
Network-Driven Processor (NDP):
Energy-Aware Embedded

Architectures & Execution Models

Princeton University

Collaboration with Stefanos Kaxiras at U.
Patras

Patras & Princeton: Past Collaborations

Cache Decay
Timekeeping Prefetch
Tag-Correlating Prefetch

Natural to consider ways of continuing
collaboration…

Motivation

Increasing trend towards concurrency: SoCs, CMPs,
multi-core architectures

IBM Power5, Power6, Sun Niagara, ARM MPCore

Why on-chip parallelism?
Moore’s Law has given us enough transistors
Replicating cores mitigates design complexity
Easy tricks to boost single-core performance are running out
Often (embedded systems) it’s the natural approach

Key challenge: How to map workloads/applications to these
chips to maximize performance and yet also abide by
power/thermal limits?

Reducing things to a previously-unsolved
problem….. Parallelism!

Parallel workloads have
always been hard

Managing synchronization
Optimizing inter-process
communication
Load balancing
Discovering sufficient
parallelism at all…

Two main approaches:
Very coarse-grained parallelism
Very fine-grained (ILP)
parallelism

CoreCore

Cache

Core

Cache

Problem: Handling runtime variability
Current solutions for handling runtime
variability incur high overhead
Example: Memory behavior and data
set variability:

Cache prefetching is not a silver bullet
Dynamic compilation

severe overheads: tens of milliseconds
Lightweight (user-level) threads packages
to hide latencies

Software overheads tens of
microseconds

• pipeline drain and reg context switch
OS-level multithreading/multiprogramming

coarsely interleaves threads and programs
Overhead: 100s of microseconds -> 1 ms

Current trend: many many sources of
runtime variability, not just memory!

barrier

barrier

Tasks with
mostly
cache hits…

1 task with
mostly
misses…

NDP in a nutshell…

Hardware support for:
Adaptive Parallelism modulation
Task placement
Load balancing
Energy management

Two key challenges:
1. Low-overhead mechanisms supporting above features

Key insight: A CMP’s interconnect fabric has excellent access to
the info needed!
Engineered specifically to support dynamic management of parallelism
and power
Track communicate rates and CPU requirements of different threads

2. Stable, distributed control policies
Spawn threads such that related threads are co-located
Schedule or migrate competing threads
Manage energy and temperature based on same usage stats

Challenge #1: How can we minimize run-
time overhead of application partitioning?

Key phases of dynamic partitioning
1. Are we balanced?
2. If not, where shall we place the execution?
3. Can we quickly launch execution?

Grab instructions
Grab data
Context-switch

Network-driven architecture lowers run-
time overhead of application partitioning

Are we balanced?
Overhead: Communications
between producers/consumers
0-overhead solution: Queue
transparency through network
reservation

Where to place?
Overhead: Multiple communications
between tiles
0-overhead solution: Snooping

Launch execution?
Overhead: Communications of
data, instructions, context switching
Minimal-overhead solution:

Reservation permits wire-delay
data, instruction transport
Message-driven execution permits
fast triggering of execution
Multiple register contexts enables
fast thread context switching

Contention prevents
transparency

pre-reserved
path for wire-delay
transport

Proposed hardware tile architecture

•Flow Table – Keeps track of flows
running on this tile and locations of their
producers and consumers

•Tile candidate list – Load statistics of
tiles maintained by the router

•Policy controller – Logic/brains behind
when and where to spawn flows

•Scheduler – Picks and launches local
flows onto core pipeline

•NI logic and Router – Reserves circuits
to maintain transparency; Statistics
snooping; Minimal-overhead
communications

Challenge #2:
Energy and Speed-balancing on CMPs

Not all cores are useful at full-
speed at all times…

Limited parallelism
Memory or I/O stalls

And may need to adjust to
thermal or energy emergencies…
Via a CMP’s inter-core networks,
can see data communication
relationships
This work: Dynamically adapt
power & V/f settings according to
data & CPU usage

DVFS using Producer-Consumer Cores

queue q

arrival rate λ

frequency f2

service rate µ

Prod.
core

demand

Cons.
corefrequency f1

Adjust rates to give “just enough”
performance

Identify producer-consumer relationships
Speed balance based on data “pileups” in
between them

Energy-Delay Product: Improvement over a local
approach

Quicksort: Fast
moving, high thread
pressure
Othello: Slow
moving, bursty
183.equake:
Statically balanced,
steady
181.mcf: Bimodal
300.twolf: Small but
significant and easy
to identify
opportunities

