
Real-Time Systems © Gerhard Fohler 2005 1

Aperiodic Task Scheduling

Gerhard Fohler

Mälardalen University, Sweden

gerhard.fohler@mdh.se

Real-Time Systems © Gerhard Fohler 2005 2

Non Periodic Tasks

So far periodic events and tasks
what about others?

• Sporadic (aperiodic, but minimum interarrival time)

– worst case: all sporadic tasks arrive with highest frequency
(with minimum time between arrivals)

– all other arrival patterns less demanding

– if we can schedule worst case, we can schedule all other

– worst case - minimum interarrival time - like periodic task

assume sporadic tasks as periodic for schedulability test

Real-Time Systems © Gerhard Fohler 2005 3

• Aperiodic (no limitations on arrival times known)

• soft: without deadline
not much to do from scheduling view

• firm: with deadline
(worst case execution time needs to be known as well)
usually “all or nothing” semantic:
when we start task, we want that it runs until completion; else
we don’t start

Real-Time Systems © Gerhard Fohler 2005 4

Background Services

Fixed priority scheduling, rate monotonic

What is the minimum we can do for aperiodic tasks in a periodically
scheduled system?

Background service: execute aperiodic tasks when no periodic
ones are executing

– no disturbance of periodic tasks (and their feasibility)

– simple run-time mechanisms

• queue for periodics

• queue for aperiodics - FCFS

– no guarantees

Real-Time Systems © Gerhard Fohler 2005 5

Polling Server

• Background service lives from “left overs” of periodic tasks,
without guarantees

• If enough idle time, ok

• long response times, although faster service possible

• How can we provide that at least a certain amount of processing
goes to aperiodic tasks?

Server task
periodic task, whose purpose is to service aperiodic requests as
soon as possible

– period Ts

– computation time Cs is called capacity of the server

Real-Time Systems © Gerhard Fohler 2005 6

Polling server algorithm

– at periods Ts server becomes active and serves aperiodic

requests with its capacity Cs

– no aperiodic activities - not execute, waits for next period,
capacity lost

– based on rate monotonic

Lehozcky, Sha, Strosnider, Sprunt 1987, 1989

Real-Time Systems © Gerhard Fohler 2005 7

Example Polling Server

• two tasks 1 , 2

Ci Ti
1 1 4

2 2 6

• server
Cs=2
TS=5

Real-Time Systems © Gerhard Fohler 2005 8

time0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

2

1

Cs

1

2

aper.
c=2 c=1 c=2 c=1

no aperno cap

server
Cs=2
TS=5

Real-Time Systems © Gerhard Fohler 2005 9

Aperiodic guarantee

hard aperiodic task Ta, Ca, Da
worst case:

– aperiodic request misses the server task

– has to wait until next instance

– if Ca<= Cs, aperiodic request completed within two server
periods (one for waiting, one for executing)
2*Ts <= Da

– arbitrary execution times:
Ts + Ca/Cs Ts <= Da

average response time not very good!

Aperiodic Guarantee

Real-Time Systems © Gerhard Fohler 2005 10

Further FPS Server Algorithms

• Deferrable Server(Lehozcky, Sha, Strosnider 1987, 1995)
– lower bound for periodic tasks

• Priority exchange
– (Lehozcky, Sha, Strosnider 1987)

• Sporadic server
– Sprunt, Sha, Lehozcky 1989
– replenishes capacity only after aperiodic execution

• optimum algorithm
– does not exist!
– Tia, Liu, Shankar 1995
– proof that with static priority assignment, no algorithm exists
to minimize response time

Real-Time Systems © Gerhard Fohler 2005 11

Dynamic Priority Servers

• EDF based

• Dynamic priority exchange server

– Spuri, Buttazzo 1994, 1996

– like rate monotonic priority exchange, but for EDF

• Dynamic sporadic server

– Spuri, Buttazzo 1994, 1996

• Earliest deadline late server

– Chetto, Chetto 1989

Real-Time Systems © Gerhard Fohler 2005 12

• Spuri, Buttazzo 1994, 1996

• response time dependent on server period:

– shorter periods have shorter response times

– but higher overhead

• how else shorter response times?

– change the deadline of the aperiodic to earlier time
(its EDF here, so it will get serviced earlier)

– but make sure that total load of aperiodics does not exceed
maximum value (bandwidth) Us

Total bandwidth server

Real-Time Systems © Gerhard Fohler 2005 13

How can we calculate minimum deadline for US?

assume we have all CPU for us:
dl = C

U
1

t t+C
C

1

t t+2*C
C

0.5

U

US

Real-Time Systems © Gerhard Fohler 2005 14

kth aperiodic request
• arrival time rk
• computation time ck
• deadline dk
• server utilization US

dk = max(rk, dk-1) + Ck/Us
d0 = 0

• uses all bandwidth of server
• very simple run-time mechanism
• no extra server task

schedulability

Up + Us <= 1

Sum of periodic load and bandwidth of server less or equal 1.

Real-Time Systems © Gerhard Fohler 2005 15

Example Total Bandwidth Server
• periodic tasks 1 (3,6), 2 (2,8)

• TBS Us = 1 - Up = 0.25

time0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

2

1

aper.
dl1= 3+1/0.25=71 2

dl2= 9+2/0.25=17

1 dl3= max(14,17)+1/0.25=21

Real-Time Systems © Gerhard Fohler 2005 16

Total Bandwith Server - Comments

• based on

– Us not actual periodic load

– worst case c

Real-Time Systems © Gerhard Fohler 2005 17

Total Bandwith Server - Comments

• TBS assigns deadlines based on maximum Us (not actual load)
dk = max(rk, dk-1) + Ck/Us, d0 = 0

1

time0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

aper.

