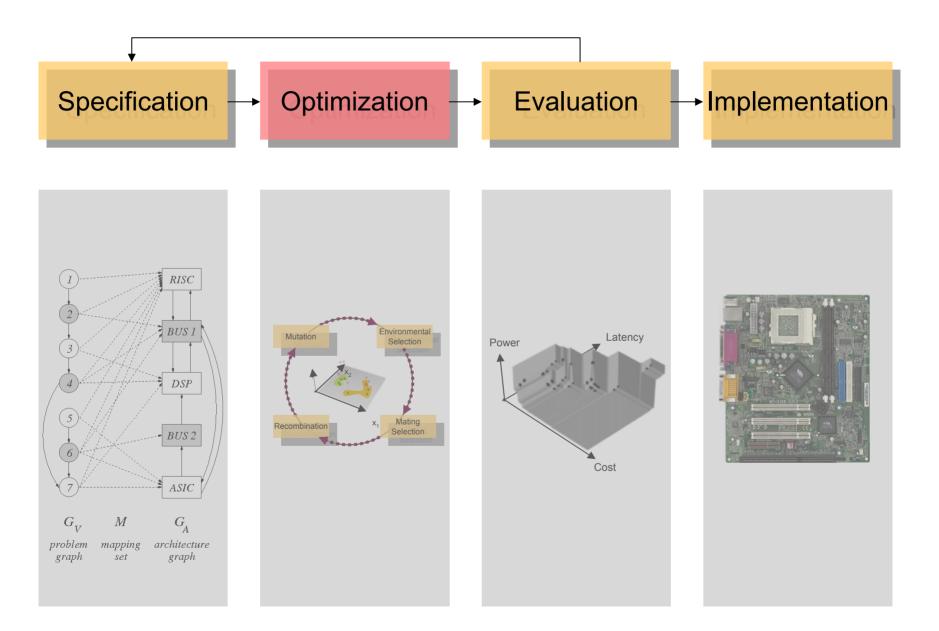
Issues in Design Space Exploration Using Randomized Search Algorithms

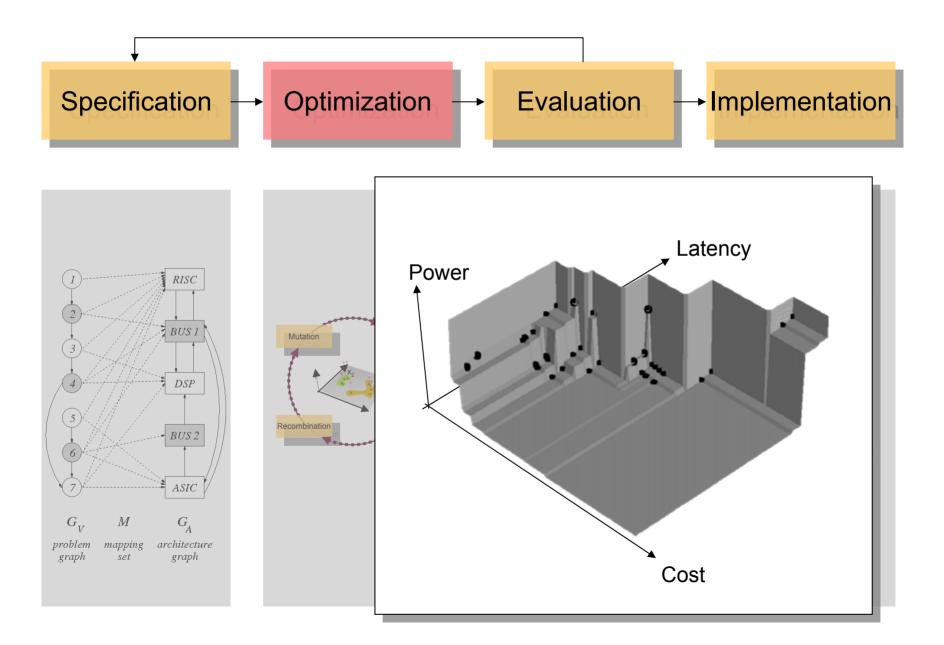
Eckart Zitzler

Computer Engineering (TIK), ETH Zurich, Switzerland Workshop on Distributed Embedded Systems, 11/22/2005

