COMPUTER SECURITY: THE
GOOD, THE BAD, AND THE
UGLY
(with applications to
embedded systems)

Catherine Meadows
Naval Research Laboratory
Code 5543
Washington, DC 20375
meadows@itd.nrl.navy.mil



Introduction

o A few years ago, took part in a panel on “the good,
the bad, and the ugly”

o Each speaker asked to find three types of solutions in
their domain of research
— Good: sound and useful
— Bad: sound but not useful
— Ugly: messy but useful
e Instructive exercise

— Here, I'm going to try to apply it to security in
embedded systems



WHAT IS AN EMBEDDED
SYSTEM?

e A computer system that is a component of a larger
machine or system

e How is it different from a traditional computer
system?
— And how does it affect security?

o We'll see ....



OUTLINE OF TALK

e State of security in today’s networked system
described as a point of comparison

e Two examples of security problems in embedded
systems

— Cell phones
— Multilevel security in embedded systems

e Conclusions and open research problems



CURRENT PARADIGM OF
COMPUTER SECURITY

Network of computers
Each computer has
— Internal protections (e.g. access control)
— External protections (authentication, firewalls)
Network itself has security policy and internal and external protections
Usually a human in the loop
— System manager responsible for setting and enforcing security
policy
Doesn’t work perfectly, but works well enough to use it
Some problems, e.g. viruses, DoS, always with us
Some problems (e.g. spam) seem intractable
Don’t know how it will work if things get really bad

The “ugly” solution



HOW DID WE GET HERE?

e Started out with standalone computers

— Some had internal access controls

— Some had minimal external controls, e.g. passwords

— Some had no controls at all, e.g. early personal computers
e Started hooking them up in networks

— Naturally, problems began to appear
e Security solutions introduced (after the fact)

— Cryptographic authentication

— Firewalls

— Intrusion detection



AN EXAMPLE EMBEDDED
SYSTEM - CELL PHONES

Little or no internal protection
— Assumed to be single user
Some external protection

— Phone must be securely identified so that calls can be correctly
charged to it

— Can shut down cell phone if stolen
Most protection provided in cellular infrastructure
— Phone authenticates itself to infrastructure
— Infrastructure manages accounting
Some added constraints
— Power
— Mobility
— Cost



AND WHAT'S HAPPENING
ANYWAY?

e Exponentially growing complexity and connectivity
e You can now use phones to
— Surf the web
— Send and receive text messages
— Exchange data directly via Bluetooth
o Allows one device to talk directly to another
e Bypasses infrastructure
¢ Now seeing beginnings of
— Attacks on infrastructure
¢ Cell phone spam
— Direct attacks on phones

e Cell phone worms
— Cabir worm - laboratory proof-of-concept worm that got loose
— Requires Bluetooth in discoverable mode



NIGHTMARE SCENARIO
(Schneier)

e Car owner links her Bluetooth-enabled phone to her
dashboard computer

e Allows her to control phone via buttons on steering
wheel

e As she drives down the road, phone connects to
another in a passing car

e Suddenly, her navigational system fails



SAME STORY AS NETWORK
SECURITY

You start with something simple, start adding
complexity and new kinds of connectivity

BUT

Where do you put the firewalls? Where do you put
the intrusion detection?

Where does the sysadmin sit?
— Will every cell phone user have to be a sysadmin?



POSSIBLE (PARTIAL)
SOLUTIONS

Offload security to larger, more stable part of the system
— For cell phones, this is the cellular infrastructure
o Already done to a large extent already
— Drawbacks

e Not useful when devices talk to each other directly
— E.g. Bluetooth-enabled cellphones

Improve security of protocols

Involve users more in security decisions and risk assessment
Make phone themselves more robust

— And more expensive

Problem may never go away entirely

— New kinds of threats not prepared for by architecture



NEXT EXAMPLE: MULTILEVEL
SECURITY

e Data processed and stored at different security levels
— Unclass, Secret, Top Secret, etc.
e Separation very strict

— Processes running at lower levels should, as much as
possible, be completely ignorant about what goes on
at higher levels

e May need some exceptions, however:
— Data may need downgrading
— Low data sent to high may need acks



MULTILEVEL SECURITY IN
EMBEDDED SYSTEMS

e The US DoD is going “net-centric”
e Networked data to be delivered directly to the

warfighter

e This will require MLS embedded systems



MLS "ORANGE BOOK"
ARCHITECTURE (1980°s)

Security kernel critical part of operating system

— Kernel evaluates all access requests and grants or denies
them according to security policy

Two types of access control
— Mandatory access control
e Fixed rules governing different security levels
— Discretionary access control
e Rules covering everything else
Security kernels tended to be large and difficult to evaluate
This was the bad solution



MSL (Multiple Single Level)
ARCHITECTURE (1990°s)

Rely on physical separation to enforce
separation between security levels

Each machine has a single security level

Data from machines at lower levels replicated
at higher levels

Critical trusted components are replicators
and downgraders

This was the good solution
Advantages
— Relatively easy to evaluate and modify
— Works well in networked systems
Disadvantages

— Obviously no good for embedded
systems!

TS/SC

Secret

g

’ SBU

Qndvailyj )

IT Resources



MILS ARCHITECTURE

Provide virtual instead of physical separation

— Use separation kernel to provide independent virtual
machines at different security levels

Provide other security functionality at higher layers

Separation kernel compact, good for resource-
constrained systems

Can add complexity without having to modify it

Unclassified | Secret Top Secret
Application | Application| Application

Middleware | Middleware| Middleware

Separation Kernel




CONCLUSIONS WE CAN
DRAW

Necessary to anticipate complexity -- it will come whether you're
expecting it or not

Cell phone example shows that it is helpful to be able to anticipate the
kind of complexity you'll get
Figure out what your critical assets are and concentrate on protecting
them first
— MLS systems
e protecting separation between security levels
— Cell phones

o Ability to make calls
— Defense against DoS

e Authentication of calls
Realize that your critical assets may change, too



RESEARCH PROBLEMS

e Develop architectures for protecting critical assets
that are
— Compact
— Hold up well under change and added complexity
e Develop avenues for change that respect the
architectures we develop

— Techniques for adding functionality while maximizing
protection offered by architecture



