

Comparing Performance Analysis Methods on an Industrial Case Study

Marcel Verhoef

Chess Information Technology B.V., Haarlem Radboud University Nijmegen

Jozef Hooman

Embedded Systems Institute, Eindhoven Radboud University Nijmegen

Research in context of project Boderc at the Embedded System Institute

Aim ESI Embedded Systems

BODERC Project

Carrying Industrial Partner:

Aim: improve high-level design of mechatronic systems Includes

- multi-disciplinairy design space exploration, focus on performance
- analysis of system-level decisions
- predict consequences of design decisions as early as possible

Comparing Performance Analysis Methods

status and some lessons learnt

Agenda

- Why comparison of techniques?
- Suitable benchmark
- Early results
- Lessons learnt

Business perspective (1)

- Why performance analysis?
 - continuous increase in functionality demands
 - continuous drive to reduce cost price
 - tighter time-to-market demands
 - rapidly evolving technology
- over dimensioning not longer viable (\$)
- need for <u>early</u> design choice impact analysis
- and <u>continuous</u> monitoring over life cycle
- still not always recognized in industry!

"Does The Product Work?"

"Does The Product Work Given a Set of Hard Resource Constraints?"

Fighting The Complexity Battle

9

Business perspective (4)

- finding quantitative answers in the early life cycle is very hard, there are many unknowns
- "shooting at a moving target"
- need for a <u>light-weight approach</u> that can deal with highly interactive nature of the design process

Why comparison?

- Trade-off between *effort* and *insight gained* not well understood
 - Investment: modeling effort
 - Investment: analysis effort
 - Return-on-investment: question answered? what accurracy?
 - Return-on-investment: question answered on time?

Problems industry faces

- Many techniques available (DES, QN, STOCH); which one fits my problem? How do I select the proper tool?
- How steep is learning curve; do I need to become an expert?
- Fit with design cycle; disruptive to current way of working?
- Sufficient tool support?

Overview performance models

Aim of our research

- Understand pros and cons of techniques
- Build a taxonomy: problem ↔ methods
- Useful combinations?
- Compensate weakness of 'x' with strength of 'y' ?
- Fit in design cycle: early ↔ late, throughout?
- Fit in design process: how to introduce 'x'

Benchmarking

- Simple case, such that all techniques can deal with it
- Sufficiently complex to provoke problematic issues
- Extendable to introduce new "sub-problems"
- How to avoid "Lies, True Lies, Statistics" problem?

The In-Car Radio Navigation System

- Car radio with built-in navigation system
- User interface needs to be responsive
- Traffic messages must be processed in a timely way
- Several applications may execute concurrently

Application A: Change Audio Volume

Proposed Architecture Alternatives

Analysis questions

- How do the proposed system architectures compare in respect to end-to-end delays?
- How robust is architecture A? Where is the bottleneck of this architecture?
- Architecture D is chosen for further investigation. How should the processors be dimensioned?

Observations & lessons learnt

Embedded Systems

- Comparing results is as hard as getting the results
 - Did we *really* model the same thing?
 - Simulation / computation effects or true "problem"?
 - Interaction with experts is needed to make comparison!
- Methods are typically
 - Either biased towards application domain; can cause mismatch
 - Or very generic; can cause huge modeling effort
- Methods can be used complementary
 - Provide answers to different types of questions
 - Model validation by moving to another paradigm
- Input from stochastic domain still missing

please contribute to the study!

case study description can be found at http://www.mpa.ethz.ch

paper can be found at http://www.esi.nl/boderc

contact: Marcel.Verhoef -at- chess.nl