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Abstract. Markov-reward models, as extensions of continuous-time
Markov chains, have received increased attention for the specification
and evaluation of performance and dependability properties of systems.
Until now, however, the specification of reward-based performance and
dependability measures has been done manually and informally. In this
paper, we change this undesirable situation by the introduction of a
continuous-time, reward-based stochastic logic. We argue that this logic
is adequate for expressing performability measures of a large variety.
We isolate two important sub-logics, the logic CSL [1, 3], and the novel
logic CRL that allows one to express reward-based properties. These log-
ics turn out to be complementary, which is formally established in our
main duality theorem. This result implies that reward-based properties
expressed in CRL for a particular Markov reward model can be inter-
preted as CSL properties over a derived continuous-time Markov chain,
so that model checking procedures for CSL [3, 2] can be employed.

1 Introduction

With the advent of fault-tolerant and distributed computer and communication
systems, the classical separation between performance evaluation and depend-
ability (i.e., reliability, availability and timeliness) evaluation does not make
sense anymore. Instead, the combined performance and dependability of a sys-
tem is of critical importance. This observation led to development of the per-
formability evaluation framework [12,13]. This framework allows one to specify
models that include both performance-related and dependability-related events
in a natural way. Furthermore, the choice of Markov-reward models (MRMs)
[11] as mathematical basis allows one to specify a wide variety of measures of
interest, albeit at times in a slightly cumbersome way. An MRM is a continuous-
time Markov chain (CTMC) augmented with a reward structure assigning a
real-valued reward to each state in the model. Such reward can be interpreted as
bonus, gain, or dually, as cost. Typical measures of interest express the amount
of gain accumulated by the system, over a finite or infinite time-horizon.



Given the fact that the model is stochastic, the measures of interest are
stochastic variables. MRMs have shown to pair a reasonable modelling flexibil-
ity and expressiveness with manageable computational expenses for the model
evaluation. To increase the modelling flexibility, a number of application-oriented
model specification techniques and supporting tools have been developed [8].

The specification of the measure-of-interest for a given MRM can not always
be done conveniently, nor can all possible measures-of-interest be expressed con-
veniently. In particular, until recently it has not been possible to directly express
measures where state sequences or paths matter, nor to accumulate rewards only
in certain subsets of states, if the rewards outside these subsets are non-zero.
Such measures are then either “specified” informally, with all its negative im-
plications, or require a manual tailoring of the model so as to address the right
subsets of states. An example of a measure that is very difficult to specify di-
rectly is the expected amount of gain obtained from the system until a particular
state is reached, provided that all paths to that state obey certain properties.

Recently, Obal and Sanders have proposed a technique to specify so-called
path-based reward variables [14] by which the specification of measures over state
sequences becomes more convenient, because it avoids the manual tailoring of
the model. In the context of the stochastic process algebra PEPA, Clark et al.
recently proposed the use of a probabilistic modal logic to ease the specification
of reward structures of MRM [5], as opposed to the specification of reward-based
measures, as we do.

In [3] we proposed to specify measures of interest for CTMCs in the logic
CSL (Continuous Stochastic Logic), a superset of the (equally named) logic
introduced by Aziz et al. [1]. CSL includes a timed CTL-like time-bounded
until operator, and a steady-state operator. Using this logic, very complex mea-
sures can be expressed easily; model-checking algorithms for CSL have been
proposed [3,2] (and implemented [10]). Notice however, that CSL is interpreted
over CTMCs only, and is hence not able to address reward-based measures. The
current paper extends this work, in that Markov-reward models are evaluated,
i.e., CTMCs augmented with a reward structure.

In this paper, we introduce a novel continuous-time, stochastic reward-based
logic CSRL, that is adequate for expressing performability measures of a large
variety. It includes next and until operators, that are equipped with time-
interval- as well as reward-interval-bounds. We present syntax and formal se-
mantics of the logic, and isolate two important sub-logics: the logic CSL, and
the logic CRL (Continuous Reward Logic) that allows one to express time-
independent reward-based properties. These logics turn out to be complemen-
tary, which is formally established in a main duality theorem, showing that time-
and reward-intervals are interchangeable. More precisely, we show that for each
MRM M and formula & the set of states satisfying @ equals the set of states of
a derived MRM M~ satisfying formula $~!, where the latter is obtained from
& by simply swapping time- and reward-intervals. The transformation of M is
inspired by [4]. The fixpoint characterisations for the CRL path operators (in-
terpreted over an MRM) reduce to the characterisations that are used for model



checking CSL (over a CTMC). As a consequence of the duality result, the model
checking problem for CRL is reducible to the model checking problem for CSL
and hence solvable with existing techniques for CSL.

