European R&D in Embedded Systems

Kostas Glinos, Head of Unit Embedded Systems
European Commission, Brussels
The European Union today

Democratic countries, committed to working together for peace and prosperity

EU-15
Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Netherlands, Luxembourg, Portugal, Spain, Sweden, UK

citizens: 370 million
GDP: € 9,180 bn

EU-25
Cyprus, Czech Rep., Estonia, Hungary, Latvia, Lithuania, Malta, Poland, Slovenia, Slovakia

(since 1 May 2004)
citizens: 445 million
GDP: € 9,626 bn

EU’s historical roots lie in WW2:
« Such killing & destruction should not happen again in Europe »
- Robert Schuman, French Foreign Minister on 9 May 1950

Joining after 2006
Bulgaria, Romania

EU-15

EU-25

EU-15

EU-25

EU-25

Key European Institutions & Bodies

- **European Parliament**
 Elected by the peoples of the 25 Member States

- **Council of the European Union**
 Representing the governments of the Member States

- **European Commission**
 Driving force and executive body

- **Court of Justice**
 Ensuring compliance with the law

- **Court of Auditors**
 Controlling sound and lawful management of the EU budget

- **European Economic & Social Committee**
 Expresses opinions of organised civil society on economic & social issues

- **Committee of the Regions**
 Expresses opinions of regional and local authorities

- **European Central Bank**
 Responsible for monetary policy & managing the Euro

- **European Ombudsman**
 Deals with citizens’ complaints about maladministration by any EU institution or body

- **European Investment Bank**
 Helps achieve EU objectives by financing investment projects
Key Policies to Achieve Lisbon Goals

Lisbon 2000

"EU: Largest knowledge-based economy by 2010"

... towards a ‘single market for research’

R&D Policy

European Research Area, Eureka, COST, nat’l R&D programmes

Deployment & promotion

eEurope

Broadband access, e-business, e-government, security, e-health, ...

Legal & Reg. Policy

Entrepreneurship, benchmarking (innovation scoreboard), R&D investment 3% of GDP by 2010, industrial policy, ...

... towards ‘online Europe’
R&D Investment (2001)

In brackets:
average annual growth rate (%)
between 1997-2001

GERD (% GDP)

EU average still lags behind investments of Japan & US
- But EU figures are growing, slowly though
- A large variety across EU Member States
- Significant catch-up race of some laggards

Source: DG Research
Data: OECD, Eurostat
New PhDs in Science & Engineering (2001)

per 1000 population aged 25-34

In brackets:
ave. annual growth rate (%) between 1998-2001
Share of World Publications Evolution

Source: DG Research
Data: ISI, CWTS (treatments), DG Research (calculations)
More than 20 Years of EU Framework Program for Research

EU activities require:

- **Collaboration & cross-disciplinarity**

- **Consensus & partnership**
 (funding levels: 50% of industrial, 100% of academic participation)

FP evolution in last 20 years:

- Growing, but only 4% of public R&D spending in Europe
6th Framework Program for Research

• Focusing & Integrating Community Research
 - Life sciences, genomics, biotech
 - Information Society Technologies
 - Nanotechnologies, knowledge-based materials, new processes
 - Aeronautics and space
 - Food quality & safety
 - Sustainable development, ...
 - Citizens & governance
 - S&T needs, SMEs, Int’l Co-operation
 - JRC non-nuclear research
 € mn
 2,255
 3,625
 1,300
 1,075
 685
 2,120
 225
 1,300
 760

• Structuring the European Research Area
 - Research & innovation
 - Human resources
 - Research infrastructures (Géant/GRID, ...)
 - Science & society
 € mn
 290
 1,580
 655
 80

• Strengthening the foundations of the European Research Area
 - Support to co-ordination
 - Support to policy development
 € mn
 270
 50

• Nuclear research (mainly fusion)
 € mn
 1,230

(2003-2006)
€ 17.6 bn
Information Society Technologies in FP6

- Anywhere anytime natural and enjoyable access to IST services for ALL
- Pervasive, mobile, wireless, trustful infrastructures
- Miniaturised, low cost - low power components & μsystems
- Natural interactions with ‘knowledge’
- Communication & networking
- Embedded systems & software
- μ, nano, opto electronics
- μ & nano systems
- Knowledge technologies
- Interfaces

