
Models, Abstractions and Architectures
in

Component-Based Engineering

or

Musings on better ways to specify complex systems

Steve Vestal
Honeywell Labs

Steve.Vestal@Honeywell.com

7 July 2005

2 File Number

How do we do a better job of specifying complex things?

By having a theory of complex specifications.

In theory, theory and practice are the same, but in
practice they are not.

Specifications are always incomplete, they focus on what is
•distinct from other products
•distinct from common practice
•critical (not left to implementer's whim)
•nonobvious (not left to implementer's capabilities)

Specifications always have non-formalizable elements.

Goals

3 File Number

What is a Specification?

Classical
Requirements specification defines “what”
Design specification defines “how”

Recent
Domain specification defines problem & operational context
Functional specification defines “what”
Design specification defines “how”

Practice
Great variability in number, level of detail and abstraction
Influenced by market segmentation, technology & legacies

4 File Number

Deliberate Obtuseness

One person’s design decision is another person’s derived
requirement.

I won’t draw distinctions between specifications for e.g.
- Domain models
- Requirements
- Function
- Design
- Interface
- Implementation

One person’s system is another person’s component.

I won’t draw fixed distinctions between
- Component
- Subsystem
- System

Component-of is a relation, not an absolute.

5 File Number

Component & Architecture Based Development

component

connector

interface

There are easy and dependable ways to
• assemble components to create systems
• replace/add/remove components to modify systems

We want
• reusable components
• reusable architectures (patterns)

6 File Number

Good Architectures

Provide stable interfaces between variable components
- localize complex dependencies within components
- localize technology change
- localize supplier dependencies

Are adaptable to multiple products
- Localize potential product upgrades
- localize variation between products
- mix-n-match components
- configurable components
- configurable & scalable architectures (patterns)

7 File Number

Challenges

There is product-to-product variation in

- functional requirements
- vehicle characteristics
- dependability requirements
- cost and volume (NRE vs RC)
-physical environment (civil, defense, space, automotive)
- assurance/certification processes and regulations
- customer mandates
- legacies (is reuse always a good thing?)

8 File Number

SimuLink

Real-Time
Workload

Dynamical
System

C code
System
Safety

SimuLink
PWB

UML

SDL VHDL

AADL
StateFlow

Fault
Trees

System Component

Models

Systems are specified by multiple people trained in multiple disciplines
using multiple notations and methods and tools.

A model is a specification written in a notation whose concepts, syntax,
and semantics are drawn from a particular discipline and theory.

There are always multiple related models for complex systems.

9 File Number

Comments on Models

The set of models depends on the product line and organization

Models are neither completely dependent or independent, e.g.
-WCETs in real-time model depend on hardware and software models
-C code must comply with AADL interface specifications

Between multiple models we need
-Mappings (traceability)
-Verifiable consistency relations
-Change propagation

Practical desires
-As many models as necessary, as few as possible
-As orthogonal as possible (separation of concerns)
-Meta-modeling tools with multi-model support
- Tool integration frameworks with multi-model support
-Automated traceability between models
-Automated change propagation between models

Practical risks
- Tower of Babel
-Plethora of hacked modeling languages

10 File Number

Abstractions

During system development detail is progressively added,
producing a series of increasingly detailed specifications.

- Sequence of specifications
- Refinement of a specification

Abstraction is a relation between a pair of specifications.

11 File Number

Comments on Abstraction

Do we have good formalisms for abstraction?
- Hierarchical models
- Abstract interpretation provides safe tractable model checking.
- Weak equivalences (e.g. implements, conforms) provide assurance of live

substitutability.
- Category theory can provide a semantics for refinement.
- Inherently underdetermined models, e.g.

Sets of logical properties
Hybrid systems without equality
Partial orders

Abstraction is most easily formally defined within the same theory or
model, so abstractions are not distinct types of models.

Practical desires
- Notations that support abstraction and refinement
- Intuitive relationship between human-created abstract and concrete
- Live and safe abstractions
- Verifiable compliance relations between abstract and concrete
- Frameworks that support traceability

12 File Number

Architectures

An architecture is a static set of component specifications
that are connected together in a specified way.

Architectures can be changed by
•Changing/refining a component or connection
•Adding or removing components or connections

A component specification appearing in an architecture
diagram is often an abstraction, to be instantiated with a
concrete component.

13 File Number

Comments on Architectures

Ideally, assurance of component usability can be done locally:
correctness of architecture of abstract components

& compliance of concrete to abstract components
→ correctness of architecture of concrete components

Assumptions about the context of use (plant, environment) are
sometimes used as part of the abstract component specification.

Compliance of concrete to abstract alone (e.g. implementation to
interface) may not be sufficient.

Robustness is the degree to which a concrete component will work
satisfactorily in the face of variability or uncertainty in the context of
use.

Can we deal with robustness in a more methodical and formal way
(e.g. as feed-back control people do)?

Robustness and abstraction may be related, e.g. the more abstract
the context of possible use, the more robust the component.

14 File Number

What is a component?

In fullest generality, a component may be

- A set of parametric (configurable) models
- Mappings between models
- Multiple levels of model abstraction
- A set of abstract context-of-use architectures

Robustness is a desirable component quality.

Configurable, abstract architectures (patterns) are desirable.

15 File Number

Possibly Fruitful Research Topics

Relationships between multiple models

Abstraction

Abstract context-of-use architectures as
part of abstract component specifications

Robustness

16 File Number

Further Information

SAE AADL Information Site
http://www.aadl.info/

Architecture Analysis & Design Language (AADL) workshop and SAE
standardization committee meeting, Paris, France, 17-21 October
2005.
Contact: Jean-Francois.Tilman@axlog.fr [+33]1 41 24 31 33

Kirk Schloegel, David Oglesby and Eric Engstrom, Towards Next
Generation Metamodeling Tools, OOPSLA 2002, Seattle,
http://citeseer.ist.psu.edu/637526.html

Pam Binns and Steve Vestal, Hierarchical Composition and
Abstraction in Architecture Models, WADL, Toulouse, 2004,
http://www.laas.fr/FERIA/SVF/WADL04/presentations.php

