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MPSoC Design

 Need for MPSoCs:
— Implement advanced functionalities
— Low cost

— Power efficient
— Flexible

Increasing complexity of MPSoCs:
— Increasing design efforts

— SW effort overtaking HW effort

— Increasing time-to-market

Productivity increase through:

— Raise level of abstraction
— Structured design
— |P reuse

— EDA support

Distributed Embedded Systems

Gates/cm 2
Moore’s Law
(59% CAGR

Log Scale

Design Productivity
(20-25% CAGR

Software Productivity
(8-10% CAGR) >
0.35p 0.25p 0.18p  0.15p 0.12u 0.1p




Example MPSoC Hardware
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digital TV SoC (Viper2) -17_"
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Example MPSoC Software Stack

Middleware
JavaTV, TVPAK, OpenTV,
MHP/Java, proprietary ...

7
nexperia

Streaming Components

Streaming Infrastructure

Nexperna Hardware
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Example TV application

Audio audio
decoding " .
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Many task graphs like this have to be supported
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MPSoC Integration

e Current practice

— Ad hoc approaches
— Low-level interfaces Computation
+ Examples IP Module
— Synchronization via low-level primitives
 Interrupts, MMIO, semaphores Communication
— Data access services partly in IP

« Buffering, DMA control, address generation I OTL AX|

e Consequence

— Part of IP is specific for underlying communication infrastructure
* |P just wants the next pixel or block or ...
» But also knows about burst transfers, interrupts, semaphores, ....
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Interface Centric Design: TTL

« Aim: Improve MPSoC integration

e Means: Raise level of abstraction

e TTL Task Transaction Level interface:

— Parallel application models
» Executable specifications

— Platform interface
* Integration of HW and SW tasks

* Mapping technology

— Structured design & programming
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TTL Requirements

« Well-defined semantics for application modeling
— Focus: stream processing applications
— Make concurrency and communication explicit

e High-level interface

— Make high-level services available
* Inter-task communication
e Multi-tasking

— Easy to use for IP development
— Facilitate reuse and integration of IP
— Provide implementation freedom

* Allow efficient and cheap implementations
— E.g. supporting fine grain synchronization for on-chip memory

e Support integration of hardware and software tasks
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TTL Requirements

Well-defined semantics for application modeling
— Focus: stream processing applications
— Make concurrency and communication explicit

High-level interface

— Make high-level services available
« Inter-task communication IP module
e Multi-tasking

— Easy to use for IP development rTL I

— Facilitate reuse and integration of IP
— Provide implementation freedom Shell

Allow efficient and cheap implementations
— E.g. supporting fine grain synchronization for on-chip memory

Support integration of hardware and software tasks
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TTL in Example Architecture

 Platform interface for integration of HW and SW tasks
— Enable communication in heterogeneous MPSoCs

Task 3
SWAR
ASP
HW Shell
| |
I I
Interconnect
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TTL in Example Architecture

 Platform interface for integration of HW and SW tasks
— Enable communication in heterogeneous MPSoCs

Task 3
SW-API ] Sw Shell
ASP
TTL
CPU ‘ ’ HW-interface
\ HW Sffell
;\ I /r DTL,C/)A\CHB,
AXI, P
\Ln_Leﬂzonnect S
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TTL in Example Architecture

 Platform interface for integration of HW and SW tasks
— Enable communication in heterogeneous MPSoCs

— Task 3
SW-API

<] sw Shell >
TTL
\ CPK 7 H HW:-interface
;\ l ),H DTL, AHB,
AXI, OCP

[nterconnect /
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TTL Inter-Task Communication

Logical model and terminology

private variable
empty, token full token with value

Y

task port channel

« Communicating tasks are organized as task graph

» Tasks communicate by invoking TTL interface functions on their ports
» Uni-directional channels with reliable ordered communication
 Arbitrary data types, but single type per channel

e Support for multi-cast
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TTL Inter-Task Communication

Logical model and terminology

private variable
empty, token full token with value

Y

task port channel TTL interface

« Communicating tasks are organized as task graph

» Tasks communicate by invoking TTL interface functions on their ports
» Uni-directional channels with reliable ordered communication
 Arbitrary data types, but single type per channel

e Support for multi-cast
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Example: Message Passing Interface

Producer side

e write(port, data, ...)
— Write data into channel connected to port

Consumer side

e data =read(port, ...)
— Read data from channel connected to port

e Abstract interface for tasks

* Right interface ?
— Appropriate for modeling application ?
— Appropriate for implementation on architecture ?