Design Space Exploration: Setting

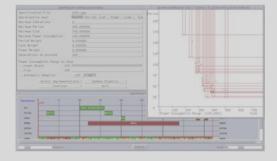


Design Space Exploration: Setting

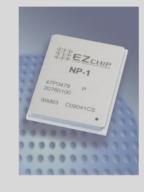


Example Applications

Architecture Synthesis for Embedded Systems



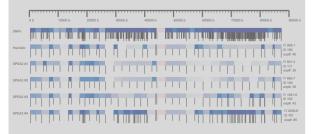
Network Processor Design



Software Synthesis for DSPs

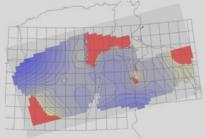
Example Applications

Experiment Design for Genotyping

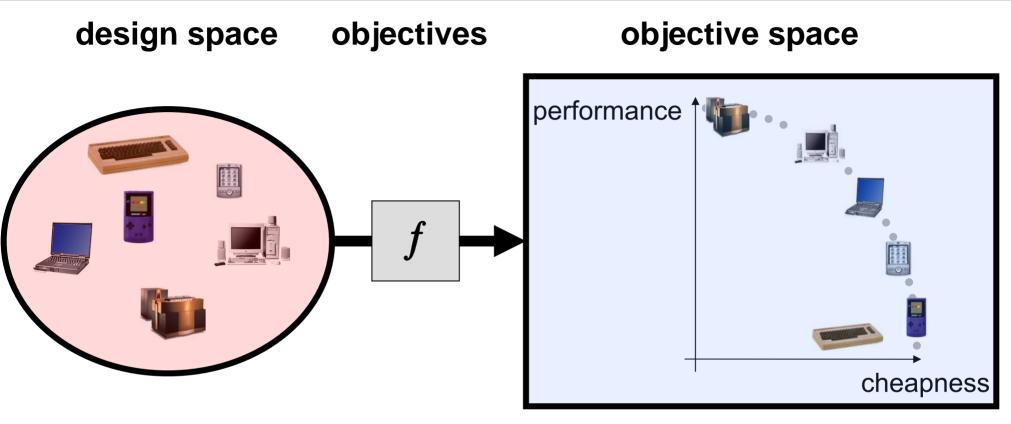


Optimal Usage of Non-renewable Groundwater Resources in the Sahara

Tobias Siegfried Prof. Dr. Wolfgang Kinzelbach Institut für Hydromechanik und Wasserwirschaft (IHW)



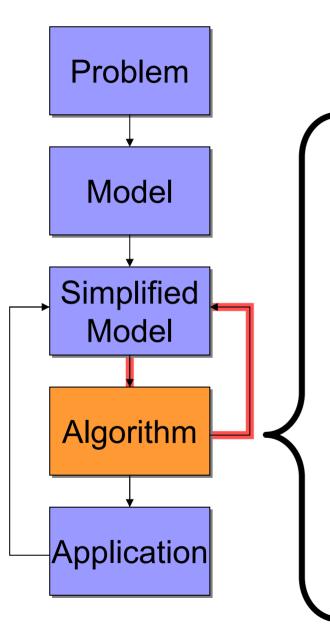
Global Optimization



Challenges: • complexity of the solution space

- conflicting optimization criteria
- uncertain information
- computationally expensive objective functions

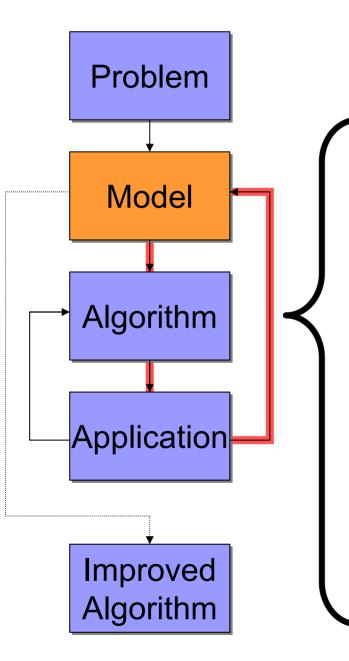
Bottom-Up Approach



Focus: a good algorithm...

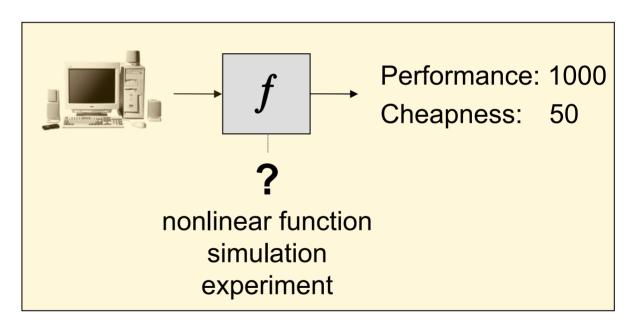
- Design of a problem-specific algorithm using known concepts:
- Dynamic programming
- Branch and bound
- Divide and conquer
- Usage of a general search algorithm with model constraints:
- Integer linear programming
- Gradient methods

Top-Down Approach



Focus: a good model...

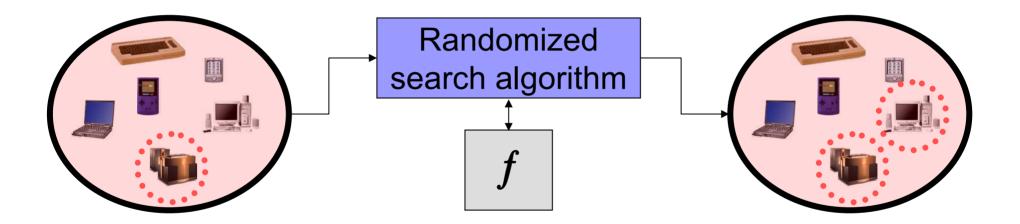
Usage of black-box optimization methods to approximate the optima:



- Evolutionary algorithms
- Simulated annealing

Randomized Search Algorithms (RSAs)

