
DECOS-TADE and
DECOS-ISIS Collaborations

Roman Obermaisser

www.decos.at



2

Overview
• Project Aims and Goals

– Dependable Embedded Components and Systems (DECOS)
– Timeliness-Assured Design Environment for Distributed Object-

Based Embedded Computing (TADE)
– Research at Institute for Software-Integrated Systems (ISIS)

• DECOS-TADE Collaboration
– Technical Topics 
– Respective US-EU Roles and Contributions in the Project
– Experience and Outlook

• DECOS-ISIS Collaboration
– Technical Topics
– Contributions
– Preliminary Results



3

Project Aims and Goals of DECOS 
Integrated Project
• Enabling technology to move from a federated distributed 

architecture to an integrated distributed architecture
• A system architecture that combines the complexity 

management advantages of the federated approach, but 
also realizes the functional integration and hardware 
benefits of an integrated system (Hammett, 2003)

• Reduce development, production and maintenance cost
• Increased dependability of embedded applications
• Technology invariant software interfaces
• Encapsulated communication and computational resources



4

Project Aims and Goals of TADE

• Strengthen the technical foundation for enabling the 
system engineers to produce guarantees for timely service 
capabilities of various subsystems of distributed real-time 
embedded computing systems, especially on the basis of 
the recently established distributed real-time object-
oriented programming methods and tools

• Develop an integrated tool-set named the Timeliness-
Assured Design Environment (TADE), aimed for enabling 
major reduction in the system engineers' efforts in 
producing DREC systems with service time guarantees.



5

Research at Institute for Software-Integrated 
Systems (ISIS) at Vanderbilt University

• Model-Integrated Computing
– Specify integrated, multiple-view models
– Model interpreters translate information in 

models to input languages of analysis tools
– Automatic software synthesization
– UML-based meta programming

• Model-Driven Architecture for Embedded Software



6

Technical Topics of DECOS/TADE 
Collaboration
• Formalization of the structure of the real-time distributed component 

named TMO and the linking interface specification of DECOS jobs
• Collaborative work on the integration of event-triggered and time-

triggered communication paradigms
• Comparison of commercial off-the-shelf platforms (common hardware 

and operating systems) as used in TADE with the introduced integrated 
DECOS platform

• Comparative studies of the TADE testbed and the DECOS test-bench, 
along with cooperative experiments
– Performance measurements
– Fault-injection experiments for evaluation of encapsulation of 

communication and computational resources
– Validation of development tools



7

Contribution of TADE: Time-Triggered 
Message-Triggered Object (TMO) Model
• Powerful extension of conventional distributed object computing

– Globally referenced time base
– Distributed object computing
– Spontaneous methods
– Basic concurrency constraint
– Guaranteed completion time and deadline for result arrival

• Tools and methods for composition of real-time distributed 
object programs

• Execution engines on several major platforms (e.g., Windows, 
Linux) 



8

Contribution of DECOS
• Design methodology with tool support 

based on the Model Driven Architecture 
(MDA) 
– Meta-models constrain the 

development process
– Formal specification of linking 

interfaces (value, time, dependability)
– Tools facilitate refinement of models

• Generic architectural services as a 
validated stable base line for applications

• Encapsulated of communication and 
computational resources



9

Virtual Networks in DECOS



10

DECOS Integrated Component Model

• Horizontal and vertifical partitioning
• Safety-critical and non safety-critical subsystem

Safety-Critical Sub-
system of a Component

Non Safety-Critical 
Subsystem of a Component

Communication Controller

Non Safety-Critical 
Subsystem of a Component

Safety-Critical Sub-
system of a Component

Application 
Layer

Connector 
Layer

Core Service 
Layer



11

Collaboration Results: TMO on top of a 
Time-Triggered Core Architecture (1)
• TMO execution engine for a time-triggered core architecture
• Implementation of a Kernel Abstraction Layer (KAL) that 

maps TMO middleware onto the DECOS core architectural 
services (C1-C4)

• Integrated DECOS architecture is enriched with support for 
application subsystems based on distributed object computing
– Support for realization of DECOS jobs as TMOs
– Exploitation of encapsulated event-triggered and time-

triggered virtual networks for method invocations and 
multicast communication channels



12

Collaboration Results: TMO on top of a 
Time-Triggered Core Architecture (2)
• TMO with improved temporal performance 

– Global time base with a precision of 5 µs
– Minimization of communication jitter by devising conflict-free time-

triggered schedules at design time for both processing activities (e.g., 
spontaneous methods) and communication activities (e.g., messages 
for remote method invocations and those exchanged via multicast 
channels)

• TMO with improved dependability
– Improved reliability of application TMOs through the fault-tolerance 

mechanisms of the underlying services (i.e., fault-tolerant 
communication service, fault-tolerant clock synchronization, fault 
isolation between components). 

– Basis for building fault-tolerant TMO applications with active 
redundancy at relative ease (e.g., Triple Modular Redundancy)



13

Outlook of TADE/DECOS Collaboration
• Measurements of the temporal performance of the TMO 

execution engine developed within the TADE/DECOS 
collaboration

• Realization of a multimedia application as a demonstrator 
based on the newly developed TMO execution engine 

• Enhancement of the linking interface specification
framework based on the component formalization efforts of 
TADE

• Comparative studies of the TADE testbed and the DECOS 
test-bench

• TMO based on a Time-Triggered Ethernet Platform



14

Technical Topics of DECOS-
Vanderbilt Collaboration

• Model Integrated Computing for DECOS
• Case study: Meta-modeling of sensor DAS
• Interpreters for exporting information to other tools 

(compiler, scheduling tools, etc.)
• Model transformation tools support export to other 

model-based tools (e.g. MATLAB)



15

Contributions
• Contribution of DECOS

– Generic architectural services
– Virtual networks with predefined temporal properties
– Design methodology for development process
– Implementation platform

• Contribution of ISIS
– Metamodeling methodology
– Tool integration platform and methodology
– Generic Modeling Environment (GME)
– Model Transformation Tool (GReAT)
– Design Space Exploration Tool (DESERT)



16

Collaboration Results

• Generic modeling of a sensor DAS using GME 
from ISIS

• Modeling of a particular sensor DAS using GME
• Approach allows for a separation of concerns 

between system designer and component 
implementer in practice



17

Outlook on DECOS-ISIS Cooperation 

• Implementation of model interpreter

• Modeling of case study that exists in real hardware

• Integration of model transformation tool

• Integration of design space exploration tool