Distributed Embedded Systems
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TTL Interface Types

« Different needs for communication arising from:
— Different applications
 In-order — out-of-order

— Different implementation styles
« Hardware — software
e Shared memory — message passing

e Support set of interface types

— Each interface type offers narrow interface
 Easy to use
e Simple to implement

— Each interface type supports particular communication style
— Offer multiple interface types in one framework
— Based on single model for interoperability and design techn.
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TTL Interface Types

o TTL offers a number of different interface types
» Allow selection of interface type per port of task
* Enable interoperability by allowing mix & match

@0
&ee0
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TTL Interface Types

Acronym Full name

CB Combined Blocking

RB Relative Blocking

RN Relative Non-blocking

DBI Direct Blocking In-order

DNI Direct Non-blocking In-order
DBO Direct Blocking Out-of-order
DNO Direct Non-blocking Out-of-order

Distributed Embedded Systems
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Interface Type CB

Producer side

o write(port, vector, size)
— Write vector of size values into channel

Consumer side

e read(port, vector, size)
— Read vector of size values from channel

 Most abstract TTL interface type
* Blocking semantics
e Combined synchronization and data transfer

* Vector operations
« Based on earlier work on YAPI for KPN style modeling

Distributed Embedded Systems
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Pros / Cons Interface Type CB

+ Easy to use
+ Reusable tasks

— Copying overhead if private variables not in local buffers

— Smart compiler may help in some cases

— |If local buffers:

— Large tokens / vectors - large local buffers
— Small tokens / vectors - large synchronization overhead

TTL
<SW Shell™> Mem ASP
| O HW Shell
Interconnect
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Pros / Cons Interface Type CB

+ Easy to use
+ Reusable tasks

— Copying overhead if private variables not in local buffers

— Smart compiler may help in some cases

— |If local buffers:

— Large tokens / vectors - large local buffers

— Small tokens / vectors - large synchronization overhead

Task 2
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Pros / Cons Interface Type CB

+ Easy to use
+ Reusable tasks

— Copying overhead if private variables not in local buffers

— Smart compiler may help in some cases

— |If local buffers:

— Large tokens / vectors - large local buffers

— Small tokens / vectors - large synchronization overhead

Task 2
TTL
<SW Shell™> Mem ASP
CPU O © TTL
(R \ Q| )/ HW Shell
NANL A N 4
3N——"—"—""Intérconnect —
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Separate Synchronization and Data Transfer

Producer Consumer
< > , Q000 ,< >
O O 0O O
acquireRoom (2) acquireData (2)
< > , 0000 ,< >
O O O O
store/dereference load/dereference
< > , @0 O0O0 ,< >
© 0 OO
releaseData (2) releaseRoom (2)
< > , @0 @0 ,< >
O O O O
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Interface Types RB and RN

Producer side

e reAcquireRoom(port, count) (RB)
tryReAcquireRoom(port, count) (RN)

— Acquire count empty tokens, blocking (RB) / non-blocking (RN)

o store(port, offset, vector, size)

— Store vector of size values into the tokens with offset..offset+size-1
to the oldest acquired token

e releaseData(port, count)
— Release count oldest acquired tokens as full tokens

e Separate synchronization and data transfer
* Vector operations
 Re-acquire operations do not change state of the channel
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Pros / Cons Interface Types RB / RN

+ Coarse grain synchronization with fine grain data transfer
— Low synchronization overhead with small local buffers

+ Qut-of-order data accesses
— Reduce cost of private variables

+ Load only subset of tokens from channel
— Reduce cost of data transfers

— Less abstract than CB
— Increases programming effort
— Makes tasks less reusable

— Inefficiencies upon data transfers
— Function call, access to channel admin, address calculations

— Copying may still occur
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Interface Types DBI and DNI

Producer side
e acquireRoom(port, &token) (DBI)
tryAcquireRoom(port, &token) (DNI)
— Acquire empty token, blocking (DBI) / non-blocking (DNI)
e token->field = value;