The paper is organised as follows. Section 2 introduces MRMs and typical
measures of interest for them. In Section 3 the logic CSRL and its sub-logics
are defined, whereas Section 4 presents the main duality theorem. Section 5
discusses its consequences for model checking and highlights that most reward-
based performability measures having appeared in the literature can be expressed
as simple formulas of (a minor extension of) the logic. Section 6 concludes the

paper.

2 Markov reward models

In this section we introduce the basic concepts of MRMs [11]. We slightly depart
from the standard notation for MRMs (and CTMCs) and consider an MRM
as an ordinary transition system, i.e., a Kripke structure, where the edges are
equipped with probabilistic timing information and the states are augmented
with a real number that indicates the earned reward per unit of time for staying
in a state. This then allows the usual interpretation of linear-time temporal
operators like next step and unbounded or time-bounded until.

MRMs. Let AP be a fixed, finite set of atomic propositions.

Definition 1. A (labelled) CTMC C is a tuple (S,R, L) where S is a finite set of
states, R : SxS — IRy therate matrix, and L : S — 24P the labelling function
which assigns to each state s € S the set L(s) of atomic propositions a € AP
that are valid in s. A state s is called terminal (or absorbing) iff R(s,s') = 0
for all states s'.

Intuitively, R(s, s') > 0 iff there is a transition from s to s'; 1 — e~R(s:8')t jg
the probability that the transition s — s’ can be triggered within ¢ time units.
Thus the delay of transition s — s’ is governed by an exponential distribution
with rate R(s,s’). If R(s,s') > 0 for more than one state s’, a competition
between the transitions exists, known as the race condition. The probability to
move from non-absorbing s to s’ within ¢ time units, i.e., s — s’ to win the race,
is given by

R(S,SI) i (1 _ e—E(s)-t)
E(s)

where E(s) = > . .g R(s,s’) denotes the total rate at which any transition
emanating from state s is taken. More precisely, E(s) specifies that the proba-
bility of leaving s within ¢ time-units is 1 — e~®(*)'*| because the minimum of
exponential distributions, competing in a race, is characterised by the sum of
their rates. Consequently, the probability of moving from a non-absorbing state
s to s’ by a single transition, denoted P(s, s'), is determined by the probability
that the delay of moving from s to s’ finishes before the delays of other outgoing
edges from s; formally, P(s,s") = R(s,s')/E(s). For absorbing states, the total
rate E(s) = 0; we then have P(s,s') = 0 for any state s'.



Definition 2. A (labelled) MRM M is a pair (C,p) where C is a (labelled)
CTMC, and p : S — IR> 4s a reward structure that assigns to each state s € S
a reward p(s), also called gain or bonus or dually, cost.

Example 1. As a running example we consider a fault-tolerant multipro-
cessor system inspired by [15]. The system consists of three processors,
three memories, and a single interconnection network that allows a pro-
cessor to access any memory. We model this system by a CTMC, de-
picted below, where state (i,j,1) models that i processors and j memories
(1 € i,j < 4) are operational and are connected by a single network. Ini-
tially all components are functioning correctly, i.e., the initial state is (3,3,1).
The minimal operational configura- J
tion of the system is (1,1,1). The v
failure rate of a processor is A, of ‘

a memory g, and of the network ~
failures per hour (fph). It is assumed 331 p (321) ” 811 +y
that a single repair unit is present to 3) | | 3z v x| (v
repair all types of components. The 3p 2p +
P vp b 231) 221 211 Y

expected repair time of a processor

is 1/v and of a memory 1/n hours. 9y | |, v " V
In case all memories, all processors 3p 7]
b ) l121) L)~ Ated

or the network has failed the sys- ‘ ” | ,

tem moves to state F. After a repair
in state F, we assume the system to
restart in state (3,3,1) with rate d.

The reward structure can be instantiated in different ways so as to spec-
ify a variety of performability measures. The following reward structures are
taken from [15]. The simplest reward structure (leading to an availability
model) divides the states into operational and non-operational states: p; (F') =
0 and p1(¢,5,k) = 1. A reward structure in which varying levels of performance
of the system are represented is for instance based on the capacity of the system:
p2(F) =0 and p2(i, j, k) = min(i,j). The third reward structure does consider
processors contending for the memories, by taking as reward for operational
states the expected available memory bandwidth: p3(F) = 0 and ps(3, j, k) =
m- (1—(1-1/m)!) where I = min(i,j) and m = maz(i, ). ®

Ay

Let M = (C, p) be an MRM with underlying CTMC C = (S,R, L).

