
Networked Embedded Systems and the
ZebraNet Project:

Experiences and Challenges

Prof. Margaret Martonosi
Dept. of Electrical Engineering
Princeton University VET

TES
EN

NOV
TAM
TVM

Acknowledgments

Yong Wang
Other ZebraNet students: Ting Liu, Chris Sadler,
Pei Zhang
Other Princeton colleagues: Prof. Li-Shiuan Peh,
Prof. Steve Lyon, Prof. Dan Rubenstein
Other folks: Sushant Jain, Kevin Fall

NSF ITR since 2002

Challenges in Researching
Networks of Embedded Sensors

Constrained optimization on highly-varying apps
– Good system performance under energy, size, bandwidth

constraints
Fast-changing hardware
– Difficult to manage software changes, amortize software

development efforts
Inevitably-changing software (Learn->change->learn-
>change…)
– Manage on-the-fly updates post-deployment

“New world” new metrics for success
– Autonomy, reliability matter a lot
– Need good infrastructure to evaluate…

Our work: zebras + …

ZebraNet as Biology Research
Goal: Biologists want to track
animals long-term, over long
distances
– Interactions within a species?
– Interactions between species?
– Impact of human development?

Current technology is limited:
– VHF Triangulation is difficult & error-

prone
– GPS trackers limit data to coarse

sampling and require collar retrieval
Overall, energy and info retrieval are key
limiters
Peer-to-peer offers opportunity to improve

ZebraNet as Computing Research

Research Questions
Protocols and mobility?
Energy-efficiency?
Software layering design?

Data

Base station
(car or plane)

Data

Data
Store-and-forward
communications

Data

Tracking node with
CPU, FLASH, radio
and GPS

ZebraNet vs. Other SensorNets
All sensing nodes are mobile
Large area: 100’s-1000s sq.
kilometers
“Coarse-Grained” nodes
GPS on-board
Long-running and autonomous

Basic System Operation

Tracking
Node A

AA Tracking
Node B

BB

BB

AA

Daily/weekly;
Car or Plane

Basic System Operation

Tracking
Node C

CC

Tracking
Node B

BB AA

BB AA

CC

Potentially much later
and far from node A…

CC BB AA

Abstraction Layers and Research Challenges

Application

Protocols & Data Collection

Middleware/OS

Hardware

Physical Design,
Circuits, Antennas, …

Impact of app constraints
and needs on design?
– energy, weight, lifetime,

datarate
– latencies, data rates,

accuracy
Managing constant change
of applications and
hardware
Info passing between
interface layers?
Portability across apps?

Microcontroller
TI MSP430
16-bit RISC

~2KB RAM, 60KB ROM
8MHz/32KHz dual clock

ATMEL FLASH
~80 days data capacity

GPS
10-20s position fix time

Maxstream Radio

0.5-1mile transmit range

Power supplies, solar modules, charging circuits

ZebraNet Hardware Design

312 mW8MHz +
radio rcv

780 mW8MHz +
radio xmit

568 mW8MHz w/
GPS

19.32 mW8MHz CPU

9.6 mW32Khz CPU

PowerMode

January, 2004 ZebraNet Hardware

January, 2004:
Initial test deployment

Eat/sleep/work at Mpala
Research Centre near
Nanyuki Kenya
Deploy collars at
Sweetwaters Preserve,
also near Nanyuki Kenya

First Deployment Results
Biology

Zebras affected by collar first day
(head shaking) but little thereafter
First night-time zebra movement
data: animals appear to explore
more wooded areas and gullies at
night

Engineering
Radio range: <1km in final collar
packaging,
– Disappointing vs. NJ tests
– Answer: Choose cobbler well…

Communication protocols: generally
worked as plans, although
duplicated ACK packets improved
their performance

15 months later…

Collar on Zebra for roughly
1.25 years
– Hot sun, tough weather.

Zebra attacked/killed by a
lion (not unusual, probably
not related to collar)
How did the collar do?

Next Steps
Second Deployment: June/July, 2005 (NOW!!)
– Amorphous silicon solar cells with Tefzel

coating
– Leather rather than butyl rubber collar
– New version of msp processor
– New radio
– New GPS
– New collar design
– Improved code (latencies, interrupt

handling….)

Beyond zebras…

Systems research feeding into
mobile wireless application domains…

ZebraNet

CPU and Hardware
Design

Software Systems
Research

Networking,
Analytic Modeling,

Simulation

Smart Buildings Traffic
Management

. . .

Challenges: Another look…

Lack of stable application drivers on
which to experiment
– Applications very much on-the-move

right now. Hard to pin down general
characteristics

Lack of stability in underlying hardware
and software
– What are the default hardware and

software platforms to assume?
– How to support their ongoing change?

Other: Radio range, security, …
Lack of good experimental infrastructure
– Testbeds
– Simulators

Likely to change

Look at these first!