— Assign value to (part of) token

* releaseData(port)
— Release oldest acquired token as full token

o Separate synchronization and data transfer

e Direct access to data via token references (pointers)

e Scalar operations only

 Tokens are released in same order as they are acquired

Distributed Embedded Systems 22



Pros / Cons Interface Types DBI / DNI

Coarse grain synchronization with fine grain data transfer
Out-of-order data accesses for acquired token(s)
Load only part of token from channel

Direct data accesses
— Efficient data transfers

+ + + +

— Less abstract than CB/ RB / RN

— EXxposes memory addresses
— Makes tasks less reusable

— No vector operations
— Would complicate interface / expose channel implementation

Distributed Embedded Systems 23



Interface Types DBO and DNO

Producer side
e acquireRoom(port, &token) (DBO)

o tryAcquireRoom(port, &token) (DNO)
— Acquire empty token, blocking (DBO) / non-blocking (DNO)

» token->field = value;
— Assign value to (part of) token

o releaseData(port, &token)
— Release token as the next full token

+ Qut-of-order release supports efficient use of memory
— More complex implementation of the channel

Distributed Embedded Systems
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TTL Interface Types

CB B B B
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TTL Multi-Tasking Interface

TTL offers three task types:

1. Process

«  Own thread of execution
No explicit interaction with scheduler
. Implicit task switching and state saving

2. Co-routine
o  Explicit interaction with scheduler via suspend() function
. Implicit state saving

3. Actor

. Fire-exit tasks that return to scheduler
e  State saving to be performed by task

Distributed Embedded Systems
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TTL APIs and Implementations

 TTL interface Is available as:
— C++ AP
— CAPI
— Hardware interface

e Generic run-time environment

— Functional modeling and verification of TTL application models in
C++/C

e Platform implementations
— Sea-of-DSP
— Smart Camera
— Cake / Wasabi
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Problem

How to efficiently program applications on
platforms using the TTL interface?

o Efficient = cost + performance + effort

* The cost and performance of TTL interface
functions varies on different platforms

* The cost and performance of different TTL
Interface types varies on one platform

Distributed Embedded Systems 30



Example 1Q - 1ZZ Using CB

01 void 1Q::main()

01 void 1ZZ::main()

02 while (true) 02 while (true)
03 for(int j=0; j<vi; j++) 03 VYApixel Cin[64];
04 for(int k=0; k<hi; k++) 04 VYApixel Cout[64];
05 VYApixel Cout[64]; | 05 read(CinP, Cin, 64);
06 for(int 1=0; I1<64; [++) 06 for(int 1=0; i<64; i++)
07 VYApixel Cin; 07 Cout[zigzag[i]] = Cin[i];
08 read(CinP, Cin); 08 write(CoutP, Cout, 64);
09 Cout[l] = QT[t][l]*Cin;
10 write(CoutP, Cout, 64);
(L XLLLL LX)
zzzzzzzz Channel<VYApixel> ........

QQ......
1x write
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Efficiency of 1Q - 1ZZ Using CB (HW)

Cout[64]

asasaaas MEM
1)( Wnte Channel<VYApixel>
CPU
HW $hell
Interconnect
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Efficiency of 1Q - 1ZZ Using CB (HW)

Local memory is

expensive In
hardware

Cout[64]
00000(_

MEM

asasaaas
1X W“te Channel<VYApixel>

HW $hell

Interconnect
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Transform IQ - 1ZZ Using RB (1)

MEM
1x acq/rel
Cout 64x load
Channel<VYApixel> —

1x acq/rel

64x store

HW $hell

Interconnect
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Transform IQ - 1ZZ Using RB (2)

eremove declaration

01 void 1Q::main() -
02 while (true) sacquire 64 tokens

03 for(int j=0; j<vi; j++)

04  for(int k=0; k<hi; k++)

05 VYApixel Cout[64];

sadd store operation

06  for(int 1=0; I<64; I++)

07 VYApixel Cin;

08 read(CinP, Cin);

C L= < LR /| release 64 tokens
10 write(CoutP, Cout, 64); [

Cout[64]

Cin[64]
00000000
00000000

Channel<VYApixel>
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Transform 1Q - 1ZZ Using RB (3)

01 void 1Q::main()

02 while (true)

03 for(int j=0; j<vi; j++)