Us=0.125

dl1= 6+1/0.125=14

Real-Time Systems © Gerhard Fohler 2005 18

TB*

• Buttazzo, Sensini - 1997

• assigns deadlines dk first according to TBS

• then shortens, as much as periodics allow

– new d’k= fk…finishing time according to EDF schedule,
including periodics

– apply recursively

– maintains schedulability, since order maintained

• complexity, many steps

Real-Time Systems © Gerhard Fohler 2005 19

Constant Bandwidth Server

• Abeni and Buttazzo, 1998

• designed for multimedia applications

– sporadic (hard) tasks

– soft tasks: mean execution, interarrival times, not fixed

– periodic tasks

• assign maximum bandwidth of CPU to each soft task

• handles overload of aperiodics

– limited by assigned bandwidth

– might slow down, but not impair effect other tasks

• EDF based

Real-Time Systems © Gerhard Fohler 2005 20

CBS Definitions

• task i

– sequence of jobs Ji,j
– ri,j… request, arrival time of the jth job of task I

• hard task
– (Ci,Ti)

• Ciworst case execution time

• Ti minimum interarrival time

• deadline equal to next period: di,j= ri,j+ Ti
• soft task

– (Ci,Ti)

• Cimean execution time

• Ti desired interarrival time

• soft deadline equal to next period: di,j= ri,j+ Ti

Real-Time Systems © Gerhard Fohler 2005 21

• cS… budget

• (QS,TS)

– QS… maximum budget

– TS… period of server

• US = QS/TS… server bandwidth

• dS,k… deadline associated to server

– initial dS,0 =0

• job Ji,j comes in, is served, assigned dynamic deadline di,j equal
to current server deadline dS,k

– job executes, server budget cs decreased

Real-Time Systems © Gerhard Fohler 2005 22

• cS=0:

– budget recharged to maximum QS

– new server deadline: ds,k+1=ds,k+TS

• Ji,j arrives, CBS active (jobs pending): put in queue

• Ji,j arrives, CBS idle:

– cS (ds,k - ri,j)*US:

• new deadline ds,k+1 = ri,j + TS

• cS recharged to QS

– else
• job served with last server deadline ds,k

• job finishes: next job in queue

• at any time, job assigned last deadline generated by server

Real-Time Systems © Gerhard Fohler 2005 23

Example CBS

time0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

2

soft

1 (2,3)

hard

CBS

(2,7)

r1

c1=3
cs (ds,0 - r1)*US:ds,1=r1+TS=9

cS= 0:dS,2=ds,1+TS=16r2

server active - queue

c2=2

cS= 0:dS,3=ds,2+TS=23
r3

c3=1
cs=1<(23-17)*2/7=12/7 no new deadline

Real-Time Systems © Gerhard Fohler 2005 24

• limits impact “harm” by ill behaved aperiodics, e.g., exec time
overrun

• various improvements

– several servers

– capacity exchange

– feedback control

– …..

Real-Time Systems © Gerhard Fohler 2005 25

Articles

• TBS:
Spuri, Buttazzo
“Efficient Aperiodic Service under Earliest Deadline Scheduling”
Proceedings of the 15th IEEE Real-Time System Symposium
(RTSS 94), Portorico, pp. 2-21, December 1994

• CBS:
L. Abeni and G. Buttazzo, "Integrating Multimedia Applications in
Hard Real-Time Systems", Proceedings of the IEEE Real-Time
Systems Symposium, Madrid, Spain, pp. 4-13, December 1998.

Real-Time Systems © Gerhard Fohler 2005 26

Schedulability Analysis

First show that aperiodic load executed not exceeds USof server

Lemma: In each interval of time [t1,t2], if Cape is the total execution
time demanded by aperiodic requests arrived at t1or later and
served with deadlines less than or equal to t2, then

Cape (t2 - t1) US
Proof: by definition:

21 , tdrt
kape

kk

CC

Real-Time Systems © Gerhard Fohler 2005 27

• TB* uses periodic interference…can now calculate it

• (formulae for completeness only)
If(t, dks) =

next_ri(t)…time at which next instance of I after t starts

i
i

i
s
k

n

i

C
T

trnextd
1

)(_
,0max

1

Real-Time Systems © Gerhard Fohler 2005 28

TBS assigns deadlines in increasing order,
therefore there must exist two aperiodic requests with indeces
k1 and k2 such that 2

121 ,

k

kk
k

tdrt
k CC

kk

Sk

k

kk
kk

k

kk
kape UdrdCC *)],max([1

2

1

2

1

Skkk Udrd *)],max([1112

SUtt *)(12

Real-Time Systems © Gerhard Fohler 2005 29

Proof main result:

Theorem: Given a set of n periodic tasks with processor utilization
Up and a TBS with processor utilization of US, the whole set is
schedulable by EDF if and only if
Up+ US 1

Proof: If:

• assume Up+ US 1 plus overflow at time t

• overflow preceded by continuous utilization

• from a point t’ on (t’< t), only instances of tasks ready at t’ or later
and having deadlines less than or equal to t are run

• C total execution time demanded by these instances

• since there is overflow at t: t - t’< C

Real-Time Systems © Gerhard Fohler 2005 30

• we also know that

apei

n

i i

CC
T

tt
C *

1

'

Si

n

i i

UttC
T

tt
)('

1

'

)(*)('
Sp UUtt

it follows: Up+US > 1 …# contradiction

Real-Time Systems © Gerhard Fohler 2005 31

• only if:

• assume aperiodic request enters periodically with period TS and
execution time CS=TSUS, then server behaves like periodic task

• total utilization of processor is then Up+US

• if task set schedulable: UP+US 1