Unlikely to change

Unlikely to change

Unlikely to change

Changing Applications, changing platforms

Ongoing change is the mark of all
dynamic/interesting areas of computing
Rather than wait for change to slow down, embrace
it and look for ways to manage/encourage it

Abstraction layers
Dynamic and model-driven adaptation

Abstraction Layers
and the Impala OS

Abstraction Layers and Research Questions

Application

Protocols & Data Collection

Middleware/OS

Hardware

Physical Design,
Circuits, Antennas, …

Portability across apps?
Impact of app
constraints and needs
on design?
– energy, weight,

lifetime, datarate
– latencies, data rates,

accuracy
Info passing between
interface layers?

Impala Middleware/OS Layers

Radio GPS FLASH TimerCPU WDT

Access and Control to All Devices

Application 1 Application 2 Application 3 Application 4

GPS Data Event
Radio Packet Event
Timer Event

Asynchronous Network Transmission
Protected FLASH Access
Application Timer Control

GPS Data Event Handler
Application Timer Event Handler
Network Packet Event Handler
Network Send Done Event HandlerSystem Clock Time Read

Adapter Updater Network
Support

Operation
Scheduler

Event
Filter

DB

Impala Code Updates

High Node Mobility
Constrained Bandwidth
Wide Range of Updates

Incomplete Updates
Updates vs. Execution
Out of order Updates

ZebraNet Characteristics Design Implications

Updater
Update

A C Node

On a single sensor node Full network

Code and Data Size:
Memory Footprint of Impala Layers

Code Size

0

10

20

30

40

50

60

70

K
B

Firmware Impala
Application Unused

Data Size

0

500

1000

1500

2000

2500

By
te

s

Firmware Impala
Application Unused

Dynamic & Model-
Driven Adaptation

Adjusting to uniquely mobile characteristics

Mobile networks have gained a lot by building off
techniques from static wired networks.
But they have lost a lot too
– Their ability to do broadcast-for-free is rarely

leveraged as fully as it could be.
– Recognizing disconnected or disrupted

optimization and customizing for it
– Ability to adapt to changing network and exploit it

intelligently

Model-based Mobility-Adaptive Protocols

Our Approach

Traditional Approach

Example:
Markov Model based on route cache lifetimes

Markov
route cache

model

22%2.12.78 pkts/s

27%34.14 pkts/s

16%5.26.22 pkts/s

% latency
improvement

Markov
approach

Original
(DSR)

Traffic Rate

With Yong Wang, LS Peh, under submission

Tolerating Sparse and High-Disruption
Wireless Networks

What if a source->dest route never exists? Or
rarely exists?
Need to engineer more opportunistic approaches
Model-based: if you can learn about mobility
patterns, you can exploit this knowledge to know
how to route
Cover-your-bases: If not, use erasure-coding to
reduce risk

Erasure Coding for
Disruption-Tolerant Wireless Networks

Basic Approach
– For given “replication budget”, replicate via erasure-

coded packets, rather than basic redundancy.
– Partial packet delivery can be used to reconstruct original

message
Intuition
– Erasure-coding reduces “risk” due to outlier bad links
– Erasure-coding based approach has the lowest worse-

case pkt delivery latency

With Yong Wang, Sushant Jain, Kevin Fall, Sigcomm WDTN 2005

Packet delivery latency for Erasure-Coding and
other approaches

Flooding has best
worst-case time

Erasure-coding:
better worst-case
than other replication

Beyond zebras: Final challenge is leveraging
lessons/infrastructure over many apps…

ZebraNet

CPU and Hardware
Design

Software Systems
Research

Networking,
Analytic Modeling,

Simulation

Smart Buildings Traffic
Management

Summary and wishlist

Better built-in infrastructure for real-system wireless
measurements
– Testbeds, especially large-nodecount and unique

physical placements
Increased availability of “real-world” mobility traces
Continued and increased research focus on:
– composition of algorithms into real systems
– and on how real-systems behaviors impact theoretically-

good algorithms
– Portable hardware/software interfaces and clean models

for managing complex parallelism in these systems

The Princeton ZebraNet Project:
Mobile Sensor Networks for Wildlife Tracking

Grads: Pei Zhang, Chris
Sadler, Ting Liu, Ilya
Fischoff, Yong Wang,
Philo Juang.
Profs: me, Dan
Rubenstein, Steve Lyon,
Li-Shiuan Peh, Vince
Poor.
Undergrads: Julie
Buechner, Chido Enyinna,
Brad Hill, Kinari Patel,
Karen Tang, Jeremy Wall
Departments of EE, CS,
and Biology at Princeton
Funded by NSF ITR since
9/2002

ZebraNet Folks at Mpala Research Centre,
near Nanyuki, Kenya. January 2004.

More questions?

