

### Performance Analysis with POOSL

Bart Theelen (B.D.Theelen@tue.nl)
Jeroen Voeten (J.P.M.Voeten@tue.nl)

**Department of Electrical Engineering Electronic Systems** 

"Nothing is more simple than greatness; indeed, to be simple is to be great" Ralph Waldo Emerson (1803 - 1882)

### Performance Modelling and Analysis

Design Practice based on Formal Methods Executable Model in Mathematical Model Expressive Language **Execution Semantics** Formal Semantics Analysis by Simulation Exhaustive Analysis

- Simulation-Based
  - Modelling convenience
  - Statistical analysis
  - Accuracy of results uncertain

- Exhaustive
  - Certainty about analysis results
  - Mathematical analysis
  - Difficult to obtain adequate models

### 3 Performance Modelling and Analysis with POOSL

Design Practice based on Formal Methods



- Simulation-Based
  - Modelling convenience
  - Statistical analysis
  - Accuracy of results uncertain

- Exhaustive
  - Certainty about analysis results
  - Mathematical analysis
  - Difficult to obtain adequate models

### Performance Analysis Problems

- Hard real-time applications (satisfaction of requirements)
  - Throughput
  - End-to-end latency/delay
- Firm/soft real-time applications (satisfaction of requirements)
  - Throughput
  - · End-to-end latency/delay and jitter
  - · Deadline miss probability
- Platforms (bottleneck identification)
  - · Average processor utilisation
  - Maximum, average of and variance in communication resource utilisation
  - Maximum, average of and variance in memory occupation
  - · Peak and nominal power consumption

Assuming model is adequate, still: Average Case Worst/Best Case Requires indication of Exhaustive II Simulation-Based III IV

Fundamental problem: No guarantees on

accuracy possible

accuracy of results if approximation

Requires indication of accuracy of results

**Electronic Systems** 

# 5 SHE Methodology: Overview

- SHE = Software/Hardware Engineering
- Modelling Languages
  - UML profile for SHE
  - Parallel Object-Oriented Specification Language
- · Techniques
  - Simulation
  - Performance Analysis
     Formal Verification

    Exhaustive and Simulation-based
  - Code Generation
- · Methods/Guidelines
  - Object-Oriented Analysis
  - Model Validation
  - Modelling Styles
  - Modelling Patterns
  - Design-Space Exploration
- Tools
  - SHESim
  - Rotalumis / Rotalumis-RT

#### 6 POOSL

- POOSL = Parallel Object-Oriented Specification Language
- Example of new generation of languages for system-level design
  - Bridge gap between industrial practice and formal methods
- Expressive
  - Asynchronous Concurrency
  - Synchronous Message Passing
  - Object-Oriented Data
  - Real-time and Stochasticity
  - Dynamic Process Creation
  - •
- Formal (Mathematical) Semantics
  - Probabilistic real-time extension of process algebra CCS
  - Traditional object-oriented programming languages (Java, Smalltalk)
- Executable

#### 7 POOSL

## Performance Analysis

Worst/Best-Case
Average-Case based on Markov Chain

Formal Verification

Model Checking

POOSL Model

# Formal Semantics

Timed Probabilistic
Labelled Transition System

Simulation

Process Execution Trees

Predictable Code Generation

 $\epsilon$ -Hypothesis

### 8 Example: Average-Case Performance Analysis



Understandable POOSL Model



Timed Probabilistic
Labelled Transition System

Discrete-Time Markov Chain & Reward Structure

### 9 Features, Assumptions and Limitations

· Usual assumption: model is adequate

|                  | Worst/Best Case Metrics                                   | Average Case Metrics                                                |
|------------------|-----------------------------------------------------------|---------------------------------------------------------------------|
| Exhaustive       | Exact Results                                             | Exact Results                                                       |
|                  | Sample space of rewards has maximum/minimum               | Markov chain is ergodic (any distribution allowed)                  |
|                  | Feasible if state space is small                          | Feasible if state space is small                                    |
| Simulation-Based | Sample space of rewards has maximum/minimum               | Markov chain is ergodic (any distribution allowed)                  |
|                  | Estimation results - no guarantees on accuracy of results | Estimation results + bound on accuracy of results (for all metrics) |

· No tools (yet) for exhaustive analysis

#### 10 Application Domains / Industrial Case Studies

#### Telecommunication Systems

- Network Processor (IBM Research Laboratory)
- High-Speed Packet-Switch (IBM Research Laboratory)
- Internet Router (Alcatel Bell)
- Data Flow System (Alcatel Bell)
- DECT System for Hearing-Impaired Students (TNO Industrial T
- Intel IXP1200 Network Processor (University of Limerick)

#### Real-Time Control Systems

- MA3 System (TNO Industrial Technology)
- Printer Controller System (Océ Technologies)
- Wafer Stepper Subsystem (ASML)

#### Multi-Media Systems

- PiP TV Application (Philips Research Laboratory)
- · Design Space Exploration for a Car Navigation System (Siemens VDO)





#### 11 Conclusions

- Strengths
  - Part of complete design methodology
    - Modeling (several modelling patterns and library components available)
    - Analysis (formal verification & worst/best-case, average-case performance analysis)
    - Synthesis
  - Based on formal modelling language POOSL
    - Intuitive (short learning curve)
    - Expressive (many models of computation, e.g., control, data flow, queuing, ...)
    - · Establishes link between formal methods and industrial practice
  - Scalable
  - Applicable to various application domains
    - Telecommunication systems
    - Real-time control systems
    - · Consumer electronics / multi-media systems
    - High-tech systems
- Limitations
  - Limited possibilities for exhaustive analysis due to state-space explosion
  - No tools (yet) for exhaustive analysis

www.es.ele.tue.nl/poosl

#### 12 Abstraction vs Adequacy

- The hardest part of system-level design is making adequate abstractions when developing models of design alternatives
- Model-based analysis allows for answering specific questions
- Two properties of models:
  - Abstraction = discarding details that are irrelevant for answering questions
    - · Necessary: Many implementation details are (still) unknown

Improvement in analysis speed is merely a nice positive effect

- Desirable: Allows postponing design decisions on details
- Adequate = including all aspects that are relevant for answering questions
  - · Model represents system properly with respect to aspects relevant for questions
- Abstraction and adequacy are conflicting objectives
  - · We want representative results without taking all details into account
- Why is it the most difficult part?
  - · Adequacy of a model can only be confirmed after realising the system
- · Any method should include techniques for validating adequacy of models

### 13 Adequacy vs Accuracy

- Adequacy is property of model
  - · We all assume that model is adequate after certain modelling effort
- Accuracy is property of result
  - Exhaustive approaches give exact results -> 100% accurate
  - Simulation-based approaches may not give 100% accurate results
    - · Any simulation result should be accompanied by bound on error
- · An inadequate model can give perfectly accurate results
  - Example: Queuing network (exhaustive analysis), where the distributions in the represented system are not exponential
- A perfectly adequate model can give inaccurate results
  - · Example: Simulation-based analysis of worst/best case

#### 14 Exhaustive vs Simulation-Based

- In case a tool relies on a modelling language for which a rigorous framework to compute performance metrics (exhaustive approach) is missing, simulation-based estimation with this tool cannot lead to credible results
- Rigorous framework
  - 1. Makes models amenable to analysis techniques
  - 2. Allows for unambiguous execution of models
- Analytical computation requires satisfaction of 1
  - 1. Is required for getting results properly
- Simulation-based estimation requires satisfaction of 1 and 2
  - 1. Is required for getting results properly and for analysing their accuracy
  - 2. Is required for guaranteeing unambiguous results