
COMPUTER SECURITY: THE
GOOD, THE BAD, AND THE

UGLY
(with applications to
embedded systems)

Catherine Meadows
Naval Research Laboratory

Code 5543
Washington, DC 20375

meadows@itd.nrl.navy.mil

Introduction

• A few years ago, took part in a panel on “the good,
the bad, and the ugly”

• Each speaker asked to find three types of solutions in
their domain of research
– Good: sound and useful
– Bad: sound but not useful
– Ugly: messy but useful

• Instructive exercise
– Here, I’m going to try to apply it to security in

embedded systems

WHAT IS AN EMBEDDED
SYSTEM?

• A computer system that is a component of a larger
machine or system

• How is it different from a traditional computer
system?
– And how does it affect security?

• We’ll see ….

OUTLINE OF TALK

• State of security in today’s networked system
described as a point of comparison

• Two examples of security problems in embedded
systems
– Cell phones
– Multilevel security in embedded systems

• Conclusions and open research problems

CURRENT PARADIGM OF
COMPUTER SECURITY

• Network of computers
• Each computer has

– Internal protections (e.g. access control)
– External protections (authentication, firewalls)

• Network itself has security policy and internal and external protections
• Usually a human in the loop

– System manager responsible for setting and enforcing security
policy

• Doesn’t work perfectly, but works well enough to use it
• Some problems, e.g. viruses, DoS, always with us
• Some problems (e.g. spam) seem intractable
• Don’t know how it will work if things get really bad

The “ugly” solution

HOW DID WE GET HERE?

• Started out with standalone computers
– Some had internal access controls
– Some had minimal external controls, e.g. passwords
– Some had no controls at all, e.g. early personal computers

• Started hooking them up in networks
– Naturally, problems began to appear

• Security solutions introduced (after the fact)
– Cryptographic authentication
– Firewalls
– Intrusion detection

AN EXAMPLE EMBEDDED
SYSTEM - CELL PHONES

• Little or no internal protection
– Assumed to be single user

• Some external protection
– Phone must be securely identified so that calls can be correctly

charged to it
– Can shut down cell phone if stolen

• Most protection provided in cellular infrastructure
– Phone authenticates itself to infrastructure
– Infrastructure manages accounting

• Some added constraints
– Power
– Mobility
– Cost

AND WHAT’S HAPPENING
ANYWAY?

• Exponentially growing complexity and connectivity
• You can now use phones to

– Surf the web
– Send and receive text messages
– Exchange data directly via Bluetooth

• Allows one device to talk directly to another
• Bypasses infrastructure

• Now seeing beginnings of
– Attacks on infrastructure

• Cell phone spam
– Direct attacks on phones

• Cell phone worms
– Cabir worm - laboratory proof-of-concept worm that got loose
– Requires Bluetooth in discoverable mode

NIGHTMARE SCENARIO
(Schneier)

• Car owner links her Bluetooth-enabled phone to her
dashboard computer

• Allows her to control phone via buttons on steering
wheel

• As she drives down the road, phone connects to
another in a passing car

• Suddenly, her navigational system fails

SAME STORY AS NETWORK
SECURITY

• You start with something simple, start adding
complexity and new kinds of connectivity

BUT
• Where do you put the firewalls? Where do you put

the intrusion detection?
• Where does the sysadmin sit?

– Will every cell phone user have to be a sysadmin?

POSSIBLE (PARTIAL)
SOLUTIONS

• Offload security to larger, more stable part of the system
– For cell phones, this is the cellular infrastructure

• Already done to a large extent already
– Drawbacks

• Not useful when devices talk to each other directly
– E.g. Bluetooth-enabled cellphones

• Improve security of protocols
• Involve users more in security decisions and risk assessment
• Make phone themselves more robust

– And more expensive
• Problem may never go away entirely

– New kinds of threats not prepared for by architecture

NEXT EXAMPLE: MULTILEVEL
SECURITY

• Data processed and stored at different security levels
– Unclass, Secret, Top Secret, etc.

• Separation very strict
– Processes running at lower levels should, as much as

possible, be completely ignorant about what goes on
at higher levels

• May need some exceptions, however:
– Data may need downgrading
– Low data sent to high may need acks

MULTILEVEL SECURITY IN
EMBEDDED SYSTEMS

• The US DoD is going “net-centric”
• Networked data to be delivered directly to the

warfighter
• This will require MLS embedded systems

MLS “ORANGE BOOK”
ARCHITECTURE (1980’s)

• Security kernel critical part of operating system
– Kernel evaluates all access requests and grants or denies

them according to security policy
• Two types of access control

– Mandatory access control
• Fixed rules governing different security levels

– Discretionary access control
• Rules covering everything else

• Security kernels tended to be large and difficult to evaluate
• This was the bad solution

MSL (Multiple Single Level)
ARCHITECTURE (1990’s)

• Rely on physical separation to enforce
separation between security levels

• Each machine has a single security level
• Data from machines at lower levels replicated

at higher levels
• Critical trusted components are replicators

and downgraders
• This was the good solution
• Advantages

– Relatively easy to evaluate and modify
– Works well in networked systems

• Disadvantages
– Obviously no good for embedded

systems!

IT Resources

TS/SCI

Secret

SBU

S/Rel

BC

BC

BC

BC

MILS ARCHITECTURE
• Provide virtual instead of physical separation

– Use separation kernel to provide independent virtual
machines at different security levels

• Provide other security functionality at higher layers
• Separation kernel compact, good for resource-

constrained systems
• Can add complexity without having to modify it

Unclassified
Application

Secret
Application

Top Secret
Application

Middleware Middleware Middleware

Separation Kernel

CONCLUSIONS WE CAN
DRAW

• Necessary to anticipate complexity -- it will come whether you’re
expecting it or not

• Cell phone example shows that it is helpful to be able to anticipate the
kind of complexity you’ll get

• Figure out what your critical assets are and concentrate on protecting
them first
– MLS systems

• protecting separation between security levels
– Cell phones

• Ability to make calls
– Defense against DoS

• Authentication of calls
• Realize that your critical assets may change, too

RESEARCH PROBLEMS

• Develop architectures for protecting critical assets
that are
– Compact
– Hold up well under change and added complexity

• Develop avenues for change that respect the
architectures we develop
– Techniques for adding functionality while maximizing

protection offered by architecture