Paths. An infinite path o is a sequence s, to, 1, t1, S2,t2,... with for i € IV,
s; € S and t; € R such that R(s;, si+1) > 0. For ¢ € IN let ofi] = s;, the
(i41)-st state of o, and d(o,4) = t;, the time spent in s;. For t € Ry and

the smallest index with ¢ < E;‘:o t; let 0@t = o[i], the state in o at time ¢. For

t= E;:é t; +t' with ¢’ < ¢, we define y(o,t) = Z;:é tj - p(s;) +t' - p(sk), the

cumulative reward along o up to time .
A finite path o is a sequence sg,tg, S1,t1,82,%2,...,t_1,5 where s; is ab-
sorbing, and R(s;,s;+1) > 0 for all 4+ < [. For finite o, o[i] and §(o,i) are



only defined for 7 < I; they are defined as above for i < I, and §(0,l) = oc.
For t > Z;;t t; we let 0@t = s; and let the cumulative reward y(o,t) =

Z;;t t; - p(s;) + (t — Z;;}] t;) - p(s;); for the other cases, 0@t and y(o,t) are
defined as above.

Let Path™ (s) denote the set of (finite and infinite) paths starting in s.

Borel space. Any state s = s yields a probability measure Pr on Path™(s)
as follows. Let sg,...,s; € S with R(s;,8;41) >0, (0< i <k),and Iy,..., Ir_1
non-empty intervals in R>q. Then, C(so, Ip,...,Ir—1,sk) denotes the cylinder
set consisting of all paths o € Path™(s) such that oli] = s; (i < k), and
8(0,i) € I; (i < k). Let F(Path™(s)) be the smallest o-algebra on Path™(s)
which contains all sets C(s, I, ..., Ix_1, sk) where sq, . .., s ranges over all state-
sequences with s = sg, R(s;,8i41) > 0 (0 <4 < k), and Iy, ..., [_; ranges over
all sequences of non-empty intervals in IRo. The probability measure Pr on
F(Path™(s)) is the unique measure defined by induction on k: Pr(C(so)) = 1,
and for k > 0,

Pr(C(so,-.-,5k,1',s")) = Pr(C(so,...,sk)) - P(sk,s') - (e*E(S’“)'“ - e*E(S’“)'b) ,

where a = inf I’ and b = supI'. (For b = oo and A > 0 let e »* = (.) Note
that e E(sx)-a _ ¢~E(sx)b jg the probability of leaving state sy in the interval I'.

Remark. For infinite paths we do not assume time divergence. Although such
paths represent “unrealistic” computations where infinitely many transitions are
taken in a finite amount of time, the probability measure of such Zeno paths is
0. This justifies a lazy treatment of the notations c@t and y(co,t) when we refer
to the probability of a measurable ste of paths. B

Steady-state and transient probabilities. For a CTMC C two major types of
state probabilities are distinguished: steady-state probabilities where the system
is considered “on the long run”, i.e., when an equilibrium has been reached, and
transient probabilities where the system is considered at a given time instant ¢.
Formally, the transient probability

7C(s,s',t) = Pr{c € Path®(s) | c@Qt = 5'}

stands for the probability to be in state s’ at time ¢ given the initial state s.
Note that this set is measurable. Steady-state probabilities are defined as

c no_ 1 C !
T (s,8') = tlggo (s, s',t).
This limit always exists for finite CTMCs. For 8’ C S, n¢(s,5") = Y, cq

7¢(s, s') denotes the steady-state probability for set S’. In the sequel, we will
often use M rather than C (the underlying CTMC of M) as superscript.

3 Stochastic CTL with time and rewards

This section introduces a stochastic logic to reason about reward-based as well
as time-based constraints, and identifies two important sub-logics of it. For ex-



planatory purposes, we first introduce a simple branching time logic without any
support for real time or reward constraints.

Basic logic. The base stochastic logic SL, a stochastic variant of CTL (Com-
putational Tree Logic), is a continuous-time variant of PCTL [7].

Syntax. For a € AP, p € [0,1] and < € { <, <, >, >}, the state-formulas of SL
are defined by the grammar

G = tt ‘ a ‘ SNAD | - ‘ Soap(®) ‘ Poap()

where path-formulas are defined by ¢ = X& ‘ PUD.