For more info, see papers:
ASPLOS02, PPOPP03,
Mobisys04,SenSys04

… and my webpage
www.princeton.edu/~mrm

Preliminary results

Why routing in disrupted network is hard
(I)

Node mobility is very unpredictable and highly
varying for many emerging applications

– Zebras move in phases with very distinct mobility characteristics
– Data mule links may have very long delays
– No model available for these emerging movement traces yet

• Interesting and challenging for the modeling and measurement
community

• Hard to generalize
– Statistics models alone may not be suitable since mobility shows very

different features in different states
• From the system perspective, such model/measurement is also great

importance to in understanding the design space and drive new designs

Why routing in disrupted network is hard
(II)

Communications maybe asynchronous and
contemporary due to intermittent connections

– Traditional routing is based on end-to-end connection
– Store-and-forward is the most widely used forwarding algorithm in

current DTNs
– Based on various replication schemes

_flooding _direct
_simpleReplication _history/probabilistic

– Performance heavily dependent on the relays selected
• Delay
• Data delivery rate

Why routing in disrupted network is hard
(III)

Constrained device and varying quality links

– Nodes are energy constrained
– Cannot afford expensive operations like period broadcast or

neighbor probing
– Especially true when workload is high

– Wireless bandwidth is limited
– Radio range is very limited in our testbed environment

– Strong interference and unpredictable quality
– Radio transmission quality varies with environment, traffic

workload, to name a few
– No golden rule that a link is always good
– Shortest-path based on link hops may not be perform well

Why routing in disrupted network is hard
(IV)

Traffic is application-dependent and unpredictable

– When traffic workload increases, such as from a demand for high-
sampling rate in wireless sensor networks, some of the underlying
assumptions used by current routing may break

– One example: ETX routing
• The method to measure link quality by snooping data packets or

sending probing packets fail.
• Effective adaptation requires situation-aware so that mechanisms

that work in current scenario will be used.

Why routing in disrupted network is hard
(V)

Evaluation

– Lack of testbed and simulation tools
– Partly due to the lack of models for such

emerging applications
– No open testbed for widely use, like motelab or

mirage in static sensor network area
• It will be cool to have a live znetlab for experiment

Our Approach: Put intelligence into
decision-making

Smart adaptation based on accurate understanding
of mobility, traffic and link quality measurement, etc.

Ia. MARio
Ib. Model-based routing
II. Erasure Coding based DTN Routing
III/IV. MetricMap

Mobility Adaptive Routing

Protocols
with hand-tuned

pre-programmed constants

Mobility
as a black-box

Traditional Approach

optimizations

MARio
with mobility-adaptive strategies

(this is different from recently proposed
mobility-controlling approach)

Route lifetime abstractions (RLA)

Our Approach

• We use DSR as the base protocol and implement MARio atop it
• The performance comparison is among the following protocols:

• Base DSR, Offline (GA), Online (LTA) and ORPD (Oracle)

• Performance breakdown demonstrates operation (prefetch/decay)
accuracy:

• Prefetch only, Decay only, Prefetch and decay

Raw performance Performance breakdown

With Yong Wang, LS Peh, Mobihoc poster 2004, mc2r 2005

ZebraNet Hardware: Time-Lapse View…
Aug ‘02

Jan ‘03

Aug ‘03 Oct ‘03

Impala: Middleware/OS Support for
Application/Protocol Modularity

Monolithic Approach:
Source code hardwired to
particular situations
App responsible for adapting
situation/version choices
Difficult to debug, maintain
Difficult to update on the fly
Difficult for other apps to
reuse

Layered Approach:
OS provides network
and event-handling
services
Middleware adapts,
updates apps,
protocols dynamically
New protocols can be
plugged in at any time

CBB
C

A D

Impala Layer

A B

D

A B

D

Individual Protocols

Aggregate Protocol

Forwarding Algorithms Comparison

r highest
ranked

New contactAll nodesHistory(r)

kr (k>=1)first
contacts (k is

related to coding
algorithm)

New contactSource onlyErasure
Coding (ec-r)

r first contactsNew contactSource onlySimple
replication(r)

Destination
only

DestinationSource onlyDirect

All newNew contactAll nodesflood

To whomWhenWhoAlgorithm

Analyzing node contact times
from zebra mobility trace

Duration of deployment

Inter-contact timeContact duration

MetricMap: a machine learning approach
to estimate link quality

Discover correlations between local metrics (feature vector)
and link quality indicator (goal)

Buffer size, channel clear access, depth, RSSI, etc.
Hardware-provided link quality indicator

Closely related to received signal strength indicator
Also reflects other factors

Derive inference rules using standard machine learning
algorithm

Weka package
C4.5 (decision tree) and JRip (decision rules)
training sets collected by running on a Berkeley-MicaZ

based real-world sensor network testbed

Deployed on MoteLab and Mirage

With Y. Wang, L.S Peh, under preparation

Preliminary Results

MetricMap improves on previous approaches:
– 10-40% in terms of packet latency
– ~80% in terms of packet success rate
– Also improves fairness properties

Benefits especially pronounced at high offered
loads.
– MetricMap is good at distinguishing packet drops

due to link quality from packet drops due to
congestion