04 for(int k=0; k<hi; k++)
| 05 reAcquireRoom(CoutP, 64);
06 for(int 1=0; I<64; I++)
07  VYApixel Cin;
08 read(CinP, Cin);
09 store(CoutP, |, QT[t][I]*Cin);
10 releaseData(CoutP, 64);

Channel<VYApixel> Cin[64]

1x acq/rel

64x store
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Transform 1Q - 1ZZ Using

eremove declaration ‘

RB (4)

01 void 1ZZ::main()

while (true)

02
03

VYApixel Cin[64];

sacquire 64 tokens
04

VYApixel Cout[64];

read(CinP, Cin, 64);

for(int i=0; i<64; i++)

Cout[zigzag]i]] = Cin[i];

erelease 64 tokens 08

write(CoutP, Cout, 64);

load value of Cinl[i] \ o
07
r—\\\j

Channel<VYApixel>

Cin[64]
00000000
00000000

Distributed Embedded Systems
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Transform 1Q - 1ZZ Using RB (5)

01 void 1Q::main()

02 while (true)

03 for(int j=0; j<vi; j++)
04 for(int k=0; k<hi; k++)

01 void 1ZZ::main()

02 while (true)

03 VYApixel Cout[64];

| 04

| 05 reAcquireRoom(CoutP, 64)

reAcquireData(CinP, 64);

| 05 for(int i=0; i<64; i++)

06 for(int 1=0; I<64; |++)
07  VYApixel Cin;
08 read(CinP, Cin);

06

VYApixel Cin;

07

load(CinP, i, Cin);

08

Cout[zigzag]i]] = Cin;

09  store(CoutP, |, QT[t][I]*Cin);

09 write(CoutP, Cout, 64);

10 releaseData(CoutP, 64);

| 10

releaseRoom(CinP, 64);

1x acq/rel

64x store

Distributed Embedded Systems
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Implementation of TTL

T A S K S

TTL
Platform Infrastructure
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Implementation of TTL

/ —

<TASKS>

TTL
Platform Infrastructure
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Implementation of TTL

e e

—
T Als | k| s |D
TTL
Platform Infrastructure
i S—
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Implementation of TTL
_ N\

T A S K S

TL

Platform Infrastructu
S —
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Implementation of TTL

T A S K

Platform Infrastructu
i

__ N\
—

S
a—

func = acquire, release, etc.
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Sea of DSP Architecture

No OS on tiles

Scalable and power-efficient

Tile = DSP + Memory + DMA + inter-tile communication
Any number of tiles is possible

Memory mapped write-only inter-tile communication

No general shared memory

Micro-
process
or

Distributed Embedded Systems
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Mapping on Sea of DSP

APP
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Mapping on Sea of DSP

APP

DSP DSP DSP

memory memory memory
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Mapping on Sea of DSP

APP

DSP { DSP ( DSP

memory memory memory
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Mapping on Sea of DSP

-
SRC APP

! .

DSP \ DSP DSP

memory memory memory

r—
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Mapping on Sea of DSP

| SRC APP
(ss) ’
DSP

k
|
\

memory mamory

DSP
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Results for Different Interface Types

TTL IF Type #Cycles Partin TTL #Memory
words

CB 45579603 2.9% 12493

RB 45551243 2.8% 12494

RN 45505950 2.2% 12365

DBI 45152454 1.1% 9162

DNI 45108086 0.5% 9041

Distributed Embedded Systems
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Results for Varying Channel Size (CB)

13000

12500 |

=
N
o
o
o

MEM #words

10500 |

10000

11500 |

11000 [

MEM vs. #cycles

Full Frame

|

1/2 Frame

1/4 Frame
1/8 Frame

N&Fr\ame 1/32 Frame
—k

454 455 456 457 458 459 4.6
#cycles
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461 462 4.63
x107

 Task code not
modified

e Possible with CB
e Only channel

buffer has been
reduced In size
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Results: Sub-frame Decoding (RN)

MEM vs. #cycles

13000 e Channel buffer
12000 Full Frame and private
| buffers are
11000 ) ]
" reduced In size
S 10000 | 1/2 Frame
@)
ft 9000 e Task code must
= * o
= 8000 4 Erame be modified
= |
7000 ) ;
e Possible with all
6000 )
1136 Frame Interface types
5000

