PHILIPS

Interface centric approach to design and
programming of embedded multiprocessors

Erwin de Kock

Pieter van der Wolf, Wido Kruijtzer, Tomas Henriksson,
Gerben Essink, Dennis Alders, Ondrej Popp

Outline

e Introduction

 Task Transaction Level interface: TTL
— Abstract interface for streaming in MPSoCs

 Programming TTL multiprocessors
— Constraint-driven code transformations

e Design cases
— Sea-of-DSP
— Smart Camera
— Cake / Wasabi

e Conclusion

Distributed Embedded Systems 2

MPSoC Design

 Need for MPSoCs:
— Implement advanced functionalities
— Low cost

— Power efficient
— Flexible

Increasing complexity of MPSoCs:
— Increasing design efforts

— SW effort overtaking HW effort

— Increasing time-to-market

Productivity increase through:

— Raise level of abstraction
— Structured design
— |P reuse

— EDA support

Distributed Embedded Systems

Gates/cm 2
Moore’s Law
(59% CAGR

Log Scale

Design Productivity
(20-25% CAGR

Software Productivity
(8-10% CAGR) >
0.35p 0.25p 0.18p 0.15p 0.12u 0.1p

Example MPSoC Hardware

« Philips's advanced set-top box and
digital TV SoC (Viper2) -17_"

e 0.13 pm |

* 50 M transistors 2
e 100 clock domains {5260
e > 60 IP blocks g

LELLL LETEI PEE RS

TM3260

S PR T S L
a4 ']

a
C
F
&
a
-

Ir_|,,--"'.
nexperia

f,.*

ATITIETTYSTISTIETILTT - ITEITETTELIE

Distributed Embedded Systems

R AR AR

TR A AL A o A AR

Example MPSoC Software Stack

Middleware
JavaTV, TVPAK, OpenTV,
MHP/Java, proprietary ...

7
nexperia

Streaming Components

Streaming Infrastructure

Nexperna Hardware

Distributed Embedded Systems 5

Example TV application

Audio audio
decoding " .
Audioin 1 o Acs deCOdmg Audio ou;l
Audio
decoding)
Audio in 2 o[7cs Audio ou;Z
-) : Spatial . .
Picture rate up-conversion Szl VIdEO plxel
Analo . :
Vid%’ NR IME, McH{ DEINT | uPC Vs, Hs Sharpness improvement FOQCESSINg Video
LTI t
Picture rate up-conversion | Spatial —P| PEAK _[PCOMPH»| DA —Oﬂ
scaling CTI
MPEG I ipeG »Ive, McH{ DEINT | uPC Vs, Hs
bit strear
. Spt. Scal. Sharpness improvement
VIdEO LTI VCR
. VS, Hs|—— PEAK —[pbcovd] oA >
decoding cTi
Many task graphs like this have to be supported
Distributed Embedded Systems 6

MPSoC Integration

e Current practice

— Ad hoc approaches
— Low-level interfaces Computation
+ Examples IP Module
— Synchronization via low-level primitives
 Interrupts, MMIO, semaphores Communication
— Data access services partly in IP

« Buffering, DMA control, address generation I OTL AX|

e Consequence

— Part of IP is specific for underlying communication infrastructure
* |P just wants the next pixel or block or ...
» But also knows about burst transfers, interrupts, semaphores,

Distributed Embedded Systems 7

Interface Centric Design: TTL

« Aim: Improve MPSoC integration

e Means: Raise level of abstraction

e TTL Task Transaction Level interface:

— Parallel application models
» Executable specifications

— Platform interface
* Integration of HW and SW tasks

* Mapping technology

— Structured design & programming

Distributed Embedded Systems

TTL

R

TTC ﬁ Mapping

T A| S| K|S

Platform Infrastructure

TTL Requirements

« Well-defined semantics for application modeling
— Focus: stream processing applications
— Make concurrency and communication explicit

e High-level interface

— Make high-level services available
* Inter-task communication
e Multi-tasking

— Easy to use for IP development
— Facilitate reuse and integration of IP
— Provide implementation freedom

* Allow efficient and cheap implementations
— E.g. supporting fine grain synchronization for on-chip memory

e Support integration of hardware and software tasks

Distributed Embedded Systems 10

TTL Requirements

« Well-defined semantics for application modeling
— Focus: stream processing applications
— Make concurrency and communication explicit

e High-level interface

— Make high-level services available Computation
 Inter-task communication
e Multi-tasking IP Module