Applied IST for major societal and economic challenges

Trust & Confidence
IST for societal challenges
IST for economic challenges
Demanding applications

~ 1 billion € / year
Who is involved in IST

- Attractive R&D
 - High subscription - success rate 1:6
- Industrial focus
- Multi-stakeholder collaboration
 - Pan-European
 - Large + small companies + academic research
IST: From FP5 to FP6

After two calls:
- 2500 proposals received
- 400 projects supported with ~6500 participations

Increased size of projects
- average budget 3 times larger (1.6->4.3 M€)
- 3 times more partners per projects on average (10->24)

![Average project funding](chart1)
![Average number of participants](chart2)

Funding per instrument, Calls 1 & 2
International Cooperation

• Globalisation
 - Increasing competition at a global scale
 - Outsourcing and de-localisation
 - Also for research, including from emerging economies
 - Brain drain

• Global challenges
 - Security
 - Ageing
 - Environment
 - ...

int’l co-operation as a positive sum game
Embedded intelligence everywhere

- Embedded Systems underpin Europe’s industrial strongholds
 - Automotive, avionics, consumer electronics, telecommunications, plant automation, medical,…
- Enormous potential for the future
 - Key enabler for competitiveness and innovation
 - Creation of new markets and societal-scale applications
- Major challenges
 - In science, technology, education, infrastructures

Embedded systems provide the added value of European products
Embedded systems facts and figures

- Most of top 25 EU companies - by R&D investment - rely on embedded systems
 - Overall R&D spending of top 25: 61 billion annually
- Embedded Systems feature strong growth
 - Number of embedded components expected to grow to 16 billion worldwide by 2010
 - Electronics will account for up to 40% of a vehicle’s value by 2010
 - A smart phone can contain millions of lines of code
 - Annual growth rate 10.3%
- Embedded systems - a European strength

Exponential growth of embedded systems

Embedded software vs. Embedded electronics

Source: Philips Research
Trends and obstacles in embedded systems

- open
- networked
- physical
- intelligent

Complexity Software architecture today Interoperability
R&D support for Embedded Systems in EU

Strategic Priority Embedded Systems within IST/FP6
– 58 M€ in Call 2 and 75 M€ in Call 5; also ES elsewhere in IST

ICT cluster projects within EUREKA
– MEDEA+ (2001-2008): systems on silicon; 4.0 B€ costs

National/regional programmes
– e.g. in NL: PROGRESS, ESI

EU Competitiveness Council and EUREKA Ministers call for closer cooperation and more synergy between FP and EUREKA
– Instrumental role for ETPs, JTIs
Two main priorities

- **System Design**
 - Concepts, methods and tools for model-based system design and reconfigurable architectures

- **Networked Embedded Systems**
 - Middleware and platforms for building secure, swarming and fault-tolerant systems of “cooperating objects”
Master complexity

- Model-based system design, validation and testing
 - Interoperability at the semantic level of model and tools
- Design methods, programming models and compilation tools for reconfigurable architectures
 - Mastering of heterogeneity and predictability

Key issues

- component-based and modular design; heterogeneity

International co-operation

- Specifically invited for the US
- Common research directions, joint projects

Call deadline: 21 September!
European Technology Platforms
Technological or Sectoral

Providing the means to foster effective public-private partnerships
- between the research community, industry, financial institutions, users & policy-makers
- to mobilise the research and innovation effort and facilitate the emergence of “lead markets” in Europe

"Investing in Research. An Action Plan for Europe"
The Artemis Technology Platform

Advanced research and technology in embedded intelligence and systems

Aim and scope

- Develop and drive joint European vision and strategy on Embedded Systems
 - R&D and educational challenges
 - structural challenges: IPR, open source software, standards, research infrastructure,...
- Align fragmented R&D efforts in ERA along common strategic agenda at Community, intergovernmental and national levels

ARTEMIS Steering Board includes 9 of the top-25 EU companies in terms of global R&D
Cooperation in EmS

- IST - NSF: a long history of cooperation
- Bottom-up vs. top-down
- Setting joint research agendas
 - Topics and objectives?
- Two workshops
 - Design
 - Security and Control of LSI