0

0.2

0.4

0.6

0.8

1

1.2

quicksort othello equake twolf mcf average

Local-PID Dist-PID

En
er

gy
-D

el
ay

 P
ro

du
ct

Dist-PID equal or better energy-delay
product than Local-PID for all
benchmarks

NDP: Beyond homogeneous CMPs…

No need for CPUs to be
identical

Vary speed, pipeline to
allow richer perf/energy
tradeoffs

Heterogeneity: can replace
CPU blocks with ASIC,
FPGA, vector units or other
specialized hardware
IP cores + NoC = NDP

Scalable, portable means
of building up MPSoCs

Current Collaboration

Gilberto Contreras (Princeton PhD
student) spending summer at U. Patras in
Greece, working with Stefanos Kaxiras
Main effort: Heterogeneous parallelism
using NDP’s flow-oriented model
Also: Network provisioning
Plans: Continue telecollaboration at end of
summer when Gilberto returns to
Princeton

Concluding remarks

Summary of NDP results thus far:
Up to 6.95X speedup for simple parallelizations on 16 cores
Up to 30% savings in energy-delay-product
4% additional area

Overall, Network-Driven Processing:
Drives application partitioning at very low hardware
overheads vs. existing software approaches
Eases user and compiler mapping
Handles run-time variabilities such as power and faults
Ensures software portability across hardware generations
Ease of hardware scaling to future chip generations

1 quicksort ()
2 {
3 int pivot;
4
5 if (high>low) {
6 {
7 _flow_consume(a);
8
9 pivot = partition(a,low,high);
10 _flow_create(quicksort);
11 _flow_produce(a,sizeof(int)*(pivot-

low));
12
13 _flow_create(quicksort);
14 _flow_produce(a+sizeof(int)*pivot,

sizeof(int)*(high-pivot));
15 }
16 }
17
18 main()
19 {
20 _flow_create(quicksort);
21 _flow_produce(a, sizeof(int)*1023);
22 }

An example: Quicksort
mapped onto flow
execution model

quicksort (int *a, int low, int high)
{

int pivot;
if (high>low) {

pivot = partition(a, low,
high);

quicksort(a,low,pivot-1);
quicksort(a,pivot+1,high);

}
}

main() {
//sort 1024 elts
quicksort(a,0,1024)

}

Original

Flow Model

Walkthrough

NoneNoneReadyLine 18f0

Output
Q Dest

Input Q
Src

Reg
Ctxt IDStatePCFlow ID

Tile 0’s Flow Table at beginning of execution:

1 quicksort ()
2 {
3 int pivot;
5 if (high>low) {
6 {
7 _flow_consume(a);
8
9 pivot = partition(a,low,high);
10 _flow_create(quicksort);
11 _flow_produce(a,sizeof(int)*(pivot-low));
12
13 _flow_create(quicksort);
14 _flow_produce(a+sizeof(int)*pivot,

sizeof(int)*(high-pivot));
15 }
16 }
18 main()
19 {
20 _flow_create(quicksort);
21 _flow_produce(a, sizeof(int)*1023);
22 }

Walkthrough

Tile 0’s Flow Table after first parallel
flow f1 is spawned:

To f1none0x1Activeline18f0
NoneFrom f0Readyline1f1

Out Q
Dest

In Q
Src

Reg
Ctxt IDStatePCFlow ID

1 quicksort ()
2 {
3 int pivot;
5 if (high>low) {
6 {
7 _flow_consume(a);
8
9 pivot = partition(a,low,high);
10 _flow_create(quicksort);
11 _flow_produce(a,sizeof(int)*(pivot-low));
12
13 _flow_create(quicksort);
14 _flow_produce(a+sizeof(int)*pivot,

sizeof(int)*(high-pivot));
15 }
16 }
18 main()
19 {
20 _flow_create(quicksort);
21 _flow_produce(a, sizeof(int)*1023);
22 }

Tile 0’s Flow Table after flows
f2 and f3 are spawned:

To f2, f3From f00x2Activeline1f1
noneFrom f1Readyline1f2

To f1none0x1Blockedline18f0

noneFrom f1Readyline1f3

Out Q
Dest

In Q
Src

Reg
Ctxt IDStatePCFlow ID

7 _flow_consume(a);
8
9 pivot = partition(a,low,high);
10 _flow_create(quicksort);
11 _flow_produce(a,sizeof(int)*(pivot-low));
12
13 _flow_create(quicksort);
14 _flow_produce(a+sizeof(int)*pivot,

sizeof(int)*(high-pivot));
15 }
16 }
18 main()
19 {
20 _flow_create(quicksort);
21 _flow_produce(a, sizeof(int)*1023);
22 }

Tile 0: Hmm, it’s getting crowded in
here…

More than just migration though…
Establishing and tracking flow relationships lets you:

Reserve/optimize network bandwidth
Speed-balance between producer consumer
Optimize coherence and communication
Cleanly manage core failures

