
1

Model-Based
Scheduler Analysis

Bengt Jonsson
Leonid Mokrushin
Wang Yi
Uppsala University, Sweden

With contributions from
Tobias Amnell, Elena Fersman, Pavel Krcal, Paul Pettersson

Lorentz Workshop 2005, Leiden

2

OUTLINE

Scheduler analysis as Model Checking of Timed Systems

• A Unified Model for Timed Systems
– Timed automata with tasks

• Scheduling Analysis by Model Checking of Timed Systems (w. UPPAAL)
– Additional trick to handle preemption
– Limits to decidability

• TIMES tool

• Preliminary ideas on achieving modularity

3

Classical approach to Real Time Scheduling

• Controller = a set of periodic tasks + a scheduler

Scheduler/RTOS

P1 P2 Pn

• Well-developed techniques, e.g., Rate-Monotonic Scheduling

4

The Periodic Task Model

+ Simple to analyze (Rate-Monotonic Analysis)
- Assumption too simplistic for many systems

– May give too pessimistic analysis results
– ”Real” systems have

• Shared resources, process synchronization, communication, precedence
constraints, complex timing (modes, jitter, …)

– Adding these features complicates the model, and leads to
an explosion in ”special cases”

5

The Periodic Task Model

+ Simple to analyze (Rate-Monotonic Analysis)
- Assumption too simplistic for many systems

– May give too pessimistic analysis results
– ”Real” systems have

• Shared resources, process synchronization, communication, precedence
constraints, complex timing (modes, jitter, …)

– Adding these features complicates the model, and leads to
an explosion in ”special cases”

• Wanted: uniform framework to model a variety of
patterns in timed systems.

• Proposal: Timed Automata

6

Timed Automata

a

• Based on standard automata

b

7

Timed Automata

x>3 ax:=0
x<4 b

• Based on standard automata
• Clocks give upper and lower bounds on distance in time

between occurrences of symbols.
• Temporal properties of Timed Automata (reachability, LTL, …)

can be model-checked (PSPACE-complete)

• Implemented in tools (UPPAAL, IF/Kronos)

8

Timed Traces of TA

x>3 ax:=0

(3.3, a) (3.4, b),
(6.5, a),
(3.6, a) (3.9, b),
(3.14, a) (3.14159, b)
... ...

x<4 b

9

Using Timed Automata to model Real Time Systems

• Arrival pattern of tasks modeled by Timed Automata
– Extend TA with task spawning

• Computation time of tasks modeled by clock
– Assume no preemption for now

• Deadlines modeled by clocks
– Expiration leads to ”error state”

• Include processor and task queue in the analysis
• Precedence, …, can be modeled by additional

synchronizations

10

Timed Automata with Tasks

• Events
– synchronization
– interrupts,
– passing of time

• Timing constraints
– specifying event arrivals
– e.g., periodic and sporadic

• Tasks (executable programs)
– Internal computation (need

not be modeled)
– Released by a TA transition,

and scheduled in the ready
queue of RTOS

a
x>10

x:=0

P

• Tasks have parameters:
– C: WCET
– D: Relative deadline
– (other parameters for

scheduling, e.g., priority)

11

Example: periodic task

P

start

c==10

c:=0

c:=0

c: clock
P: task

12

Example: periodic task with modes

P

start

c==10
d<500

c:=0

c:=0
d:=0

c,d: clocks
P: task

P

c==200
c,d:=0

d=500
c:=0

13

Timed Automata with Tasks (Structure of Operation)

• ”Processor” 1 (task generator)
– Initially, P is released
– Forever, do

• Whenever a is available and
x>10, Q is released

• Then
– Whenever b is available

and y<=50, P is released
– Whenever f appears, it

releases R
• ”Processor” 2 (task handler)

– Scheduling and Computing
tasks in the queue

P
(1,7)

Q
(3,9)

R
(2,2)

x>10

a
y:=0

x:=0
b
y<=50

f

r y=>2

start

………RQQQPP

14

States/Configurations of Model

P
(1,7)

Q
(3,9)

R
(2,2)

x>10

a
y:=0

x:=0
b
y<=50

f

r y=>2

start

………RQQQ(3,5)P(1,4)P(0.2,3.2)

• Current control location

• Clock valuation
• Task queue

For each task
Remaining computation time
Actual relative deadline

x = 12
y = 1

15

Operations to Model Scheduling

• The scheduling algorithm (EDF, FP, FIFO, …) is
modeled by sorting policy on the task queue

• Task processing modeled by decreasing remaining
computation times and relative deadlines
Example:

[Q(4, 7), P(2, 10)] [Q(3.5, 6.5), P(2, 9.5)]
wait(0.5)

16

SCHEDULING
ANALYSIS

17

Schedulability by model checking

Assume a scheduling policy Sch:
• A configuration is schedulable with Sch if it is

possible to meet all relative deadlines (simple
calculation on occuring ci di in task queue)

• An automaton is schedulable with Sch if all its
reachable states are schedulable

• Schedulability checking == reachability analysis
– set of schedulable configurations is bounded (modulo clocks)

18

Handling preemption

– Assume Pj preempts Pi
– Assume computation time of Pi between Cl and Cu

time

Pi released: Pi finished:

∈ [Cl , Cu]

19

Handling preemption

• Assume Pj preempts Pi
• Assume computation time of Pi between Cl and Cu

time

Pi released: Pi finished:

?

Pj released: Pj finished:

20

Handling preemption

• Assume Pj preempts Pi
• Assume computation time of Pi between Cl and Cu

time

Pi released: Pi finished:

?

Pj released: Pj finished:

• ? Is an interval if computation time of Pj is known & constant

21

Handling preemption

• Assume Pj preempts Pi
• Assume computation time of Pi between Cl and Cu

time

Pi released: Pi finished:

?

Pj released: Pj finished:

• ? Is an interval if computation time of Pj is known & constant
• if computation time of Pj may vary, timing properties cannot

be precisely modeled with timed automata

22

Decidability results (summary)

• For Non-preemptive scheduling, scheduling can be analyzed by model
checking TAs. [Ericsson,Wall,Yi 98]

• For preemptive scheduling, the problem can be solved using BSA
(Bounded Substraction Automata) [Fersman,Pettersson,Yi, TACAS02]
– (#extra clocks needed is 2 x #instances = 2 Σi⎡Di/Ci⎤)

• For fixed-priority scheduling, the problem can be solved using TA with
only 2 extra clocks – similar to the classic RMA technique (Rate-
Monotonic Analysis) [Fersman,Mokrushin, Pettersson,Yi, TACAS03]

• Problem becomes undecidable with preemption if both
– the execution times of tasks are intervals,
– task completion times influence task release times [Krcal,Yi, TACAS 04]