Idea:find good solutions without investigating all solutionsAssumption:better solutions can be found in the neighborhood
of good solutions



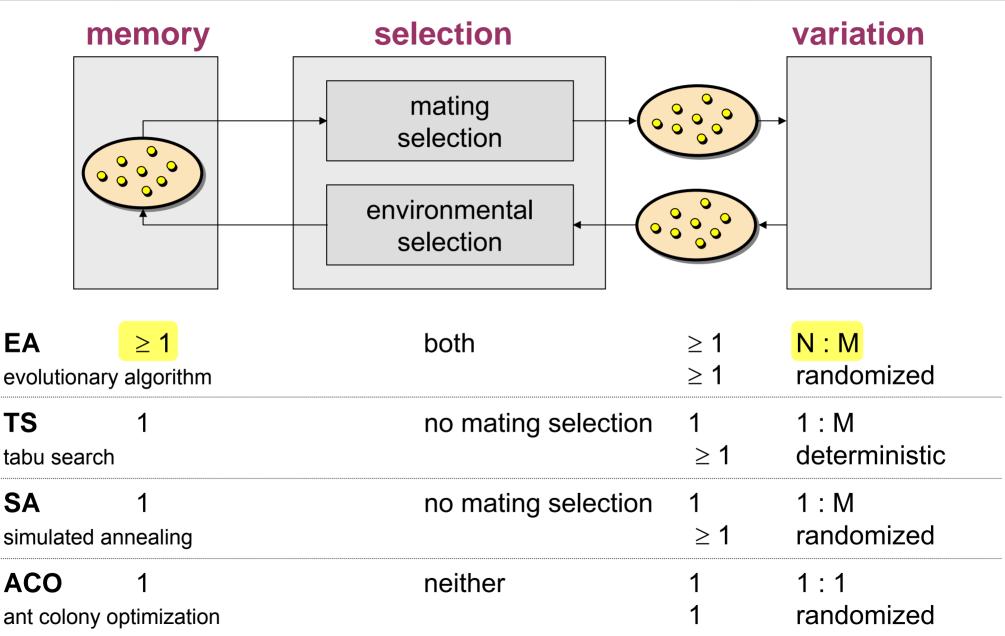
t = 1:

(randomly) choose a solution x_1 to start with

 $t \rightarrow t+1$:

(randomly) choose a solution x_{t+1} using solutions x_1, \ldots, x_t

Types of Randomized Search Algorithms



How to...

- handle multiple objectives
- account for uncertainty
- optimize for robustness
- incorporate user preferences
- achieve diversity in the parameter space
- reduce the design space complexity
- statistically assess the quality of the outcome
- simplify implementation and maximize reusability
- deal with limited memory resources
- postprocessing of tradeoff surface

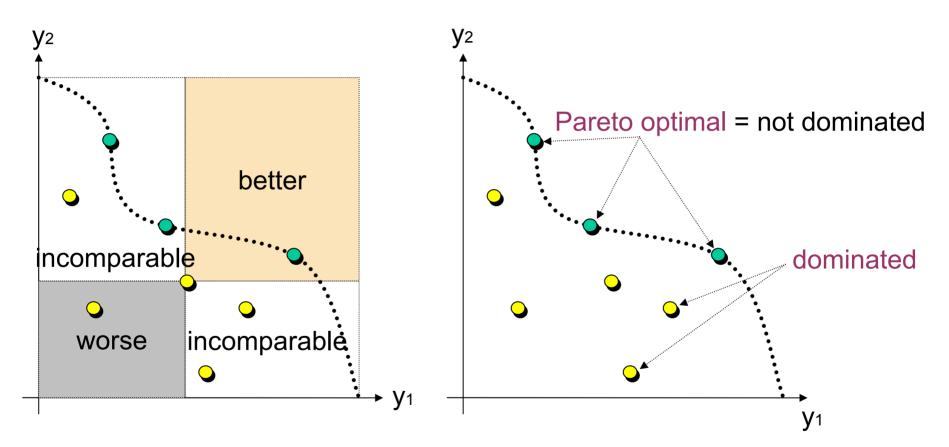
Key Issues in Design Space Exploration Using RSA

How to...

- handle multiple objectives
- account for uncertainty
- optimize for robustness
- incorporate user preferences
- achieve diversity in the parameter space
- reduce the design space complexity
- statistically assess the quality of the outcome
- simplify implementation and maximize reusability
- deal with limited memory resources
- postprocessing of tradeoff surface

The Multiobjective Scenario

Maximize $(y_1, y_2, ..., y_n) = (f_1(x_1, x_2, ..., x_k), ..., f_n(x_1, x_2, ..., x_k))$

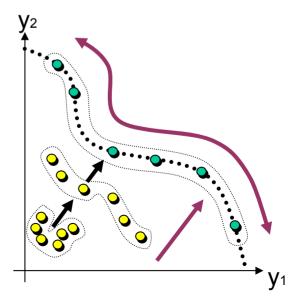


Problem is underdetermined...

