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Global OptimizationGlobal Optimization

complexity of the solution space
conflicting optimization criteria
uncertain information
computationally expensive objective functions

design space      objectives               objective space

Challenges:

ƒ

performance

cheapness



BottomBottom--Up ApproachUp Approach

ProblemProblem

ModelModel

Simplified
Model

Simplified
Model

AlgorithmAlgorithm

ApplicationApplication

Focus: a good algorithm…

Design of a problem-specific 
algorithm
using known concepts:

Dynamic programming
Branch and bound
Divide and conquer

Usage of a general search algorithm
with model constraints:

Integer linear programming
Gradient methods



TopTop--Down ApproachDown Approach

ProblemProblem

ApplicationApplication

AlgorithmAlgorithm

ModelModel

Focus: a good model…

Usage of black-box optimization methods
to approximate the optima:

Evolutionary algorithms
Simulated annealing

Improved
Algorithm
Improved
Algorithm

ƒ Performance: 1000
Cheapness: 50

?
nonlinear function

simulation
experiment



Randomized Search Algorithms (Randomized Search Algorithms (RSAsRSAs))

t = 1:
(randomly) choose a
solution x1 to start with

Randomized
search algorithm

ƒ

t → t+1:
(randomly) choose a 
solution xt+1 using solutions 
x1, …, xt

Idea: find good solutions without investigating all solutions
Assumption: better solutions can be found in the neighborhood

of good solutions



Types of Randomized Search AlgorithmsTypes of Randomized Search Algorithms
selection

environmental
selection

mating
selection

variationmemory

EA ≥ 1 both ≥ 1 N : M
evolutionary algorithm ≥ 1 randomized

TS 1                                   no mating selection 1 1 : M
tabu search ≥ 1 deterministic

SA 1                                   no mating selection 1 1 : M
simulated annealing ≥ 1 randomized

ACO 1 neither 1 1 : 1
ant colony optimization 1 randomized
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The The MultiobjectiveMultiobjective ScenarioScenario

Maximize (y1, y2, …, yn) = (f1(x1, x2, …, xk), ..., fn(x1, x2, …, xk))

Problem is underdetermined...

y2

y1

worse

better

incomparable

incomparable

y2        

y1

Pareto optimal = not dominated

dominated



What Is the Optimization Goal?What Is the Optimization Goal?
Find all Pareto-optimal solutions?

Impossible in continuous search spaces

How should the decision maker handle 10000 solutions?

Find a representative subset of the Pareto set?
Many problems are NP-hard

What does representative actually mean?

Find a good approximation of the Pareto set?
What is a good approximation?

How to formalize intuitive
understanding:

close to the Pareto front
well distributed

[Deb:01]

y2

y1



The Actual ProblemThe Actual Problem
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(f1, f2,..., fn):
X       Rn

I:
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partial
order

total
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The The εε--Quality IndicatorQuality Indicator
Two solutions: 
I(a,r) = 

max1≤ i ≤ n minε ε ⋅ fi(a) ≥ fi(r)

1 2 4

A

R2
1

I(A,R) = 2

Two approximations:
I(A,R) = 

maxr ∈ R mina ∈ A I(a,r)

a

r2
1

I(a,r) = 2

1 2
I(A,R) = minimum factor by which A needs to be “improved”

such the (fixed) reference set R is entirely covered
[Zitzler et al. : 03]



Pareto dominance:
A better than B
B better than C
C better than D

Indicator ranking:
I(A) ≥ I(B) ≥ I(C) ≥ I(D)

Pareto Compliance Pareto Compliance 

Indicators should be Pareto compliant =
the order induced by I should be an extension of the
order induced by f1,..., fn

A

B

C

performance

cheapness

D



IndicatorIndicator--Based Selection: Main IdeaBased Selection: Main Idea

Fitness x = loss in indicator value if x is removed
= I(A-{x}, A)
= I(A-{x}, {x})

performance

cheapness

“optimal” in steady state
(one solution per iteration)

needs to be extended
to break ties

[Zitzler,Künzli:04]



Implementation for the Implementation for the εε--Quality IndicatorQuality Indicator

Fitness x = loss in indicator value if x is removed
= I(A-{x}, {x})
= mina ∈ A-{x} { I({a}, {x}) }

More precisely:

Fitness vector = sorted pairwise indicator values

Fast approximation:



Empirical ValidationEmpirical Validation

significantly better
than all other

algorithms
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Uncertainty in Uncertainty in MultiobjectiveMultiobjective OptimizationOptimization

Uncertainty = each time a solution/design is evaluated,
possibly different objective function values emerge due to 

stochastic system model (Monte Carlo simulation)
model parameter variations (cost estimates)

Previous work: [Hughes:01;Teich:01; Goldberg et al.:03,05]

assume a certain type of distribution (uniform,normal)
mixed models (stochastic dominance, regular distance)

x2

x1

design
space f2

f1

objective  
space  



Indicators and UncertaintyIndicators and Uncertainty

Deterministic model:

each solution is associated with one objective vector

Stochastic model:

each solution is associated with a random variable

[Basseur, Zitzler:05]



Estimating the Expected Estimating the Expected εε--ValueValue

S(x) = sample of objective vectors for solution x

Main idea: consider all combinations of objective vectors 
and compute expected (mean) indicator value

Alternative: mean value per objective function
(looses distribution characteristics)

I({a}, {b})



Preliminary Simulation ResultsPreliminary Simulation Results

indicator-based average [Hug01]

no significant differences in <3 objectives
highly significant differences in higher dimensions
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The Concept of PISAThe Concept of PISA

SPEA2

NSGA-II

PAES

Algorithms                                          Applications 

knapsack

TSP

network
design

text-based
Platform and programming language independent Interface

for Search Algorithms [Bleuler et al.:03; Künzli et al. 05]



PISA: ImplementationPISA: Implementation

selector
process
selector
process

text
files

shared
file 

system

shared
file 

system

variator
process
variator
process

application independent:
mating / environmental 
selection
individuals are 
described
by IDs and objective 
vectors

handshake protocol:
state / action
individual IDs
objective vectors
parameters

application dependent:
variation operators
stores and manages 
individuals



PISA WebsitePISA Website

http://www.tik.ee.ethz.ch/pisahttp://www.tik.ee.ethz.ch/pisa



Network Processor Design Application (EXPO)Network Processor Design Application (EXPO)

[Thiele,Künzli et al.:03,04,05]
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