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OUTLINE

Scheduler analysis as Model Checking of Timed Systems

A Unified Model for Timed Systems
— Timed automata with tasks

Scheduling Analysis by Model Checking of Timed Systems (w. UPPAAL)
— Additional trick to handle preemption
— Limits to decidability

TIMES tool

Preliminary ideas on achieving modularity



Classical approach to Real Time Scheduling

e Controller = a set of periodic tasks + a scheduler

e Well-developed techniques, e.g., Rate-Monotonic Scheduling



The Periodic Task Model

+ Simple to analyze (Rate-Monotonic Analysis)

- Assumption too simplistic for many systems
— May give too pessimistic analysis results

— "Real” systems have

e Shared resources, process synchronization, communication, precedence
constraints, complex timing (modes, jitter, ...)

— Adding these features complicates the model, and leads to
an explosion in "special cases”



The Periodic Task Model

+ Simple to analyze (Rate-Monotonic Analysis)

- Assumption too simplistic for many systems
— May give too pessimistic analysis results

— "Real” systems have

e Shared resources, process synchronization, communication, precedence
constraints, complex timing (modes, jitter, ...)

— Adding these features complicates the model, and leads to
an explosion in "special cases”

e Wanted: uniform framework to model a variety of
patterns in timed systems.

e Proposal: Timed Automata



Timed Automata
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e Based on standard automata




Timed Automata
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e Based on standard automata

e Clocks give upper and lower bounds on distance in time
between occurrences of symbols.

e Temporal properties of Timed Automata (reachability, LTL, ...)
can be model-checked (PSPACE-complete)

e Implemented in tools (UPPAAL, IF/Kronos)
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Timed Traces of TA
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Using Timed Automata to model Real Time Systems

e Arrival pattern of tasks modeled by Timed Automata
— Extend TA with task spawning

e Computation time of tasks modeled by clock
— Assume no preemption for now
e Deadlines modeled by clocks
— Expiration leads to "error state”
e Include processor and task queue in the analysis

e Precedence, ..., can be modeled by additional
synchronizations



Timed Automata with Tasks

e Events Q
— synchronization

— interrupts, x>10
. . I
— passing of time a l“med
e Timing constraints
— specifying event arrivals y =0 + ta
— e.g., periodic and sporadic @
e Tasks (executable programs)

— Internal computation (need
not be modeled)

— Released by a TA transition, — C: WCET
and scheduled in the ready _ D- Relative deadline

gueue of RTOS
— (other parameters for
scheduling, e.g., priority)
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e Tasks have parameters:



Example: periodic task

start

c==10

c: clock
P: task
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Example: periodic task with modes

c,d: clocks
P: task
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Timed Automata with Tasks (Structure of Operation)

Stﬂt-

e "Processor” 1 (task generator)
— Initially, P is released

— Forever, do

e Whenever a is available and

} 2 . x>10, Q is released
x>10 Xi= e Then

a b — Whenever b is available
y:=0 y<=50 and y<=50, P is released
e — Whenever f appears, it

f releases R
e "Processor” 2 (task handler)
— Scheduling and Computing

ry=>2 tasks in the queue
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States/Configurations of Model

e Current control location

e Clock valuation

e Task queue

For each task

Remaining computation time
Actual relative deadline

P(0.2,3.2)1P(1,4) |Q(3,5) | 0O R




Operations to Model Scheduling

e The scheduling algorithm (EDF, FP, FIFO, ...) is
modeled by sorting policy on the task queue

e Task processing modeled by decreasing remaining
computation times and relative deadlines

Example: wait(0.5)
[Q(4, 7), P(2, 10)] . [Q(3.5, 6.5), P(2, 9.5)]
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SCHEDULING
ANALYSIS



Schedulability by model checking

Assume a scheduling policy Sch:

e A configuration is schedulable with Sch if it is
possible to meet all relative deadlines (simple
calculation on occuring c; d; in task queue)

e An automaton is schedulable with Sch if all its
reachable states are schedulable

e Schedulability checking == reachability analysis
— set of schedulable configurations is bounded (modulo clocks)
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Handling preemption

— Assume Pj preempts Pi
— Assume computation time of Pi between C' and Cv

Pi released: Pi finished:

¥ » time
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Handling preemption

e Assume Pj preempts Pi
e Assume computation time of Pi between C' and C¢

Pi released:

Pj released:

|

Pj finished:

|

Pi finished:

v

A 4

time
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Handling preemption

e Assume Pj preempts Pi
e Assume computation time of Pi between C' and CY

i released: Pi finished:
Pj released:  Pj finished:

D
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e ?Is an interval if computation time of Pj is known & constant
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Handling preemption

e Assume Pj preempts Pi
e Assume computation time of Pi between C' and CY

i released: Pi finished:
Pj released:  Pj finished:

D

—— ? >

¥ » time

e ?Is an interval if computation time of Pj is known & constant

e if computation time of Pj may vary, timing properties cannot
be precisely modeled with timed automata
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Decidability results (summary)

e For Non-preemptive scheduling, scheduling can be analyzed by model
checking TAs. [Ericsson,Wall,Yi 98]

e For preemptive scheduling, the problem can be solved using BSA
(Bounded Substraction Automata) [Fersman,Pettersson,Yi, TACAS02]

— (#extra clocks needed is 2 x #instances = 2 > | Di/Ci)

e For fixed-priority scheduling, the problem can be solved using TA with
only 2 extra clocks — similar to the classic RMA technique (Rate-
Monotonic Analysis) [Fersman,Mokrushin, Pettersson,Yi, TACAS03]

e Problem becomes undecidable with preemption if both
— the execution times of tasks are intervals,
— task completion times influence task release times [krcal,vi, TACAS 04]
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