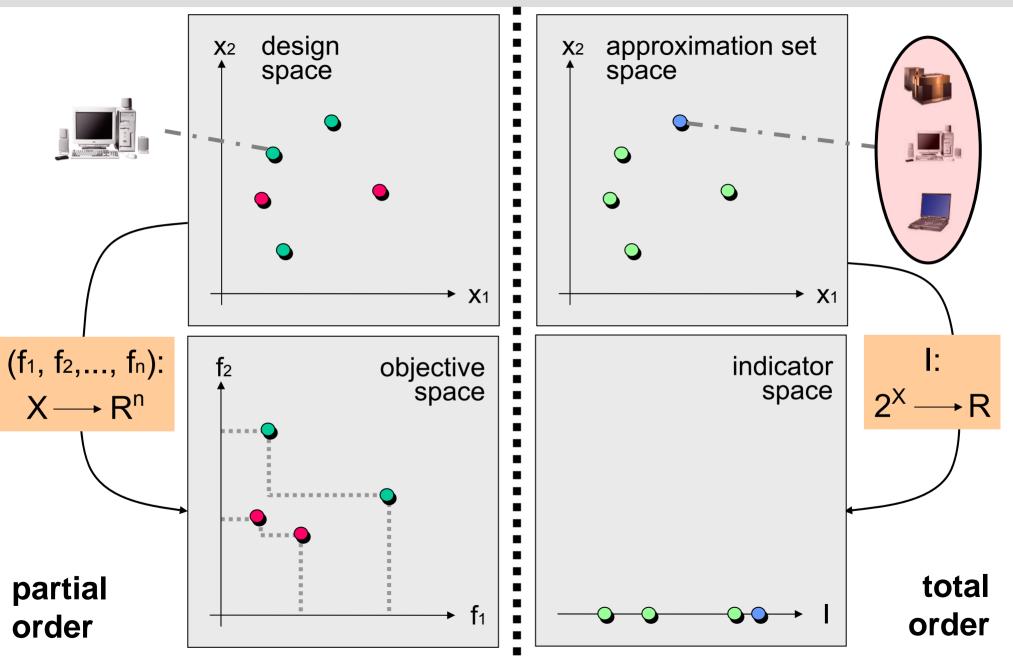
What Is the Optimization Goal?

- Find all Pareto-optimal solutions?
 - Impossible in continuous search spaces
 - How should the decision maker handle 10000 solutions?
- Find a representative subset of the Pareto set?
 - Many problems are NP-hard
 - What does representative actually mean?
- Find a good approximation of the Pareto set?
 - What is a good approximation?
 - How to formalize intuitive understanding:
 - close to the Pareto front
 - e well distributed

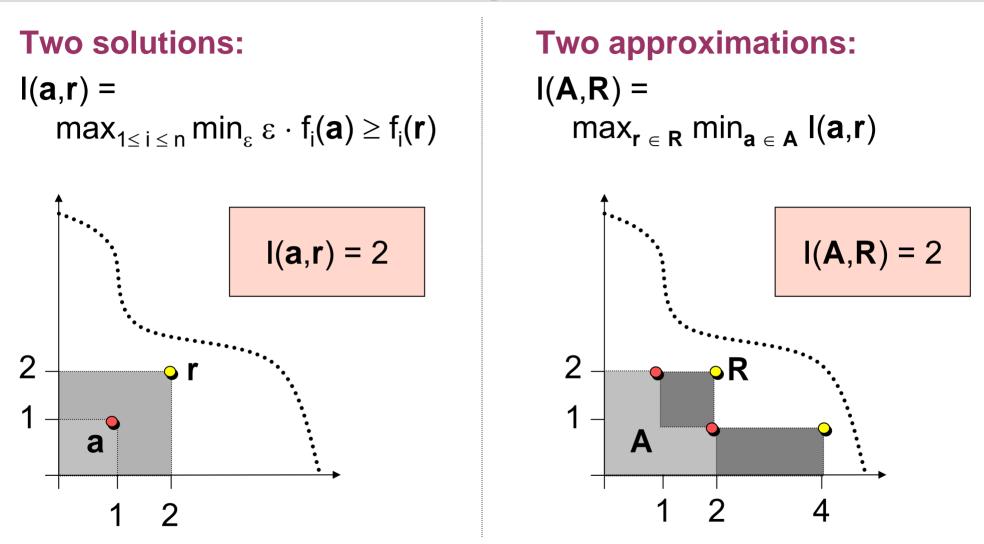
[Deb:01]



The Actual Problem



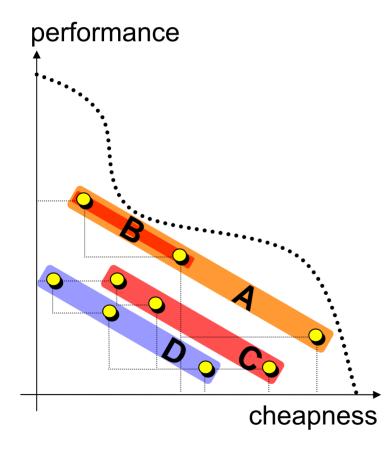
The ε-Quality Indicator



I(A,R) = minimum factor by which A needs to be "improved"
 such the (fixed) reference set R is entirely covered
[Zitzler et al. : 03]

