 non determinism
 high testing efforts - keeps deadlines, but cannot determine
when exactly

Properties – Event Triggered



Real-time: TT and ET © Gerhard Fohler 2005 32

TT, ET totally different?

• dispatcher same basic operation, executing rules

– TT: rules as scheduling table

– ET: rules as functions

• online scheduling can provide more flexibility, but no magic:

– what is not exactly known before run-time cannot be
guaranteed offline, independent of the used scheduling
strategy.

• TT assumes periodic world, ET does not
BUT: for offline guarantees, ET assumes periodic as well
(to ease analysis)



Real-time: TT and ET © Gerhard Fohler 2005 33

• want both

– integrated offline and online scheduling

– offline:

• basic guarantees

• realistic constraints

– online:

• for efficient resource usage and flexibility

• methods for combined use exist