— Easy to use for IP development
— Facilitate reuse and integration of IP

— Provide implementation freedom OGO

* Allow efficient and cheap implementations |

— E.g. supporting fine grain synchronization for on-chip memory

e Support integration of hardware and software tasks

Distributed Embedded Systems 10

TTL Requirements

Well-defined semantics for application modeling
— Focus: stream processing applications
— Make concurrency and communication explicit

High-level interface

— Make high-level services available
« Inter-task communication IP module
e Multi-tasking

— Easy to use for IP development rTL I

— Facilitate reuse and integration of IP
— Provide implementation freedom Shell

Allow efficient and cheap implementations
— E.g. supporting fine grain synchronization for on-chip memory

Support integration of hardware and software tasks

Distributed Embedded Systems

10

TTL in Example Architecture

 Platform interface for integration of HW and SW tasks
— Enable communication in heterogeneous MPSoCs

Task 3
SWAR
ASP
HW Shell
| |
I I
Interconnect

Distributed Embedded Systems

TTL
HW:-interface

DTL, AHB,
AXI, OCP

11

TTL in Example Architecture

 Platform interface for integration of HW and SW tasks
— Enable communication in heterogeneous MPSoCs

Task 3
SW-API] Sw Shell
ASP
TTL
CPU ‘ ’ HW-interface
\ HW Sffell
;\ I /r DTL,C/)A\CHB,
AXI, P
\Ln_Leﬂzonnect S

Distributed Embedded Systems 11

TTL in Example Architecture

 Platform interface for integration of HW and SW tasks
— Enable communication in heterogeneous MPSoCs

— Task 3
SW-API

<] sw Shell >
TTL
\ CPK 7 H HW:-interface
;\ l),H DTL, AHB,
AXI, OCP

[nterconnect /

Distributed Embedded Systems 11

TTL Inter-Task Communication

Logical model and terminology

private variable
empty, token full token with value

Y

task port channel

« Communicating tasks are organized as task graph

» Tasks communicate by invoking TTL interface functions on their ports
» Uni-directional channels with reliable ordered communication
 Arbitrary data types, but single type per channel

e Support for multi-cast

Distributed Embedded Systems 12

TTL Inter-Task Communication

Logical model and terminology

private variable
empty, token full token with value

Y

task port channel TTL interface

« Communicating tasks are organized as task graph

» Tasks communicate by invoking TTL interface functions on their ports
» Uni-directional channels with reliable ordered communication
 Arbitrary data types, but single type per channel

e Support for multi-cast

Distributed Embedded Systems 12

Example: Message Passing Interface

Producer side

e write(port, data, ...)
— Write data into channel connected to port

Consumer side

e data =read(port, ...)
— Read data from channel connected to port

e Abstract interface for tasks

* Right interface ?
— Appropriate for modeling application ?
— Appropriate for implementation on architecture ?

Distributed Embedded Systems

13

TTL Interface Types

« Different needs for communication arising from:
— Different applications
 In-order — out-of-order

— Different implementation styles
« Hardware — software
e Shared memory — message passing

e Support set of interface types

— Each interface type offers narrow interface
 Easy to use
e Simple to implement

— Each interface type supports particular communication style
— Offer multiple interface types in one framework
— Based on single model for interoperability and design techn.

Distributed Embedded Systems 14

TTL Interface Types

o TTL offers a number of different interface types
» Allow selection of interface type per port of task
* Enable interoperability by allowing mix & match

@0
&ee0

Distributed Embedded Systems 15

TTL Interface Types

Acronym Full name

CB Combined Blocking

RB Relative Blocking

RN Relative Non-blocking

DBI Direct Blocking In-order

DNI Direct Non-blocking In-order
DBO Direct Blocking Out-of-order
DNO Direct Non-blocking Out-of-order

Distributed Embedded Systems

16

Interface Type CB

Producer side

o write(port, vector, size)
— Write vector of size values into channel

Consumer side

e read(port, vector, size)
— Read vector of size values from channel

 Most abstract TTL interface type
* Blocking semantics
e Combined synchronization and data transfer

* Vector operations
« Based on earlier work on YAPI for KPN style modeling

Distributed Embedded Systems

17

Pros / Cons Interface Type CB

+ Easy to use
+ Reusable tasks

— Copying overhead if private variables not in local buffers

— Smart compiler may help in some cases

— |If local buffers:

— Large tokens / vectors - large local buffers
— Small tokens / vectors - large synchronization overhead