Walkthrough

To f2: local,
To f3: tile 1

From f00x2Blockedline1f1

noneFrom f10x3Activeline1f2

To f1none0x1Blockedline18f0

Out Q DestIn Q
Src

Reg Ctxt
IDStatePCFlow ID

Tile 0’s Flow Table after flow f3 is placed at Tile 1:

Tile 1’s Flow Table after flow f3 is placed at Tile 1:

NoneFrom f1:
Tile0

0x1Activeline1f3

Output Q
Dest

Input Q
Src

Reg Ctxt
IDStatePCFlow ID

Eventually…

Preliminary evaluation results

Simulator infrastructure
Cycle-level simulator of proposed NDP architecture
16 ARM cores, 2-way superscalar
Additional NDP instructions (Gcc with intrinsics)
Simple greedy heuristic-based policy controller
Power models: Wattch and Orion

Benchmarks with variable degrees of parallelism
Not amenable to compiler-driven application partitioning
quicksort, othello, equake, twolf, mcf

Speedup vs. single core

0

1

2

3

4

5

6

7

8

Quicksort Othello Equake Twolf Mcf

Benchmark

Sp
ee

du
p

Load-balancing multiprogrammed
workloads

Challenge #2 – Towards formal, stable,
distributed scheduling of threads

Basis: Formal, stable, distributed power
management of threads

queue qarrival rate λ

service rate µ
clock
domain frequency f

)1(
2

'

1

2
1

11

−

−−

+
−+=

k

kkk

f
Ct

Tqq λ

average queueaverage queue
occupancy for (koccupancy for (k--1)1)thth
control intervalcontrol interval

average queue changesaverage queue changes
due to differentdue to different
demand and service ratesdemand and service rates

queue occupancy at queue occupancy at
the beginning of (kthe beginning of (k--1)1)thth
control intervalcontrol interval

Proposed: Hardware-assisted partitioning

Map potential
parallelism aggressively
onto many fine-grained

threads (flows),
without regards for

load balancing

Hardware determines
actual parallelism
by placing flows

on cores at run-time

………….

0

200

400

600

800

1000

1200

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

 T1 T2 T3 Dist-PID T2

Dist-PID manages oscillation/bursts better
than Local approaches in a CMP

• Because of the communication, Dist-PID knows what speed to target

• Formal approach causes controller to gently zero in on optimal speed

Time

Fr
eq

u
en

cy
 (

M
h

z)

Downsides of compiler-driven partitioning

Hard enough to extract parallelism
Have to load balance as well
Cannot adapt to run-time variability

Unpredictable data sets
Unpredictable memory behavior
Multiprogramming
Power/thermal hotspots
Faults

Dist-PID resiliency: Demonstrating stability
Dist-PID: More
resilient than
local
approaches to
error in
processor load
predictions

Othello, quicksort

0

1

2

3

4

5

6

7

8

9

100 10 1 0.1 0.01

local-PID (Othello) dist-PID (Othello)
local-PID (Quicksort) dist-PID (Quicksort)

N
or

m
al

iz
ed

 e
xe

cu
ti

on
 t

im
e

Parallel Code and DVFS : An Example
Parent Thread (Sends out X numbers)

Helper
Thread 1

Helper
Thread

T2

Helper
Thread

T3

Helper
Thread

T1

100 cycles/number

Process every
2nd number

Process every
17th number

Process every
10,000th number

Receiver (Has to wait for all X numbers to arrive)

When one input buffer fills, Parent thread stalls
Observation 1: Thread T1 has most work to do

Threads T2 and T3 can run more slowly
Observation 2: All threads (especially T2 and T3) have bursty work
requirements)

Must avoid oscillations

Options for CMP DVFS Policies

Static DVFS settings for whole application:
Based on profiling or application knowledge
Pro: simple, no overshoot or oscillation
Con: hard to gather application knowledge, especially for dynamically-
varying parallel applications.

Locally-controlled, uncoordinated V/f settings per core
Pro: simple, fast, easy to scale
Con: doesn’t account for inter-thread relationships

Coordinated cross-chip control of DVFS settings
Pro: more realistic, more flexible
Con: Slower, possibly harder to scale

Which info to transfer and how fast?

Introducing Dist-PID for power management

Intuitively:
Who is the critical path?
To preserve performance, run that
processor at maximum speed
To save energy, run everyone
else slower

1) Determine critical path using
equation :
qtarget = (Kp(qk – qk-1) + Kiqk – µk +

µk-1)/Ki

2) Distribute to all processors
Exchange qtarget between

processors
Choose highest qtarget seen: this

is critical path
3) Use highest qtarget as new qref

and solve equation
µk = µk-1+ Ki(qk – qref) + Kp(qk – qk-1)

