
Dr. Kai Richter
CTO @ Symtavision GmbH, 
Braunschweig,
Germany

Dr. Kai Richter
CTO @ Symtavision GmbH, 
Braunschweig,
Germany

Scheduling Analysis in Practice: 
Early Lessons Learned

Scheduling Analysis in Practice: 
Early Lessons Learned



2

SymTAVision BackgroundSymTAVision Background

• Institute of Computer and Network Engineering,
TU Braunschweig, Germany; EE department

• Roots in circuit design (HW), “software-less”

• Prof. Rolf Ernst: Design Automation of Embedded Systems
• HW/SW Co-Design (COSYMA)
• System-level applications modeling: SPI (1998-2004)
• System-level architecture analysis: SymTA/S (2002-current)
• SymTA/S group currently 5-7 PhD student + 10 in other groups
• SymTA/S Tool Suite (will participate in comparison Wed/Thu)

• May 2005: spin-off SymTAVision

• Our mission: “Go out and help the people!“

• Institute of Computer and Network Engineering,
TU Braunschweig, Germany; EE department

• Roots in circuit design (HW), “software-less”

• Prof. Rolf Ernst: Design Automation of Embedded Systems
• HW/SW Co-Design (COSYMA)
• System-level applications modeling: SPI (1998-2004)
• System-level architecture analysis: SymTA/S (2002-current)
• SymTA/S group currently 5-7 PhD student + 10 in other groups
• SymTA/S Tool Suite (will participate in comparison Wed/Thu)

• May 2005: spin-off SymTAVision

• Our mission: “Go out and help the people!“



3

Typical Automotive SystemTypical Automotive System

Jitter4 !

Jitter1 ! Jitter2 !

Jitter3 !

CAN busCAN bus

ECU 3 ECU 4

ECU 2ECU 1 RTOS 1

T1
T3

T2
timer activation

CAN messages

out

in

RTOS 2

T4
T5

T6

out

in

RTOS 3

T7
T8

out in
CAN messages

RTOS 4

T9
T10Jitter8 !

Jitter10 !



4

Black-Box System IntegrationBlack-Box System Integration

CAN busCAN bus

Interactions ?
Requirements ?

Jitters ? Deadlines ?
Flexibility/Tolerance?



5

OutlineOutline

• Complexity of real-world OS and protocols

• (Mis-)use of APIs in user code

• The fear of the “worst case” 

• Data (un-)availability

• Solving the real problems

• Further issues

• Conclusion

• Complexity of real-world OS and protocols

• (Mis-)use of APIs in user code

• The fear of the “worst case” 

• Data (un-)availability

• Solving the real problems

• Further issues

• Conclusion



6

Complexity of real-world OS and protocolsComplexity of real-world OS and protocols
• RMS (rate monotonic scheduling):

• Unique priorities
• Fully preemptive
• Periodic activation
• No recurrence (D=T)
• extensions support recurrence, burst activation, blocking, etc.

• ERCOSek (OS @ automotive supplier):
• Shared priorities
• Mixed preemptive and non-preemptive tasks + shared resources
• HW Tasks (interrupts) above kernel priority
• TimeTable (incl. Offset), static and dynamic Alarms (OSEK)
• Supports recurrence
• OS overhead: Dispatcher and key OS-routines at varying priorities
• “Basic software” with high- and low-priority drivers

• RMS (rate monotonic scheduling):
• Unique priorities
• Fully preemptive
• Periodic activation
• No recurrence (D=T)
• extensions support recurrence, burst activation, blocking, etc.

• ERCOSek (OS @ automotive supplier):
• Shared priorities
• Mixed preemptive and non-preemptive tasks + shared resources
• HW Tasks (interrupts) above kernel priority
• TimeTable (incl. Offset), static and dynamic Alarms (OSEK)
• Supports recurrence
• OS overhead: Dispatcher and key OS-routines at varying priorities
• “Basic software” with high- and low-priority drivers



7

OS setupOS setup

task setuptask setup

Several processes 
in one task

Several processes 
in one task

Selection: 
preemptive / 

non-preemptive

Selection: 
preemptive / 

non-preemptive

TimeTable
start-up delay

TimeTable
start-up delay

Complex priority 
scheme

Complex priority 
scheme

Recurrence
buffer size

Recurrence
buffer size

OS function
timing

OS function
timing

ERCOSek Example: OS ConfigERCOSek Example: OS Config



8

ERCOSek Example: Timing BehaviorERCOSek Example: Timing Behavior

• Cyclic alternation of functions• Cyclic alternation of functions

• Activation in bursts• Activation in bursts

pre Fct. A post pre Fct. B post

execution 1, 3, 5, 7 ...

execution 2, 4, 6, 8, ...

bursty IRQ

regular periodic task



9

(Mis-)use of APIs in user code(Mis-)use of APIs in user code

• OS concepts accessible through APIs, e.g.
• TimeTable
• Alarms (time-out interrupts)
• drivers

• The way APIs are used has huge influence on scheduling
• Needs further adaptation of analysis models
• Use of APIs often not systematic
• AND: not easy to find out

• There is no single analytical model for an OS or bus, 
the individual design must be taken into account!