TTL
<SW Shell™> Mem ASP
| O HW Shell
Interconnect

Distributed Embedded Systems

Pros / Cons Interface Type CB

+ Easy to use
+ Reusable tasks

— Copying overhead if private variables not in local buffers

— Smart compiler may help in some cases

— |If local buffers:

— Large tokens / vectors - large local buffers

— Small tokens / vectors - large synchronization overhead

TTL
<SW Shell™> Mem ASP
\ . O O HW Shell
I \: A
Interconnect

Distributed Embedded Systems

18

Pros / Cons Interface Type CB

+ Easy to use
+ Reusable tasks

— Copying overhead if private variables not in local buffers

— Smart compiler may help in some cases

— |If local buffers:

— Large tokens / vectors - large local buffers

— Small tokens / vectors - large synchronization overhead

Task 2
@TTL Mem H ASP
CPL|J \ 00 HW Shell
NA\L A F
3N—"—"_1ntérconnect

Distributed Embedded Systems

18

Pros / Cons Interface Type CB

+ Easy to use
+ Reusable tasks

— Copying overhead if private variables not in local buffers

— Smart compiler may help in some cases

— |If local buffers:

— Large tokens / vectors - large local buffers

— Small tokens / vectors - large synchronization overhead

Task 2
TTL
<SW Shell™> Mem ASP
CPU O © TTL
(R \ Q|)/ HW Shell
NANL A N 4
3N——"—"—""Intérconnect —

Distributed Embedded Systems

Separate Synchronization and Data Transfer

Producer Consumer
< > , Q000 ,< >
O O 0O O
acquireRoom (2) acquireData (2)
< > , 0000 ,< >
O O O O
store/dereference load/dereference
< > , @0 O0O0 ,< >
© 0 OO
releaseData (2) releaseRoom (2)
< > , @0 @0 ,< >
O O O O

Distributed Embedded Systems 19

Interface Types RB and RN

Producer side

e reAcquireRoom(port, count) (RB)
tryReAcquireRoom(port, count) (RN)

— Acquire count empty tokens, blocking (RB) / non-blocking (RN)

o store(port, offset, vector, size)

— Store vector of size values into the tokens with offset..offset+size-1
to the oldest acquired token

e releaseData(port, count)
— Release count oldest acquired tokens as full tokens

e Separate synchronization and data transfer
* Vector operations
 Re-acquire operations do not change state of the channel

Distributed Embedded Systems 20

Pros / Cons Interface Types RB / RN

+ Coarse grain synchronization with fine grain data transfer
— Low synchronization overhead with small local buffers

+ Qut-of-order data accesses
— Reduce cost of private variables

+ Load only subset of tokens from channel
— Reduce cost of data transfers

— Less abstract than CB
— Increases programming effort
— Makes tasks less reusable

— Inefficiencies upon data transfers
— Function call, access to channel admin, address calculations

— Copying may still occur

Distributed Embedded Systems 21

Interface Types DBI and DNI

Producer side
e acquireRoom(port, &token) (DBI)
tryAcquireRoom(port, &token) (DNI)
— Acquire empty token, blocking (DBI) / non-blocking (DNI)
e token->field = value;

— Assign value to (part of) token

* releaseData(port)
— Release oldest acquired token as full token

o Separate synchronization and data transfer

e Direct access to data via token references (pointers)

e Scalar operations only

 Tokens are released in same order as they are acquired

Distributed Embedded Systems 22

Pros / Cons Interface Types DBI / DNI

Coarse grain synchronization with fine grain data transfer
Out-of-order data accesses for acquired token(s)
Load only part of token from channel

Direct data accesses
— Efficient data transfers

+ + + +

— Less abstract than CB/ RB / RN

— EXxposes memory addresses
— Makes tasks less reusable

— No vector operations
— Would complicate interface / expose channel implementation

Distributed Embedded Systems 23

Interface Types DBO and DNO

Producer side
e acquireRoom(port, &token) (DBO)

o tryAcquireRoom(port, &token) (DNO)
— Acquire empty token, blocking (DBO) / non-blocking (DNO)

» token->field = value;
— Assign value to (part of) token

o releaseData(port, &token)
— Release token as the next full token

+ Qut-of-order release supports efficient use of memory
— More complex implementation of the channel

Distributed Embedded Systems

24

TTL Interface Types

CB B B B

Distributed Embedded Systems 25

TTL Multi-Tasking Interface

TTL offers three task types:

