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Patras & Princeton: Past Collaborations

Cache Decay
Timekeeping Prefetch
Tag-Correlating Prefetch

Natural to consider ways of continuing 
collaboration…



Motivation

Increasing trend towards concurrency: SoCs, CMPs, 
multi-core architectures

IBM Power5, Power6, Sun Niagara, ARM MPCore

Why on-chip parallelism?
Moore’s Law has given us enough transistors
Replicating cores mitigates design complexity
Easy tricks to boost single-core performance are running out
Often (embedded systems) it’s the natural approach

Key challenge: How to map workloads/applications to these 
chips to maximize performance and yet also abide by 
power/thermal limits?



Reducing things to a previously-unsolved 
problem….. Parallelism!

Parallel workloads have 
always been hard

Managing synchronization
Optimizing inter-process 
communication
Load balancing
Discovering sufficient 
parallelism at all…

Two main approaches:
Very coarse-grained parallelism
Very fine-grained (ILP) 
parallelism
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Problem: Handling runtime variability
Current solutions for handling runtime 
variability incur high overhead
Example: Memory behavior and data 
set variability:

Cache prefetching is not a silver bullet
Dynamic compilation

severe overheads: tens of milliseconds
Lightweight (user-level) threads packages 
to hide latencies

Software overheads tens of 
microseconds

• pipeline drain and reg context switch
OS-level multithreading/multiprogramming

coarsely interleaves threads and programs
Overhead: 100s of microseconds -> 1 ms

Current trend:  many many sources of 
runtime variability, not just memory!

barrier

barrier

Tasks with 
mostly
cache hits…

1 task with 
mostly
misses…



NDP in a nutshell…

Hardware support for:
Adaptive Parallelism modulation
Task placement
Load balancing
Energy management

Two key challenges:
1. Low-overhead mechanisms supporting above features

Key insight:  A CMP’s interconnect fabric has excellent access to 
the info needed!
Engineered specifically to support dynamic management of parallelism 
and power
Track communicate rates and CPU requirements of different threads

2. Stable, distributed control policies
Spawn threads such that related threads are co-located
Schedule or migrate competing threads
Manage energy and temperature based on same usage stats



Challenge #1: How can we minimize run-
time overhead of application partitioning?

Key phases of dynamic partitioning
1. Are we balanced?
2. If not, where shall we place the execution?
3. Can we quickly launch execution?

Grab instructions
Grab data
Context-switch



Network-driven architecture lowers run-
time overhead of application partitioning

Are we balanced?
Overhead: Communications 
between producers/consumers
0-overhead solution: Queue 
transparency through network 
reservation

Where to place?
Overhead: Multiple communications 
between tiles
0-overhead solution: Snooping

Launch execution?
Overhead: Communications of 
data, instructions, context switching
Minimal-overhead solution:

Reservation permits wire-delay 
data, instruction transport
Message-driven execution permits 
fast triggering of execution
Multiple register contexts enables 
fast thread context switching

Contention prevents
transparency

pre-reserved
path for wire-delay
transport



Proposed hardware tile architecture

•Flow Table – Keeps track of flows 
running on this tile and locations of their 
producers and consumers

•Tile candidate list – Load statistics of 
tiles maintained by the router

•Policy controller – Logic/brains behind 
when and where to spawn flows

•Scheduler – Picks and launches local 
flows onto core pipeline

•NI logic and Router – Reserves circuits 
to maintain transparency; Statistics 
snooping; Minimal-overhead 
communications



Challenge #2: 
Energy and Speed-balancing on CMPs

Not all cores are useful at full-
speed at all times…

Limited parallelism
Memory or I/O stalls

And may need to adjust to 
thermal or energy emergencies…
Via a CMP’s inter-core networks, 
can see data communication 
relationships
This work: Dynamically adapt 
power & V/f settings according to 
data & CPU usage



DVFS using Producer-Consumer Cores 

queue q

arrival rate λ

frequency  f2

service rate µ

Prod.
core

demand

Cons.
corefrequency  f1

Adjust rates to give “just enough”
performance

Identify producer-consumer relationships 
Speed balance based on data “pileups” in 
between them



Energy-Delay Product: Improvement over a local 
approach

Quicksort: Fast 
moving, high thread 
pressure
Othello: Slow 
moving, bursty
183.equake: 
Statically balanced, 
steady
181.mcf: Bimodal
300.twolf: Small but 
significant and easy 
to identify 
opportunities
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Dist-PID equal or better energy-delay 
product than Local-PID for all 
benchmarks