Pareto Compliance

Indicators should be **Pareto compliant** = the order induced by I should be an extension of the order induced by f₁,..., f_n



Pareto dominance:

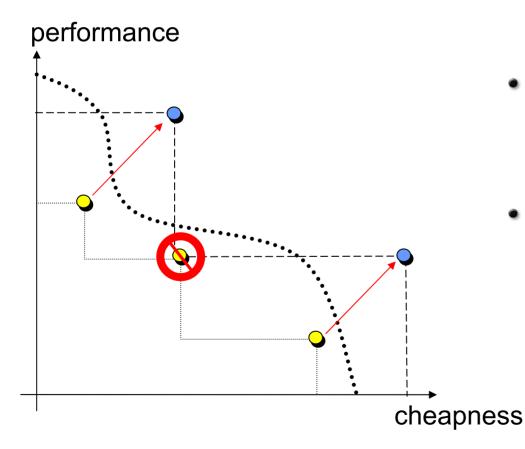
- A better than B
- B better than C
- C better than D

Indicator ranking:

 $I(A) \ge I(B) \ge I(C) \ge I(D)$

Indicator-Based Selection: Main Idea

Fitness x = loss in indicator value if x is removed = $I(A-\{x\}, A)$ = $I(A-\{x\}, \{x\})$



- "optimal" in steady state (one solution per iteration)
- needs to be extended to break ties

[Zitzler,Künzli:04]

Implementation for the ε-Quality Indicator

Fitness x = loss in indicator value if x is removed

- $= I(A-\{x\}, \{x\})$
- $= \min_{a \in A \{x\}} \{ I(\{a\}, \{x\}) \}$

More precisely:

Fitness vector = sorted pairwise indicator values

Fast approximation:

$$F(\boldsymbol{x}^1) = \sum_{\boldsymbol{x}^2 \in P \setminus \{\boldsymbol{x}^1\}} -e^{-I(\{\boldsymbol{x}^2\}, \{\boldsymbol{x}^1\})/\kappa}$$

Empirical Validation

		SPEA 2		NSGA-II		$SPEA2_{adap}$		$IBEA_{\epsilon,adap}$	
		P value	Т	P value	Т	P value	Т	P value	Т
ZDT6	NSGA-II	$5.6073 \cdot 10^{-4}$	1						
	SPEA2 _{adap}	> 5%	1	$8.1975 \cdot 10^{-6}$	Ļ				
	$IBEA_{\epsilon,adap}$	$8.1014 \cdot 10^{-9}$	Ť	$2.0023 \cdot 10^{-5}$	↑	$1.9568 \cdot 10^{-9}$	1		
	IBEA _{HD,adap}	0.0095	1	> 5%	ŧ	$5.4620 \cdot 10^{-5}$	- î	$1.3853 \cdot 10^{-5}$	Ļ
DTLZ2	NSGA-II	$3.0199 \cdot 10^{-10}$	Ļ						
	SPEA2 _{adap}	> 5%	1	$3.0199 \cdot 10^{-10}$	Ť				
	$IBEA_{\epsilon,adap}$	$3.0199 \cdot 10^{-10}$	1	$3.0199 \cdot 10^{-10}$	1	$3.0199 \cdot 10^{-10}$	1		
	IBEA _{HD,adap}	$3.0199 \cdot 10^{-10}$	Ť	$3.0199 \cdot 10^{-10}$	Ť	$3.0199 \cdot 10^{-10}$	Ť	$5.5329 \cdot 10^{-7}$	\downarrow
DTLZ6	NSGA-II	$8.1014 \cdot 10^{-9}$	Ļ						
	SPEA2adap	> 5%	=	$6.1210 \cdot 10^{-9}$	Ť				
	IBEA _e , adap	$3.0199 \cdot 10^{-10}$	1	$3.0199 \cdot 10^{-10}$		$3.0199 \cdot 10^{-10}$	1		
	IBEA _{HD,adap}	$3.0199 \cdot 10^{-10}$	Ť	$3.0199 \cdot 10^{-10}$	Ť	$3.0199 \cdot 10^{-10}$	Ť	$3.5923 \cdot 10^{-4}$	Ļ
KUR	NSGA-II	> 5%	1						
	SPEA2 _{adap}	> 5%	1	> 5%	1				
	$IBEA_{\epsilon,adap}$	$3.0199 \cdot 10^{-10}$	Ļ	$3.0199 \cdot 10^{-10}$	Ļ	$6.6955 \cdot 10^{-10}$	\rightarrow		
	IBEA _{HD,adap}	$3.0199 \cdot 10^{-10}$	Ļ	$3.0199 \cdot 10^{-10}$	Ļ	$4.9752 \cdot 10^{-10}$	+	> 5%	#
Knap.	NSGA-II	> 5%	11						
	SPEA2adap	> 5%	11	> 5%	11				
	$IBEA_{\epsilon,adap}$	> 5%	1	> 5%	1	> 5%	11		
	IBEA _{HD,adap}	> 5%	1	> 5%	1	> 5%	11	> 5%	=
	NSGA-II	> 5%	1	0.0190	+				
	SPEA2adap	> 5%	-	0.0189		0 4040 10-9			
	$IBEA_{\epsilon,adap}$	$1.0837 \cdot 10^{-8}$	1	$2.6753 \cdot 10^{-9}$	+	$6.4048 \cdot 10^{-8}$	1	5 807	_
EVDOR	IBEA _{HD,adap}	$1.9638 \cdot 10^{-7}$	Ĩ	$1.2260 \cdot 10^{-8}$	T	$6.6261 \cdot 10^{-7}$	T	> 5%	=
EAPO3	NSGA-II	> 5% > 5%	ļ 1	> 5%					
	SPEA2adap	> 5% 4.3165 · 10 ^{−8}	+	5.0801 · 10 ⁻⁰	+	$3.1159 \cdot 10^{-7}$	1		-
	$IBEA_{\epsilon,adap}$	$2.4189 \cdot 10^{-7}$	T.	$1.5732 \cdot 10^{-7}$	Ť	$1.1653 \cdot 10^{-6}$	T.	> 5%	
EX DO4	IBEA _{HD,adap} NSGA-II	> 5%	_	1.5752 • 10		1.1053 · 10		> 370	
EAF04		> 5%	-	$-9.4209 \cdot 10^{-4}$					
	SPEA2adap	> 5% 1.8546 · 10 ⁻¹⁰	- -	$6.9754 \cdot 10^{-10}$	+	$1.8390 \cdot 10^{-10}$	*		
	$IBEA_{\epsilon,adap}$	1.9883 · 10-10	1	$1.0221 \cdot 10^{-9}$	1	$1.9716 \cdot 10^{-10}$	1	> 5%	
	$IBEA_{HD,adap}$	1.2002 - 10	1	1.0221 • 10		1.5710.10		> 370	—

