
Real-Time Systems © Gerhard Fohler 2005

Scheduling of Real-Time Systems
Fixed Priority and Earliest Deadline First

Gerhard Fohler

Mälardalen University, Sweden

gerhard.fohler@mdh.se

Real-Time Systems © Gerhard Fohler 2005

Real-time scheduling - making the right decisions to
to guarantee time

What do we need?
Guarantees before the system is used (pre run-time, off-line) that all
its activities will meet the specified timing requirements (constraints)

How can we achieve that?
physical properties of environment

timing constraints

model - design

analysis, testing

run-time dispatching

in field use

functional

temporal

Real-Time Systems © Gerhard Fohler 2005

Who is doing the scheduling?

Run-time dispatcher controls which activities are performed at which
time. It controls access to the CPU to tasks.

The unit performing run-time dispatching is within the real-time kernel.

– Keeps track of the system state, e.g., time, resource accesses,
book keeping information, e.g., priorities, deadlines.

– Tasks execute until completion or may be interrupted:
non-preemptive or preemptive.
Non-preemptive dispatching is in general simpler, only one task
(and stack etc.) active at a time.
Run-time dispatching is performed according to a set of rules.

Real-Time Systems © Gerhard Fohler 2005

And when?

• System designer selects scheduling strategy and algorithm
Constructs a set of rules for the run-time dispatcher from specification
and timing constraints. These rules range from complete schedules to
priorities strategies, etc.

• During analysis/testing, the designer determines, whether the rules
provided will guarantee the temporal behavior, if applied by the run-
time dispatcher.
If no rules can be found or testing gives a negative result, a redesign
has to be done.

• Depending on whether these rules determine most scheduling
decision before run-time or or leave part of the decisions to the run-
time system, the scheduling is called offline (pre run-time, static) or
online (run-time, dynamic).

Real-Time Systems © Gerhard Fohler 2005

Pre run-time vs. run-time scheduling

Pre run-time scheduling constructs complete schedules that are
feasible before the system is used in-field.
This is a proof-by-construction of feasibility.
Run-time dispatching only executes the decision, does not take any
by itself.

 Very simple for run-time system, e.g., list or table lookup.

 Inflexible, can only handle fully specified events and tasks, requires
complete knowledge.

Real-Time Systems © Gerhard Fohler 2005

Run-time scheduling constructs a set of rules for run-time dispatching
and a proof (schedulability test) of feasibility when the rules are kept,
before the system is used.
Run-time dispatching can take decisions on its own, as long as rules
are kept.

 Flexible, can handle only partially known events and tasks.

 High cost at run-time (book keeping, calculations)
Difficult to predict exact behavior at run-time.

Real-Time Systems © Gerhard Fohler 2005

Run-time scheduling can provide more flexibility, but
no magic:
What is not exactly known before run-time cannot be guaranteed
then, independent of the used scheduling strategy.
Only events for which a task has been specified, i.e., code is
available, can be handled.

Recently, algorithms have been presented to integrate pre run-time and
run-time scheduling.
Benefits from pre run-time, but more flexibility.

work

pre run-time scheduling

run-time scheduling pre run-time run-time

pre run-time run-time

Real-Time Systems © Gerhard Fohler 2005

Rate Monotonic

presented by Liu and Layland in 1973

Assumptions

• Tasks are periodic with deadlines equal to periods.
Release time of tasks is the period start.

• Tasks do not suspend themselves

• Tasks have bounded execution time

• Tasks are independent

• Scheduling overhead negligible

Priorities

Tasks priorities are assigned according to their periods;
shorter period means higher priority

Real-Time Systems © Gerhard Fohler 2005

Run-time

The ready task with the highest priority is executed.

Schedulability test

If following condition holds, taskset is schedulable

Very simple test, easy to implement.

C i

T ii 1

n

n(21/n 1)

Real-Time Systems © Gerhard Fohler 2005

• we know (thanks to the prove of Liu and Layland), that if the test says
“yes”, and the run-time dispatcher executes according to rules, all
tasks will meet their deadline

Liu and Layland have been a bit pessimistic:There are, tasksets with
higher utilization that can be scheduled (sufficient condition only).

Real-Time Systems © Gerhard Fohler 2005

Example :
taskset: t1,t2,t3,t4; t = (T,C)
t1 = (3, 1)
t2 = (6, 1)
t3 = (5, 1)
t4 = (10, 2)

Real-Time Systems © Gerhard Fohler 2005

• we know (thanks to the prove of Liu and Layland), that if the test says
“yes”, and the run-time dispatcher executes according to rules, all
tasks will meet their deadline

Liu and Layland have been a bit pessimistic:There are, tasksets with
higher utilization that can be scheduled (sufficient condition only).

Real-Time Systems © Gerhard Fohler 2005

The taskset is feasible, all deadlines are met.

The schedulability test gives

1/3 + 1/6 + 1/5 + 2/10 ≤ 4(2(1/4) - 1)

0.9 < 0.75 ? ... “no!”
not schedulable.

The given schedulability condition is only sufficient, but not necessary.

E.g., when periods are harmonic, i.e., multiples of each other, utilization
can be 1.

A schedulability test is

• sufficient, if all tasksets that pass are (definitely) schedulable;
but there may exist tasksets that fail the test, which are schedulable

• necessary, if all tasksets that fail are (definitely) not schedulable;
but there may exist tasksets that pass the test which are not
schedulable

Real-Time Systems © Gerhard Fohler 2005

An example for a necessary condition is that the utilization of the taskset
is <= 1: When the utilization is higher, we do not have enough CPU
time, and no scheduling algorithm can schedule the task set. When
the utilization is <= 1, it doesn't mean necessarily that the taskset is
schedulable.