NDP: Beyond homogeneous CMPs…

No need for CPUs to be 
identical

Vary speed, pipeline to 
allow richer perf/energy 
tradeoffs

Heterogeneity: can replace 
CPU blocks with ASIC, 
FPGA, vector units or other 
specialized hardware
IP cores + NoC = NDP

Scalable, portable means 
of building up MPSoCs



Current Collaboration

Gilberto Contreras (Princeton PhD 
student) spending summer at U. Patras in 
Greece, working with Stefanos Kaxiras
Main effort: Heterogeneous parallelism 
using NDP’s flow-oriented model
Also: Network provisioning
Plans: Continue telecollaboration at end of 
summer when Gilberto returns to 
Princeton



Concluding remarks

Summary of NDP results thus far:
Up to 6.95X speedup for simple parallelizations on 16 cores
Up to 30% savings in energy-delay-product 
4% additional area

Overall, Network-Driven Processing:
Drives application partitioning at very low hardware 
overheads vs. existing software approaches
Eases user and compiler mapping
Handles run-time variabilities such as power and faults
Ensures software portability across hardware generations
Ease of hardware scaling to future chip generations



1  quicksort () 
2  {
3  int pivot;
4  
5 if (high>low) {
6    {
7    _flow_consume(a);
8   
9    pivot = partition(a,low,high);
10   _flow_create(quicksort);
11   _flow_produce(a,sizeof(int)*(pivot-

low));
12
13   _flow_create(quicksort);
14   _flow_produce(a+sizeof(int)*pivot, 

sizeof(int)*(high-pivot));
15   }
16   }
17
18   main()
19   {
20   _flow_create(quicksort);
21   _flow_produce(a, sizeof(int)*1023);
22   }

An example: Quicksort
mapped onto flow 
execution model

quicksort (int *a, int low, int high) 
{

int pivot;
if (high>low) {

pivot = partition(a, low, 
high); 

quicksort(a,low,pivot-1);
quicksort(a,pivot+1,high);

}
}

main() {
//sort 1024 elts
quicksort(a,0,1024)

}

Original

Flow Model



Walkthrough

NoneNoneReadyLine 18f0

Output 
Q Dest

Input Q 
Src

Reg
Ctxt IDStatePCFlow ID

Tile 0’s Flow Table at beginning of execution:

1  quicksort () 
2  {
3  int pivot;
5 if (high>low) {
6    {
7    _flow_consume(a);
8   
9    pivot = partition(a,low,high);
10   _flow_create(quicksort);
11   _flow_produce(a,sizeof(int)*(pivot-low));
12
13   _flow_create(quicksort);
14   _flow_produce(a+sizeof(int)*pivot, 

sizeof(int)*(high-pivot));
15   }
16   }
18   main()
19   {
20   _flow_create(quicksort);
21   _flow_produce(a, sizeof(int)*1023);
22   }



Walkthrough

Tile 0’s Flow Table after first parallel 
flow f1 is spawned:

To f1none0x1Activeline18f0
NoneFrom f0Readyline1f1

Out Q 
Dest

In Q 
Src

Reg
Ctxt IDStatePCFlow ID

1  quicksort () 
2  {
3  int pivot;
5 if (high>low) {
6    {
7    _flow_consume(a);
8   
9    pivot = partition(a,low,high);
10   _flow_create(quicksort);
11   _flow_produce(a,sizeof(int)*(pivot-low));
12
13   _flow_create(quicksort);
14   _flow_produce(a+sizeof(int)*pivot, 

sizeof(int)*(high-pivot));
15   }
16   }
18   main()
19   {
20   _flow_create(quicksort);
21   _flow_produce(a, sizeof(int)*1023);
22   }



Tile 0’s Flow Table after flows 
f2 and f3 are spawned:

To f2, f3From f00x2Activeline1f1
noneFrom f1Readyline1f2

To f1none0x1Blockedline18f0

noneFrom f1Readyline1f3

Out Q 
Dest

In Q 
Src

Reg
Ctxt IDStatePCFlow ID

7    _flow_consume(a);
8   
9    pivot = partition(a,low,high);
10   _flow_create(quicksort);
11   _flow_produce(a,sizeof(int)*(pivot-low));
12
13   _flow_create(quicksort);
14   _flow_produce(a+sizeof(int)*pivot, 

sizeof(int)*(high-pivot));
15   }
16   }
18   main()
19   {
20   _flow_create(quicksort);
21   _flow_produce(a, sizeof(int)*1023);
22   }