significantly better than all other algorithms

Key Issues in Design Space Exploration Using RSA

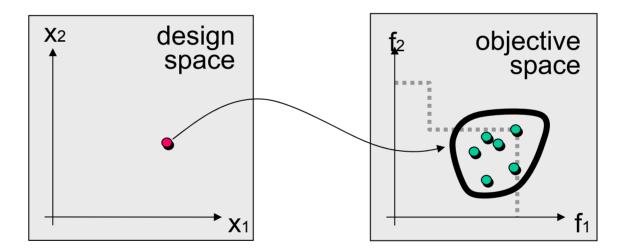
How to...

- handle multiple objectives
- account for uncertainty
- optimize for robustness
- incorporate user preferences
- achieve diversity in the parameter space
- reduce the design space complexity
- statistically assess the quality of the outcome
- simplify implementation and maximize reusability
- deal with limited memory resources
- postprocessing of tradeoff surface

Uncertainty in Multiobjective Optimization

Uncertainty = each time a solution/design is evaluated, possibly different objective function values emerge due to

- stochastic system model (Monte Carlo simulation)
- model parameter variations (cost estimates)



Previous work: [Hughes:01;Teich:01; Goldberg et al.:03,05]

- assume a certain type of distribution (uniform, normal)
- mixed models (stochastic dominance, regular distance)

Deterministic model:

$$\operatorname{argmin}_{S \in \mathcal{M}(X)} I(f(S), f(R))$$

each solution is associated with one objective vector

Stochastic model:

$$\operatorname{argmin}_{S \in \mathcal{M}(X)} E(I(\mathcal{F}(S), \mathcal{F}(R)))$$

each solution is associated with a random variable

$$\begin{split} E(I(\mathcal{F}(S), \mathcal{F}(R))) &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P(\mathcal{F}(S) = A, \mathcal{F}(R) = B) \cdot I(A, B) \, \mathrm{d}A\mathrm{d}B \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P(\mathcal{F}(S) = A) \cdot P(\mathcal{F}(R) = B) \cdot I(A, B) \, \mathrm{d}A\mathrm{d}B \end{split}$$

[Basseur, Zitzler:05]

Estimating the Expected ε-Value

 $S(\mathbf{x})$ = sample of objective vectors for solution \mathbf{x}

 \frown

Main idea: consider all combinations of objective vectors and compute expected (mean) indicator value

$$\hat{E}(I(\mathcal{F}(S), \{\mathbf{z}^*\})) = \sum_{\mathbf{z}_1 \in \mathcal{S}(\mathbf{x}_1)} \sum_{\mathbf{z}_2 \in \mathcal{S}(\mathbf{x}_2)} \cdots \sum_{\mathbf{z}_m \in \mathcal{S}(\mathbf{x}_m)} \frac{I(\{\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_m\}, \{\mathbf{z}^*\})}{\prod_{1 \le i \le m} |\mathcal{S}(\mathbf{x}_i)|}$$
$$\hat{E}(I(\mathcal{F}(S), \mathcal{F}(\{\mathbf{x}^*\})) = \frac{1}{|\mathcal{S}(\mathbf{x}^*)|} \sum_{\mathbf{z}^* \in \mathcal{S}(\mathbf{x}^*)} \hat{E}(I(\mathcal{F}(S), \{\mathbf{z}^*\}))$$