1. Process

« Own thread of execution
No explicit interaction with scheduler
. Implicit task switching and state saving

2. Co-routine
o Explicit interaction with scheduler via suspend() function
. Implicit state saving

3. Actor

. Fire-exit tasks that return to scheduler
e State saving to be performed by task

Distributed Embedded Systems

27

TTL APIs and Implementations

 TTL interface Is available as:
— C++ AP
— CAPI
— Hardware interface

e Generic run-time environment

— Functional modeling and verification of TTL application models in
C++/C

e Platform implementations
— Sea-of-DSP
— Smart Camera
— Cake / Wasabi

Distributed Embedded Systems 28

Outline

e Introduction

 Task Transaction Level interface: TTL
— Abstract interface for streaming in MPSoCs

 Programming TTL multiprocessors
— Constraint-driven code transformations

e Design cases
— Sea-of-DSP
— Smart Camera
— Cake / Wasabi

e Conclusion

Distributed Embedded Systems

29

Problem

How to efficiently program applications on
platforms using the TTL interface?

o Efficient = cost + performance + effort

* The cost and performance of TTL interface
functions varies on different platforms

* The cost and performance of different TTL
Interface types varies on one platform

Distributed Embedded Systems 30

Example 1Q - 1ZZ Using CB

01 void 1Q::main()

01 void 1ZZ::main()

02 while (true) 02 while (true)
03 for(int j=0; j<vi; j++) 03 VYApixel Cin[64];
04 for(int k=0; k<hi; k++) 04 VYApixel Cout[64];
05 VYApixel Cout[64]; | 05 read(CinP, Cin, 64);
06 for(int 1=0; I1<64; [++) 06 for(int 1=0; i<64; i++)
07 VYApixel Cin; 07 Cout[zigzag[i]] = Cin[i];
08 read(CinP, Cin); 08 write(CoutP, Cout, 64);
09 Cout[l] = QT[t][l]*Cin;
10 write(CoutP, Cout, 64);
(L XLLLL LX)
zzzzzzzz Channel<VYApixel>

QQ......
1x write

Distributed Embedded Systems

00000000
1x read

31

Efficiency of 1Q - 1ZZ Using CB (HW)

Cout[64]

asasaaas MEM
1)(Wnte Channel<VYApixel>
CPU
HW $hell
Interconnect

Distributed Embedded Systems 32

Efficiency of 1Q - 1ZZ Using CB (HW)

Local memory is

expensive In
hardware

Cout[64]
00000(_

MEM

asasaaas
1X W“te Channel<VYApixel>

HW $hell

Interconnect

Distributed Embedded Systems 32

Transform IQ - 1ZZ Using RB (1)

MEM
1x acq/rel
Cout 64x load
Channel<VYApixel> —

1x acq/rel

64x store

HW $hell

Interconnect

Distributed Embedded Systems 33

Transform IQ - 1ZZ Using RB (2)

eremove declaration

01 void 1Q::main() -
02 while (true) sacquire 64 tokens

03 for(int j=0; j<vi; j++)

04 for(int k=0; k<hi; k++)

05 VYApixel Cout[64];

sadd store operation

06 for(int 1=0; I<64; I++)

07 VYApixel Cin;

08 read(CinP, Cin);

C L= < LR /| release 64 tokens
10 write(CoutP, Cout, 64); [

Cout[64]

Cin[64]
00000000
00000000

Channel<VYApixel>

Distributed Embedded Systems

Transform 1Q - 1ZZ Using RB (3)

01 void 1Q::main()

02 while (true)

03 for(int j=0; j<vi; j++)

04 for(int k=0; k<hi; k++)
| 05 reAcquireRoom(CoutP, 64);
06 for(int 1=0; I<64; I++)
07 VYApixel Cin;
08 read(CinP, Cin);
09 store(CoutP, |, QT[t][I]*Cin);
10 releaseData(CoutP, 64);

Channel<VYApixel> Cin[64]

1x acq/rel

64x store

Distributed Embedded Systems 35

Transform 1Q - 1ZZ Using

eremove declaration ‘

RB (4)

01 void 1ZZ::main()

while (true)

02
03

VYApixel Cin[64];

sacquire 64 tokens
04

VYApixel Cout[64];

read(CinP, Cin, 64);

for(int i=0; i<64; i++)

Cout[zigzag]i]] = Cin[i];

erelease 64 tokens 08

write(CoutP, Cout, 64);

load value of Cinl[i] \ o
07
r—\\\j

Channel<VYApixel>

Cin[64]
00000000
00000000

Distributed Embedded Systems

36

Transform 1Q - 1ZZ Using RB (5)

