
Land & Joint Systems

Ju
ly

 7
, 2

00
5

Component-based Engineering for 
Embedded Systems

USA – EU workshop
Philippe Kajfasz

philippe.kajfasz@fr.thalesgroup.com July 7, 2005



Land & Joint Systems1

Ju
ly

 7
, /

20
05

Th
is

 d
oc

um
en

t i
s 

th
e 

pr
op

er
ty

 o
f T

ha
le

s 
G

ro
up

 a
nd

 m
ay

 n
ot

 b
e 

co
pi

ed
 o

r c
om

m
un

ic
at

ed
 w

ith
ou

t w
rit

te
n 

co
ns

en
t o

f T
ha

le
s 

RT/E Systems Characteristics
Software part in RT/E Systems is increasing

Move from fixed wired hardware flexible logics (software)
... but still heterogeneous HW platforms (GPP, DSP, FPGA)

Reconciled approach is needed

Software in RT/E Systems is becoming more complex:
More functionality
More variability, versatility
More integration in large-scale systems:

Move towards dynamic (re)configuration:

RT/E Systems have still to deal with 'real' world and its constraints:
Time/latency, available resources, (low) power, but also volume, weight, cost,
Safety, reliability, dependability, QoS,…, security
Certification, DO178B, DO254, …

How to manage all these trends ?
move from performance-centric to complexity-centric…

...w/o loosing the performance and time support!

More connectivity
More remote manageability

Self-configuration
Self-organisation



Land & Joint Systems2

Ju
ly

 7
, /

20
05

Th
is

 d
oc

um
en

t i
s 

th
e 

pr
op

er
ty

 o
f T

ha
le

s 
G

ro
up

 a
nd

 m
ay

 n
ot

 b
e 

co
pi

ed
 o

r c
om

m
un

ic
at

ed
 w

ith
ou

t w
rit

te
n 

co
ns

en
t o

f T
ha

le
s 

An abstraction of the HW platform

Hardware Dependent Software
All the software that is directly depending on
the underlying hardware

Middleware
Anything that stands between the pure 
application code and the raw (networked) platform

Not only the communication support
Should be the mediator between the application code and the platform 
resources and services (HdS)

What are the main characteristics for a RT/E middleware?
Affordable
Providing

Suitable support for application break-down in manageable (reusable) parts
Suitable support for RT/E non-functional properties
Separation of concerns
Isolation, partitions



Land & Joint Systems3

Ju
ly

 7
, /

20
05

Th
is

 d
oc

um
en

t i
s 

th
e 

pr
op

er
ty

 o
f T

ha
le

s 
G

ro
up

 a
nd

 m
ay

 n
ot

 b
e 

co
pi

ed
 o

r c
om

m
un

ic
at

ed
 w

ith
ou

t w
rit

te
n 

co
ns

en
t o

f T
ha

le
s 

Design Methodology and Tools
MIC approach

Seamless design flow
Modeling / Simulation / Code generation
Strong connection to 

domain specific environments and tools (UML2, AADL, 
SystemC, C/C++, EmbeddedC, VHDL/verilog, …)
RTOS
CCM framework

Support for legacy code integration 
Support for static & dynamic re-configuration
Deployment – SCA3.x/CF

EUREKA/ITEA -Martes project

Performance
requirements

Platform
Architecture

Model

Architectural 
constraints

HW/SW
IP (COTS)

SystemCSystemC
domaindomain

Performance
requirements

Platform
Architecture

Model

Architectural 
constraints

HW/SW
IP (COTS)

SystemCSystemC
domaindomain

Functional 
requirements

Use cases

Code
generation

MDA 
mapping

UMLUML
domaindomain

Platform
Independent

Model

Platform
Specific
Model

Functional 
requirements

Use cases

Code
generation

MDA 
mapping

UMLUML
domaindomain

Platform
Independent

Model

Platform
Specific
Model

HW
synthesis

Interface synthesis

?

HW
synthesis

Interface synthesis

?

Real-Time and Embedded CCM framework:
A Container/Component Model based on OMG 
Lightweight CCM (CCM ≠ CORBA)
All CORBA dependencies are managed by the 
container

not visible by the application code

All interactions are made using native calls
only CORBA dependency is with IDL

Supports reusable components
Extensions to support partitioned execution platform



Land & Joint Systems4

Ju
ly

 7
, /

20
05

Th
is

 d
oc

um
en

t i
s 

th
e 

pr
op

er
ty

 o
f T

ha
le

s 
G

ro
up

 a
nd

 m
ay

 n
ot

 b
e 

co
pi

ed
 o

r c
om

m
un

ic
at

ed
 w

ith
ou

t w
rit

te
n 

co
ns

en
t o

f T
ha

le
s 

Design Methodology and Tools
MIC approach

Seamless design flow
Modeling / Simulation / Code generation
Strong connection to 

domain specific environments and tools (UML2, AADL, 
SystemC, C/C++, EmbeddedC, VHDL/verilog, …)
RTOS
CCM framework

Support for legacy code integration 
Support for static & dynamic re-configuration
Deployment – SCA3.x/CF

EUREKA/ITEA -Martes project

Performance
requirements

Platform
Architecture

Model

Architectural 
constraints

HW/SW
IP (COTS)

SystemCSystemC
domaindomain

Performance
requirements

Platform
Architecture

Model

Architectural 
constraints

HW/SW
IP (COTS)

SystemCSystemC
domaindomain

Functional 
requirements

Use cases

Code
generation

MDA 
mapping

UMLUML
domaindomain

Platform
Independent

Model

Platform
Specific
Model

Functional 
requirements

Use cases

Code
generation

MDA 
mapping

UMLUML
domaindomain

Platform
Independent

Model

Platform
Specific
Model

HW
synthesis

Interface synthesis

?

HW
synthesis

Interface synthesis

?

Real-Time and Embedded CCM framework:
A Container/Component Model based on OMG 
Lightweight CCM (CCM ≠ CORBA)
All CORBA dependencies are managed by the 
container

not visible by the application code

All interactions are made using native calls
only CORBA dependency is with IDL

Supports reusable components
Extensions to support partitioned execution platform



Land & Joint Systems5

Ju
ly

 7
, /

20
05

Th
is

 d
oc

um
en

t i
s 

th
e 

pr
op

er
ty

 o
f T

ha
le

s 
G

ro
up

 a
nd

 m
ay

 n
ot

 b
e 

co
pi

ed
 o

r c
om

m
un

ic
at

ed
 w

ith
ou

t w
rit

te
n 

co
ns

en
t o

f T
ha

le
s 

Back-up slide



Land & Joint Systems6

Ju
ly

 7
, /

20
05

Th
is

 d
oc

um
en

t i
s 

th
e 

pr
op

er
ty

 o
f T

ha
le

s 
G

ro
up

 a
nd

 m
ay

 n
ot

 b
e 

co
pi

ed
 o

r c
om

m
un

ic
at

ed
 w

ith
ou

t w
rit

te
n 

co
ns

en
t o

f T
ha

le
s 

Component/Container Model

Component/Container Model is a key architectural pattern

Explicit description of:
provided services
requested services

Execution Infrastructure

Component

Container

Component

Easier deployment and reuse, needed for reconfiguration

(containers are provided 
as part of the infrastructure)
(based on descriptors 
move from fully programmatic to declarative)

Separation of concerns:
business logic
'technical' properties