Alternative: mean value per objective function (looses distribution characteristics)

Preliminary Simulation Results

indicator-based

average [Hug01]

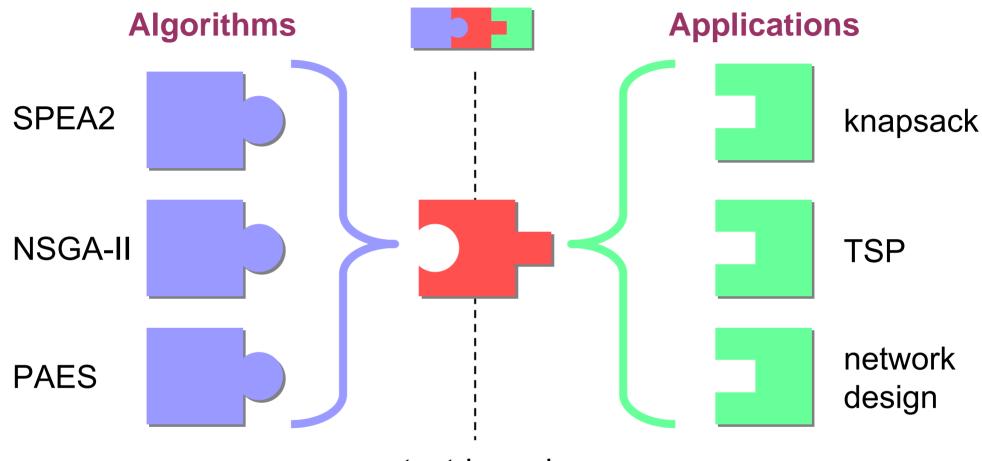
		EIV		BCK		Exp		A	vg	PDR		
		Z	Х	Z	Х	Ζ	Х	Ζ	Х	Ζ	Х	
n=1	EIV			> 5%	> 5%	> 5%	> 5%	> 5%	> 5%	> 5%	> 5%	
	\mathbf{BCK}	> 5%	> 5%			> 5%	> 5%	> 5%	> 5%	> 5%	> 5%	
]	Exp	> 5%	> 5%	> 5%	> 5%			> 5%	> 5%	> 5%	> 5%	
	Avg	> 5%	> 5%	> 5%	> 5%	> 5%	> 5%			> 5%	> 5%	
]	PDR	> 5%	> 5%	> 5%	> 5%	> 5%	> 5%	> 5%	> 5%			
n=5]	EIV			> 5%	> 5%	> 5%	1.56%	0.014%	0.014%	0.014%	0.014%	
	BCK	> 5%	> 5%			1.89%	0.041%	0.014%	0.014%	0.014%	0.014%	
]	Exp	> 5%	> 5%	> 5%	> 5%			0.014%	0.014%	0.014%	0.014%	
-	Avg	> 5%	> 5%	> 5%	> 5%	> 5%	> 5%			2.28%	> 5%	
]	PDR	> 5%	> 5%	> 5%	> 5%	> 5%	> 5%	> 5%	0.019%			
n=10	EIV			> 5%	> 5%	> 5%	> 5%	0.014%	0.014%	0.014%	0.014%	
]	BCK	> 5%	> 5%			> 5%	0.45%	0.014%	0.014%	0.014%	0.014%	
]	Exp	> 5%	> 5%	> 5%	> 5%			0.014%	0.014%	0.014%	0.014%	
	Avg	> 5%	> 5%	> 5%	> 5%	> 5%	> 5%			> 5%	> 5%	
]	PDR	> 5%	> 5%	> 5%	> 5%	> 5%	> 5%	1.28%	> 5%			

- no significant differences in <3 objectives
- highly significant differences in higher dimensions

How to...

- handle multiple objectives
- account for uncertainty
- optimize for robustness
- incorporate user preferences
- achieve diversity in the parameter space
- reduce the design space complexity
- statistically assess the quality of the outcome
- simplify implementation and maximize reusability
- deal with limited memory resources
- postprocessing of tradeoff surface

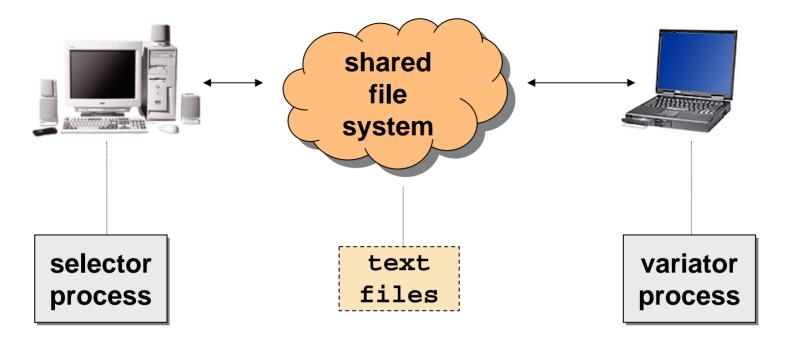
The Concept of PISA



text-based

Platform and programming language independent Interface for Search Algorithms [Bleuler et al.:03; Künzli et al. 05]