01 void 1Q::main()

02 while (true)

03 for(int j=0; j<vi; j++)
04 for(int k=0; k<hi; k++)

01 void 1ZZ::main()

02 while (true)

03 VYApixel Cout[64];

| 04

| 05 reAcquireRoom(CoutP, 64)

reAcquireData(CinP, 64);

| 05 for(int i=0; i<64; i++)

06 for(int 1=0; I<64; |++)
07 VYApixel Cin;
08 read(CinP, Cin);

06

VYApixel Cin;

07

load(CinP, i, Cin);

08

Cout[zigzag]i]] = Cin;

09 store(CoutP, |, QT[t][I]*Cin);

09 write(CoutP, Cout, 64);

10 releaseData(CoutP, 64);

| 10

releaseRoom(CinP, 64);

1x acq/rel

64x store

Distributed Embedded Systems

Channel<VYApixel>

1x acq/rel

64x load

37

Outline

e Introduction

 Task Transaction Level interface: TTL
— Abstract interface for streaming in MPSoCs

 Programming TTL multiprocessors
— Constraint-driven code transformations

e Design cases
— Sea-of-DSP
— Smart Camera
— Cake / Wasabi

e Conclusion

Distributed Embedded Systems

38

Implementation of TTL

T A S K S

TTL
Platform Infrastructure

Distributed Embedded Systems 39

Implementation of TTL

/ —

<TASKS>

TTL
Platform Infrastructure

Distributed Embedded Systems 39

Implementation of TTL

e e

—
T Als | k| s |D
TTL
Platform Infrastructure
i S—

Distributed Embedded Systems 39

Implementation of TTL
_ N\

T A S K S

TL

Platform Infrastructu
S —

Distributed Embedded Systems 39

Implementation of TTL

T A S K

Platform Infrastructu
i

__ N\
—

S
a—

func = acquire, release, etc.

Distributed Embedded Systems 39

Sea of DSP Architecture

No OS on tiles

Scalable and power-efficient

Tile = DSP + Memory + DMA + inter-tile communication
Any number of tiles is possible

Memory mapped write-only inter-tile communication

No general shared memory

Micro-
process
or

Distributed Embedded Systems

) _ Tile _ Tile
& Tile Tile

3

£ _ Tile _ Tile
= Tile Tile

(7))

O

o _ Tile _ Tile
o Tile Tile

(@

o

& Tile Tile
= Tile Tile

External Interfaces

Mapping on Sea of DSP

APP

Distributed Embedded Systems 41

Mapping on Sea of DSP

APP

DSP DSP DSP

memory memory memory

Distributed Embedded Systems 41

Mapping on Sea of DSP

APP

DSP { DSP (DSP

memory memory memory

Distributed Embedded Systems 41

Mapping on Sea of DSP

-
SRC APP

! .

DSP \ DSP DSP

memory memory memory

r—

Distributed Embedded Systems 41

Mapping on Sea of DSP

| SRC APP
(ss) ’
DSP

k
|
\

memory mamory

DSP

Distributed Embedded Systems 41

Results for Different Interface Types

TTL IF Type #Cycles Partin TTL #Memory
words

CB 45579603 2.9% 12493

RB 45551243 2.8% 12494

RN 45505950 2.2% 12365

DBI 45152454 1.1% 9162

DNI 45108086 0.5% 9041

Distributed Embedded Systems

42

Results for Varying Channel Size (CB)

13000

12500 |

=
N
o
o
o

MEM #words

10500 |

10000

11500 |

11000 [

MEM vs. #cycles

Full Frame

|

1/2 Frame

1/4 Frame
1/8 Frame

N&Fr\ame 1/32 Frame
—k

454 455 456 457 458 459 4.6
#cycles

Distributed Embedded Systems

461 462 4.63
x107

 Task code not
modified

e Possible with CB
e Only channel

buffer has been
reduced In size

43

Results: Sub-frame Decoding (RN)

MEM vs. #cycles

13000 e Channel buffer
12000 Full Frame and private
| buffers are
11000)]
" reduced In size
S 10000 | 1/2 Frame
@)
ft 9000 e Task code must
= * o
= 8000 4 Erame be modified
= |
7000) ;
e Possible with all
6000)
1136 Frame Interface types
5000