Real-Time Systems © Gerhard Fohler 2005

The “0.7 rule”

• “I do not like real-time, because I can only have 70% utilization”

• “I like real-time, because if the utilization is less than 70%, my system
is real-time”

• all wrong!

• mixing many concepts specific to one single algorithm
(and its wrong even for that one)

Real-Time Systems © Gerhard Fohler 2005

Proof of schedulability test

worst case
– all tasks start at same time:
– low priority tasks will be maximally delayed by higher priority tasks
– critical instance

proof has to show that
– critical instance is really worst case
– all tasks meet deadline even in worst case
i.e., response time of lowest priority task smaller than deadline

• many schedulability tests are based on critical instance argument

Real-Time Systems © Gerhard Fohler 2005

Exact Analysis

Rate monotonic simple but pessimistic, can we do more precise testing?

Yes, but things get more tricky - exact analysis by Joseph and Pandya.

Based on critical instance analysis as well.
(longest response time of task, when it is released at same time as all higher
priority tasks)

What is happening at the critical instance?

• Let T1 be the highest priority task. Its response time R1 is

R1 = C1 since it cannot be preempted

• What about T2?

R2 = C2 + all the time it is interrupted by T1. Since T1 has higher priority, it has

shorter period. That means it will interrupt T2 at least one time, probably more

often. Assume T1 has half the period of T2,

R2 = C2 + 2 x C1

Real-Time Systems © Gerhard Fohler 2005

• In general:

• hp(i) is the set of tasks with higher
priority than task i.

• is ceiling of x, e.g.,

x

R i C i
R i

T jj hp (i)

C j

45.3 22x

Real-Time Systems © Gerhard Fohler 2005

so far so good, but ...

• we extend the response time of a task by the computation time of “hits” from
higher priority tasks

• because the response time of that task became longer, it might be hit even
more by shorter period tasks
Assume two tasks, T1 = (3,2) and T2 = (8,2).
R1 = 2
first calculation of R2 = 2; including “hits”

4222
3
2

22R

Real-Time Systems © Gerhard Fohler 2005

period of T1 = 2, so the new R2 gets
even more hits:

stable

• we need iterations for each task!

52
3

5
2

52
3
4

2

2

2

R

R

Real-Time Systems © Gerhard Fohler 2005

In general:

Rnidenotes the nth iteration of the response time of task I

hp(i)… tasks with higher priority than i

Not so nice to calculate

R C
R
T
Ci

n
i

i
n

jj hp i

j
1

()

Real-Time Systems © Gerhard Fohler 2005

Example - Exact Analysis

Let us look at our example, that failed the pure rate monotonic test, although we
could schedule it. What does exact analysis say?

• R1 = 1; easy

• R3, second highest priority task
hp(t3) = T1

R3 = 2
Is that correct? Check schedule.

R C C

R C C

R R

t

t

t t

t t

t t

3
1

1 1 2

3
2

1 1 2

3
3

3
2

3 1

3 1

1
3

2
3

Real-Time Systems © Gerhard Fohler 2005

Earliest Deadline First

Rate monotonic assumes that deadlines of tasks are equal to their
periods; not very realistic.

Assumptions
Same as rate monotonic

Priorities
Tasks with closer deadlines get higher priority.

Run-time
The ready task with the highest priority is executed, i.e., the one with
the closest deadline.
Sort priorities such that tasks with closer deadlines get higher priority
at run-time as well, dynamic priorities.

Real-Time Systems © Gerhard Fohler 2005

Schedulability test

Sufficient and necessary condition.

EDF is optimal if utilization is beyond 1; performs badly under overload.

Optimal means, that if any algorithm can find a schedule, EDF will find as
well.

Ci
Tii 1

n

1

Real-Time Systems © Gerhard Fohler 2005

Example EDF
t1 = (3, 1)

t2 = (6, 1)

t3 = (5, 1)

t4 = (10, 3) (where t4 misses deadline with RM)

Real-Time Systems © Gerhard Fohler 2005

Fixed vs. dynamic priorities
Comments

• EDF has higher run-time overhead (deadline updates)
but fewer preemptions

• overload

– FPS provides better, i.e., less delayed, execution for highest

priority tasks under overload

– EDF might end up without any tasks completing in time

but:

– EDF distributes overload more fairly, i.e., all tasks get delayed by

same factor

Real-Time Systems © Gerhard Fohler 2005

State of analysis methods – both FPS and
EDF

dependent tasks

• mutual exclusion

– e.g., priority ceiling protocol (Mars Pathfinder)

– blocking time can be bounded

– included in schedulability analysis

• precedence can be “emulated” via modifying priorities, deadlines

• other constraints difficult to include
(offline scheduling can easily)

Real-Time Systems © Gerhard Fohler 2005

aperiodic tasks

• aperiodic tasks, i.e., no information about actual arrival times

– both with and without deadlines – acceptance tests

distributed systems
• run-time scheduling algorithms still premature

• tricky synchronization between computers over network at run-time

• offline scheduling can handle distributed systems

Real-Time Systems © Gerhard Fohler 2005

Comments on both FPS, EDF

• priorities and deadlines are only to steer scheduler (rules)
do not have inherent semantic

– e.g., highest priority task may not be most important one

– source of confusion for designer

• translating application temporal constraints into scheduler parameters
process of its own

• schedulability analysis after

• mixing semantic and rules can become a mess
e.g., “priority” – importance