• OS concepts accessible through APIs, e.g.
• TimeTable
• Alarms (time-out interrupts)
• drivers

• The way APIs are used has huge influence on scheduling
• Needs further adaptation of analysis models
• Use of APIs often not systematic
• AND: not easy to find out

• There is no single analytical model for an OS or bus, 
the individual design must be taken into account!



10

ERCOSek Example: Task ActivationERCOSek Example: Task Activation

• Engine ECU: 
• 1ms, 2ms, 5ms tasks activation by TimeTable

• Chained activation of 10ms,20ms,50ms,100ms… tasks 
• “pseudo” TimeTable in user code
• by dynamic Alarm(), depends on RPM value

• Further RPM-dependent external interrupts
• in phase with crank shaft

• Engine ECU: 
• 1ms, 2ms, 5ms tasks activation by TimeTable

• Chained activation of 10ms,20ms,50ms,100ms… tasks 
• “pseudo” TimeTable in user code
• by dynamic Alarm(), depends on RPM value

• Further RPM-dependent external interrupts
• in phase with crank shaft

2ms
5ms

1ms



11

• Messages are „said“ to be periodic because they are 
generated by periodically activated tasks

• Scheduling and driver structure 
distorts this periodicity

• Interface implementation leads 
to complex blocking

• mutual dependencies between
local blocking and global schedule

• Messages are „said“ to be periodic because they are 
generated by periodically activated tasks

• Scheduling and driver structure 
distorts this periodicity

• Interface implementation leads 
to complex blocking

• mutual dependencies between
local blocking and global schedule

CAN Example: Driver StructureCAN Example: Driver Structure

MSGs

DRV

Priority ordered 
„FIFO“ (?!)

MSGs

MSGs

MO

Periodic polling 
or interrupt



12

• Individual send buffers mutual dependencies 
between local blocking and global schedule

• Individual send buffers mutual dependencies 
between local blocking and global schedule

T

COM

REG

T

COM

REG

"normal" ECU
T

COM

REG

T

COM

REG

T

COM

REG

T

COM

REG

T

COM

REG

T

COM

REG

Gateway
"normal" ECU

mutual dependency

SCOPE of CAN Analysis ?

CAN Example: Analysis ComplexityCAN Example: Analysis Complexity



13

The fear of the “worst case” The fear of the “worst case” 

• Designers do not like that term because
• They associate inaccuracy, conservativeness with it
• They argue that the “worst case” will never occur …
• … and they refer to “the product be up and running already 

without any problems”
• this can be a “killer”

• Analysis must often compete with simulation/test accuracy

• KEY: Information about mutually exclusive effects
• Blocking
• Context dependent behavior
• Scenarios (especially in changing environments)

• Designers do not like that term because
• They associate inaccuracy, conservativeness with it
• They argue that the “worst case” will never occur …
• … and they refer to “the product be up and running already 

without any problems”
• this can be a “killer”

• Analysis must often compete with simulation/test accuracy

• KEY: Information about mutually exclusive effects
• Blocking
• Context dependent behavior
• Scenarios (especially in changing environments)



14

Example: Intra ContextExample: Intra Context

I I I I
t

118

tresponse = 1293 t

I I I I I I I

• Bus scheduling analysis without Intra context

Mux MPEG-2

IP-traffic
(Trans Time = 127)

Mux MPEG-2 PI I I I P B
t

118

tresponse = 748 t

• Bus scheduling analysis with Intra context

IP-traffic
(Trans Time = 127)



15

Example: Inter ContextExample: Inter Context

• Bus analysis with Inter context

t

tresponse = 140 t

Ienc

t
Idec

Offset = 50
Ienc

100

Idec

MPEG-2 encrypted

MPEG-2 decrypted

IP-traffic
(Trans. Time = 50)

IP-traffic
(Trans. Time = 50)

t

tresponse = 170 t

Ienc

t

Ienc

100

Idec Idec

MPEG-2 encrypted

MPEG-2 decrypted

• Bus analysis without Inter context
30

30



16

Data (Un-)availabilityData (Un-)availability
• Analysis needs data

• It can be hard to gather information 
• Find the right people
• Use their language
• Do not assume they know much about analysis
• Transform the information into „something useful“ for analysis

• Examples:
• Overall structure
• Use of concepts
• Dynamic behavior of interrupts, messages, mutexes, etc…
• Execution times

• Analysis needs data

• It can be hard to gather information 
• Find the right people
• Use their language
• Do not assume they know much about analysis
• Transform the information into „something useful“ for analysis

• Examples:
• Overall structure
• Use of concepts
• Dynamic behavior of interrupts, messages, mutexes, etc…
• Execution times



17

Example: Core Execution Time AnalysisExample: Core Execution Time Analysis

• Critical for scheduling analysis

• Host of designers are not familiar with
• Formal execution time analysis
• Simulation
• Instrumentation 
• Tracing tools

• KEY: Help them to produce that data!

• Critical for scheduling analysis

• Host of designers are not familiar with
• Formal execution time analysis
• Simulation
• Instrumentation 
• Tracing tools

• KEY: Help them to produce that data!