4.4 4.45 4.5 4.55 4.6 4.65 4.7 4.75 4.8
7
#cycles x 10

Distributed Embedded Systems 44

Smart Cameras Application Areas

Survelllance

[T} "~ Consumer
o |

Automotive Mobile

EC funded CAMELLIA project (1IST-34410)

Distributed Embedded Systems 45

Architecture of Smart Imaging Core

TTL AP

Motion
Segmentation

TTL AP

—:

Pixel
Processing

gr:;r;grensas%lp 9| TTL interface | Motion Estimator §
ARM 9xx ' { Coprocessor '
CPU Z :
HW Shell Memory | vuw |

Interconnect

 Enable efficient software — hardware communication
 Make all processors “self-synchronizing”

Distributed Embedded Systems 46

Architecture of Smart Imaging Core

TTL AP

ARM 9xx
CPU

Motion
Segmentation

TTL AP

—:

TTL interface {Motion Estimator
i Coprocessor '

HW Shell Memory | 3 viLiw

Interconnect

Pixel
Processing

Smart Imaging
Coprocessor

 Enable efficient software — hardware communication
 Make all processors “self-synchronizing”

Distributed Embedded Systems 46

TTL shell performance

« HW Shell (channel administration local)

—reAcquireRoom/Data 5 cycles
— releaseRoom/Data 7 cycles
— load 5+ 2n cycles

— store 5+ n cycles

Distributed Embedded Systems a7

Architecture of Smart Imaging Core

TTL AP

Pixel
Processing

Smart Imaging

Coprocessor o

TTL interface {Motion Estimator

Motion

: \Segmentation
TTL API:

ARM 9xx _I_ — i Coprocessor
CPU Memory '
HW Shell VLIW
Interconnect

Distributed Embedded Systems

48

Architecture of Smart Imaging Core

Motion
Segmentation
TTL API Pixel TTL A

Processing

mart Imagin : - '
Smart Imaging | 1) ji0rtace [Motion Estimator

Coprocessor
ARM 9xx _I_ & Coprocessor
CPU Memory
HW Shell VLIW
Interconnect

Distributed Embedded Systems 48

TTL Implementation for ME

Function Architecture
C-code of ME algorithm Data path description
C-code of TTL implementation (FUs + Device 1/0)

— A|RT Designer =——

VLIW microcode
Algorithm +
TTL implementation

VLIW ctrl l
m Communication Bus/Network

l

Distributed Register Files

A 4

ASU| [I/0 ACU| (ALU| RAM[|ROM

FSM

Distributed Embedded Systems 49

Cake / Wasabi

TIC65

[

c

c

-

|_

N

i

= 9

O X

/

DDR2
L2 cache 2wvB / e e

\\ 64-bit

_ |
SIS I
X X[X[X
3593 | MBVS | (| MSVD
9 9 9 9 ISRy [PESC SR SRS multi-standard video decoder
Ol Qll Ol Al
XU X X[X
LU L LU LU SCET AL CPIPE
6 G L_) G image vector processor H D_p output
ANENaNENaNINaR

Distributed Embedded Systems

e Hybrid multiprocessor
with homogeneous bias

* First silicon 2006

50

TTL Implementation on Cake / Wasabl

MIPS Trimedia
Cycles per sync operation 20 20
(TTL on top of TRT run-time system) (MIPS - MIPS) (TM - TM)
Code size TTL (CB + DBI) 5 kB 14 kB
Lines of code TTL (CB + DBI) 773 773
Code size TTL (all IF types) 12 kB 29 kB
Lines of code TTL (all IF types) 1529 1529

Distributed Embedded Systems

51

Task-Level Interface Standardization

Industry-wide standardization needed

* Reuse of function-specific hardware and software IP
— Enable eco-system of IP providers

* EDA for system-level design
— Support development of function-specific IP
— Support integration of IP

See also:
e Codes+ISSS’04, Inter-Task Communication and Multi-Tasking
e Codes+ISSS’05, Dynamic Reconfiguration

Distributed Embedded Systems 52

Conclusion

TTL supports structured and efficient design and integration
of hardware and software tasks in MPSoCs

 High-level interface for ease of programming
— Decreases design effort for task programmer
— Facilitates reuse and integration of IP
— Provides implementation freedom for platform infrastructure

« Enabler for automated mapping
— Automated transformations support design optimizations
— Closes gap between specification and implementation
— Decreases design effort for system integrator
o Efficient implementation on range of platforms
— Different architectures
— In hardware and software

» Need for standardization

Distributed Embedded Systems 53

PHILIPS