4.4 4.45 4.5 4.55 4.6 4.65 4.7 4.75 4.8
7
#cycles x 10
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Smart Cameras Application Areas

Survelllance

[T} "~ Consumer
o |

Automotive Mobile

EC funded CAMELLIA project (1IST-34410)
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Architecture of Smart Imaging Core

TTL AP

Motion
Segmentation

TTL AP

—:

Pixel
Processing

gr:;r;grensas%lp 9| TTL interface | Motion Estimator §
ARM 9xx ' { Coprocessor '
CPU Z :
HW Shell Memory | vuw |

Interconnect

 Enable efficient software — hardware communication
 Make all processors “self-synchronizing”
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Architecture of Smart Imaging Core

TTL AP

ARM 9xx
CPU

Motion
Segmentation

TTL AP

—:

TTL interface  {Motion Estimator
i Coprocessor '

HW Shell Memory | 3 viLiw

Interconnect

Pixel
Processing

Smart Imaging
Coprocessor

 Enable efficient software — hardware communication
 Make all processors “self-synchronizing”
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TTL shell performance

« HW Shell (channel administration local)

—reAcquireRoom/Data 5 cycles
— releaseRoom/Data 7 cycles
— load 5+ 2n cycles

— store 5+ n cycles

Distributed Embedded Systems a7



Architecture of Smart Imaging Core

TTL AP

Pixel
Processing

Smart Imaging

Coprocessor o

TTL interface  {Motion Estimator

Motion

: \Segmentation
TTL API:

ARM 9xx _I_ — i Coprocessor
CPU Memory '
HW Shell VLIW
Interconnect
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Architecture of Smart Imaging Core

Motion
Segmentation
TTL API Pixel TTL A

Processing

mart Imagin : - '
Smart Imaging | 1) ji0rtace [ Motion Estimator

Coprocessor
ARM 9xx _I_ & Coprocessor
CPU Memory
HW Shell VLIW
Interconnect
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TTL Implementation for ME

Function Architecture
C-code of ME algorithm Data path description
C-code of TTL implementation (FUs + Device 1/0)

— A|RT Designer =——

VLIW microcode
Algorithm +
TTL implementation

VLIW ctrl l
m Communication Bus/Network

l

Distributed Register Files

A 4

ASU| [ I/0 ACU| (ALU| RAM[ |ROM

FSM
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Cake / Wasabi

TIC65

[

c

c

-

|_

N

i

= 9

O X

/

DDR2
L2 cache 2wvB / e e

\\ 64-bit

\\\_ |
SIS I
X X[ X[ X
3593 | MBVS | (| MSVD
9 9 9 9 ISRy [PESC SR SRS multi-standard video decoder
Ol Qll Ol Al
XU X X[ X
LU L LU LU SCET AL CPIPE
6 G L_) G image vector processor H D_p output
ANENaNENaNINaR
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e Hybrid multiprocessor
with homogeneous bias

* First silicon 2006
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TTL Implementation on Cake / Wasabl

MIPS Trimedia
Cycles per sync operation 20 20
(TTL on top of TRT run-time system) (MIPS - MIPS) (TM - TM)
Code size TTL (CB + DBI) 5 kB 14 kB
Lines of code TTL (CB + DBI) 773 773
Code size TTL (all IF types) 12 kB 29 kB
Lines of code TTL (all IF types) 1529 1529

Distributed Embedded Systems
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Task-Level Interface Standardization

Industry-wide standardization needed

* Reuse of function-specific hardware and software IP
— Enable eco-system of IP providers

* EDA for system-level design
— Support development of function-specific IP
— Support integration of IP

See also:
e Codes+ISSS’04, Inter-Task Communication and Multi-Tasking
e Codes+ISSS’05, Dynamic Reconfiguration
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Conclusion

TTL supports structured and efficient design and integration
of hardware and software tasks in MPSoCs

 High-level interface for ease of programming
— Decreases design effort for task programmer
— Facilitates reuse and integration of IP
— Provides implementation freedom for platform infrastructure

« Enabler for automated mapping
— Automated transformations support design optimizations
— Closes gap between specification and implementation
— Decreases design effort for system integrator
o Efficient implementation on range of platforms
— Different architectures
— In hardware and software

» Need for standardization
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