PISA: Implementation



application independent:

- mating / environmental selection
- individuals are described by IDs and objective vectors

handshake protocol:

- state / action
- individual IDs
- objective vectors
- parameters

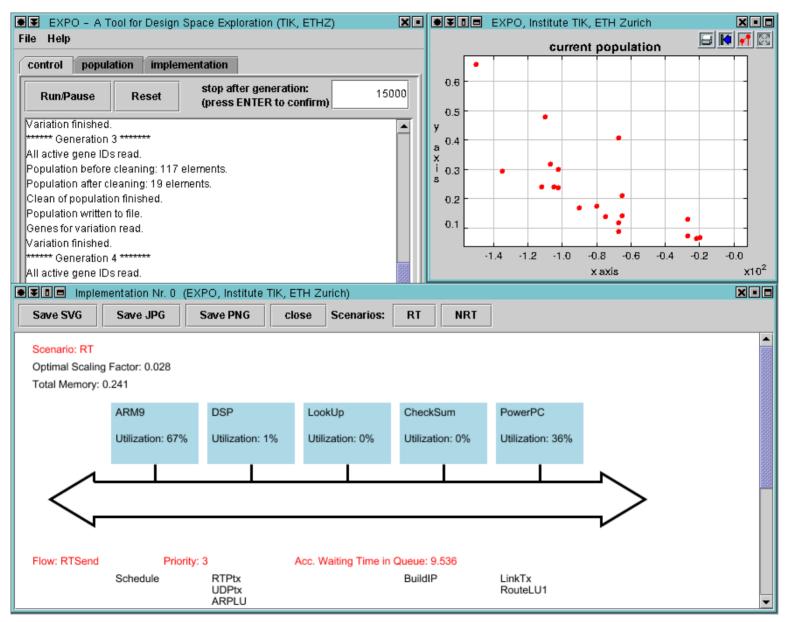
application dependent:

- variation operators
- stores and manages individuals

PISA Website

TIK	Optimization Problems (variator)	Optimization Algorithms (selector)
ETH Zürich > IT & E	LOTZ - Demonstration Program (more)	SEMO - Demonstration Program (more)
PISA	 Source: in <u>C</u> Binaries: <u>Solaris, Windows, Linux</u> 	 Source in <u>C</u> Binaries: <u>Solaris, Windows, Linux</u>
A Platform	LOTZ2 - Leading Ones Trailing Zeros (<u>more</u>)	SEMO2 - Simple Evolutionary Multiobjective Optimizer (more)
PISA is a text One impleme independent (Source: in <u>C</u> Binaries: <u>Solaris</u>, <u>Windows</u>, <u>Linux</u> Knapsack Problem (more) 	 Source in <u>C</u> Binaries: <u>Solaris</u>, <u>Windows</u>, <u>Linux</u>
Contents	: Bina http://www.tik.e	e.ethz.ch/pisa
<u>About PISA</u> For beginners	 Binaries: (incl. JRE 1.4.1) <u>Solaris, Windows, Linux</u> 	SPEA2 - Strength Pareto Evolutionary Algorithm 2 (more)
♦ <u>News</u> ♦ <u>Available m</u>	 Binaries: (pure JAVA, no JRE) <u>All platforms</u> 	 Source in <u>C</u> Binaries: <u>Solaris</u>, <u>Windows</u>, <u>Linux</u>
		NSGA2 - Nondominated Sorting Genetic Algorithm 2 (more)
Specification Bugs How to write a	(<u>odf)</u> ● Source: in <u>C</u> ● Binaries: <u>Solaris, Windows, Linux</u> module?	 Source in <u>C</u> Binaries: <u>Solaris, Windows, Linux</u>
<u>How to submi</u>	BBV - Biobjective Binary Value Problem (<u>more</u>)	ECEA - Epsilon-Constraint Evolutionary Algorithm (more)
People and c	 Source: in <u>C</u> Binaries: <u>Solaris, Windows, Linux</u> 	 Source in <u>C</u> Binaries: <u>Solaris, Windows, Linux</u>
New: A new v	MLOTZ - Generalization of the LOTZ Problem (more)	IBEA - Indicator Based Evolutionary Algorithm (more)
details.	 Source: in <u>C</u> Binaries: <u>Solaris, Windows, Linux</u> 	 Source in <u>C</u> Binaries: <u>Solaris</u>, <u>Windows</u>, <u>Linux</u>

Network Processor Design Application (EXPO)



[Thiele,Künzli et al.:03,04,05]

Open Issues in Design Space Exploration Using RSA

How to...

- handle multiple objectives
- account for uncertainty
- optimize for robustness
- incorporate user preferences
- achieve diversity in the parameter space
- reduce the design space complexity
- statistically assess the quality of the outcome
- simplify implementation and maximize reusability
- deal with limited memory resources
- postprocessing of tradeoff surface

Acknowledgements

- Matthieu Basseur, University of Lille, France
- Stefan Bleuler, ETH Zurich, Switzerland
- Simon Künzli, ETH Zurich, Switzerland
- Lothar Thiele, ETH Zurich, Switzerland