18

Example: Timing of External InterruptsExample: Timing of External Interrupts

• External interrupts are often “bursty”

• Measured traces can be transformed into “models”
• Requires reasonable interpretation
• Tailored to the specific problem at hand

• KEY: Help them to produce that data!

• External interrupts are often “bursty”

• Measured traces can be transformed into “models”
• Requires reasonable interpretation
• Tailored to the specific problem at hand

• KEY: Help them to produce that data!

bursty IRQ

regular periodic task



19

Solving The Real ProblemsSolving The Real Problems

• Analysis produces „numbers“
• Response times, load, buffer sizes, …
• Can be compared against constraints

• BUT: Plain verification is the rare case !!!

• More often, designers have „vague“ goals
• Increase productivity
• Detect hot spots / bottlenecks
• Forecast future extensibility

KEY: Find out what they want and what they need and discuss!

• Analysis produces „numbers“
• Response times, load, buffer sizes, …
• Can be compared against constraints

• BUT: Plain verification is the rare case !!!

• More often, designers have „vague“ goals
• Increase productivity
• Detect hot spots / bottlenecks
• Forecast future extensibility

KEY: Find out what they want and what they need and discuss!



20

Approaching ProblemsApproaching Problems

• Examples
• ECU people want to avoid overloaded CPU but have no 

information about external interrupt frequencies
• Bus people want to know “stability” and criticality of messages 

but have no information about dynamic behavior (jitter)
• Network people want to increase the throughput of their 

gateways but do not know how much data is going through

• Approach
• Identify the results needed to make people happy
• Identify the data you have and you can obtain
• Discuss assumptions on data that’s missing
• Discuss potential analysis and expected results
• Consider “What-if” experiments as an advantage of analysis

• Examples
• ECU people want to avoid overloaded CPU but have no 

information about external interrupt frequencies
• Bus people want to know “stability” and criticality of messages 

but have no information about dynamic behavior (jitter)
• Network people want to increase the throughput of their 

gateways but do not know how much data is going through

• Approach
• Identify the results needed to make people happy
• Identify the data you have and you can obtain
• Discuss assumptions on data that’s missing
• Discuss potential analysis and expected results
• Consider “What-if” experiments as an advantage of analysis



21

Further IssuesFurther Issues

• Comprehensibility and usability of methods/models
• Designers often reject to “learn” new models nor tools, 

unless reasonably easy to use
• At best, the analysis fits fully into the existing tools

• Integration and Supply chain considerations
• Business processes complicate matters further
• Black boxes increase the data (un-)availability problem

• Real Benefit
• Scheduling analysis competes with simulation/test
• Establishing new technology essentially requires HUGE 

benefits for the design process

• Comprehensibility and usability of methods/models
• Designers often reject to “learn” new models nor tools, 

unless reasonably easy to use
• At best, the analysis fits fully into the existing tools

• Integration and Supply chain considerations
• Business processes complicate matters further
• Black boxes increase the data (un-)availability problem

• Real Benefit
• Scheduling analysis competes with simulation/test
• Establishing new technology essentially requires HUGE 

benefits for the design process



22

System-Level in The FutureSystem-Level in The Future

• CAN and Priority-driven ECU scheduling
• Loosely coupled subsystems
• Supports dynamic environments

• FlexRay and global synchronization
• Tighly coupled
• Short end-to-end delays

• Reality: heterogeneous mixture
• CAN segments for less „critical“ applications
• Fully synchronous for safety critical
• Mixed for 

• CAN and Priority-driven ECU scheduling
• Loosely coupled subsystems
• Supports dynamic environments

• FlexRay and global synchronization
• Tighly coupled
• Short end-to-end delays

• Reality: heterogeneous mixture
• CAN segments for less „critical“ applications
• Fully synchronous for safety critical
• Mixed for 



23

Case 1: FlexRay (cyclic send/rec.), OK!Case 1: FlexRay (cyclic send/rec.), OK!



24

?

?

? ?

Case 1: FlexRay (cyclic send/rec.), irregular!Case 1: FlexRay (cyclic send/rec.), irregular!



25

FlexRay synchronization requires tight and inflexible constraints.FlexRay synchronization requires tight and inflexible constraints.



26

ConclusionConclusion

• Scheduling analysis is a vehicle for “solving critical 
design problems”, but must
• React to the problems at hand (not vice versa)
• Accept the an imperfect world
• Recognize established processes
• Solve problems and provide new benefits
• NOT pretend to know it all better

• Scheduling analysis is a vehicle for “solving critical 
design problems”, but must
• React to the problems at hand (not vice versa)
• Accept the an imperfect world
• Recognize established processes
• Solve problems and provide new benefits
• NOT pretend to know it all better

KEY LESSON LEARNED: 
Bringing scheduling analysis (and other analysis) to the people 
requires knowing well their problems and “desires”, 
and finding the right solution for them. 

It is very unlikely that they change their practice.

KEY LESSON LEARNED: 
Bringing scheduling analysis (and other analysis) to the people 
requires knowing well their problems and “desires”, 
and finding the right solution for them. 

It is very unlikely that they change their practice.



27