Tile 0: Hmm, it’s getting crowded in 
here…

More than just migration though…
Establishing and tracking flow relationships lets you:

Reserve/optimize network bandwidth
Speed-balance between producer consumer
Optimize coherence and communication
Cleanly manage core failures



Walkthrough

To f2: local,
To f3: tile 1

From f00x2Blockedline1f1

noneFrom f10x3Activeline1f2

To f1none0x1Blockedline18f0

Out Q DestIn Q 
Src

Reg Ctxt
IDStatePCFlow ID

Tile 0’s Flow Table after flow f3 is placed at Tile 1:

Tile 1’s Flow Table after flow f3 is placed at Tile 1:

NoneFrom f1: 
Tile0

0x1Activeline1f3

Output Q 
Dest

Input Q 
Src

Reg Ctxt
IDStatePCFlow ID



Eventually…



Preliminary evaluation results

Simulator infrastructure
Cycle-level simulator of proposed NDP architecture
16 ARM cores, 2-way superscalar
Additional NDP instructions (Gcc with intrinsics)
Simple greedy heuristic-based policy controller
Power models: Wattch and Orion

Benchmarks with variable degrees of parallelism 
Not amenable to compiler-driven application partitioning
quicksort, othello, equake, twolf, mcf



Speedup vs. single core
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Load-balancing multiprogrammed
workloads



Challenge #2 – Towards formal, stable, 
distributed scheduling of threads

Basis: Formal, stable, distributed power 
management of threads

queue qarrival rate λ
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Proposed: Hardware-assisted partitioning

Map potential
parallelism aggressively
onto many fine-grained 

threads (flows), 
without regards for 

load balancing

Hardware determines
actual parallelism
by placing flows 

on cores at run-time

………….
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Dist-PID manages oscillation/bursts better 
than Local approaches in a CMP

• Because of the communication, Dist-PID knows what speed to target
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Downsides of compiler-driven partitioning

Hard enough to extract parallelism
Have to load balance as well
Cannot adapt to run-time variability

Unpredictable data sets
Unpredictable memory behavior
Multiprogramming
Power/thermal hotspots
Faults



Dist-PID resiliency: Demonstrating stability
Dist-PID: More 
resilient than 
local 
approaches to 
error in 
processor load 
predictions

Othello, quicksort
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Parallel Code and DVFS : An Example
Parent Thread (Sends out X numbers)

Helper 
Thread 1

Helper 
Thread 

T2

Helper 
Thread 

T3

Helper 
Thread 

T1

100 cycles/number

Process every 
2nd number

Process every 
17th number

Process every 
10,000th number

Receiver (Has to wait for all X numbers to arrive)

When one input buffer fills, Parent thread stalls
Observation 1: Thread T1 has most work to do 

Threads T2 and T3 can run more slowly
Observation 2: All threads (especially T2 and T3) have bursty work 
requirements)

Must avoid oscillations



Options for CMP DVFS Policies

Static DVFS settings for whole application:
Based on profiling or application knowledge
Pro: simple, no overshoot or oscillation
Con: hard to gather application knowledge, especially for dynamically-
varying parallel applications.

Locally-controlled, uncoordinated V/f settings per core
Pro: simple, fast, easy to scale
Con: doesn’t account for inter-thread relationships

Coordinated cross-chip control of DVFS settings
Pro: more realistic, more flexible
Con: Slower, possibly harder to scale

Which info to transfer and how fast?



Introducing Dist-PID for power management 

Intuitively: 
Who is the critical path?
To preserve performance, run that 
processor at maximum speed
To save energy, run everyone 
else slower

1) Determine critical path using 
equation :
qtarget = (Kp(qk – qk-1) + Kiqk – µk + 

µk-1)/Ki

2) Distribute to all processors
Exchange qtarget between 

processors
Choose highest qtarget seen: this 

is critical path
3) Use highest qtarget as new qref

and solve equation
µk = µk-1+ Ki(qk – qref) + Kp(qk – qk-1)