Other boolean connectives such as V and — are derived in the obvious way.
As usual & = ttU & and the O-operator can be obtained by, for example,
P>p(0D) = P51 (O D). The state-formula Sy, (P) asserts that the steady-
state probability for the set of @-states meets the bound > p. For the running
example, the formula S>.5(2pup) expresses that the steady-state probability to
be in a state with two operational processors is at least 0.8 where 2pup holds
in state (2,4,1), 1 < j < 4. The operator Py (.) replaces the usual CTL path
quantifiers 3 and V. Pugp(p) asserts that the probability measure of the paths
satisfying ¢ meets the bound p< p. For example, P5o.3(OF) denotes that the
probability to eventually reach the failure state of the multi-processor system is
at least 0.3.

Semantics. The SL state-formulas are interpreted over the states of a CTMC
C = (S,R,L) (or an MRM M with underlying CTMC C) with proposition
labels in AP. Let Sat°(®) ={sec S|sk=d}.

sk=tt forallse S sk=P1L AP,y iff s = By, for i=1,2
skEa iffac L(s) 5 |= Spap(®) iff 7¢(s, Sat® (®)) =i p
sE-® il slEP 5 = Poap(p) iff Prob®(s, ) ap

Here, Probc(s, ) denotes the probability measure of all paths satisfying ¢ given
that the system starts in state s, i.e.,

Prob®(s,¢p) = Pr{o € Path®(s) |o = ¢}

The fact that the set {0 € Path®(s) | o = ¢} is measurable can be easily
verified. The intended meaning of the temporal operators &/ and X is standard:

cEX® iff o[1] is defined and o[1] = &
o B UB, iff Ik > 0. (o[k] = B2 AVO < i < k.o[i] = &).

Alternative characterisations. For next-formulas we have, as for DTMCs [7]:
Prob®(s, X&) = P(s, d) (1)

where P(s,®) = >, cguc (@) P(s, s'), the probability to reach a $-state in one
step from s. For until-formulas we have that the probability Prob (s, ®; U ;)



is the least solution! of the following set of equations: Prob® (s, ®; U $5) equals
1if s |= @2, equals

Z P(s,s') - Prob®(s', &, U &) (2)
s'eS

if s = &1 AP, and 0 otherwise. This probability can be computed as the solu-
tion of a regular system of linear equations by standard means such as Gaussian
elimination [6] or can be approximated by an iterative approach.

The full logic. We now extend SL by providing means to reason about both
time constraints and cumulative reward constraints. We refer to this logic as
CSRL. Later we will identify fragments of CSRL that refer to only time, re-
spectively only reward constraints.

Syntax. The syntax (and semantics) of the state formulas of CSRL are defined
as for the basic logic. Path-formulas ¢ are defined for intervals I, J C IR»¢ by:

o o= Xto | oule.

In a similar way as before, we define O1é = tt UL P and Pu,(0Ld) =
~Poap(OL—2). Interval I can be considered as a timing constraint whereas J
represents a bound for the cumulative reward. The path-formula X! & asserts
that a transition is made to a ®-state at time point ¢ € I such that the earned
cumulative reward r until time ¢ meets the bounds specified by J, i.e., r € J.
The semantics of &, L{j &, is as for &1 U Y5 with the additional constraints that
the &,-state is reached at some time point ¢ in I and the earned cumulative
reward up to ¢ lies in J. As an example property for the multi-processor system,
7720,95(0%3?2’]6 O]tt) denotes that with probability at least 0.95 the cumulative re-
ward (e.g., the expected capacity of the system for reward structure py) at time
instant 60 is at most 2. Given that the reward of a state indicates the number
. . . [0,30]
of jobs processed per time-unit, property 7320,98(3mupb{[7’00) mdown) expresses
that with probability at least 0.98 at least 7 jobs have been processed (starting
from the initial state) before the first memory unit fails within 30 time units,
where 3mup is valid in states (4,3,1), 1 < 7 < 4 and mdown is valid in states
(1,2,1), 0 <i < 4.

Semantics. The semantics of the CSRL path-formulas is defined as follows:

o= XI®  iff o[1] is defined and o[1] = & A §(0,0) € I Ay(o,d(0,0)) € J
o b B UL By iff 3t € L. (0@t = By A (Wt € [0,8).0Q¢ = B1) A y(o,t) € J).

Special cases occur for I = [0,00) and J = [0, 00):

X&=X0X) & and &1 UG, = &1 Ujy's) B,

! Strictly speaking, the function s — ProbC (s, ®1 U $3) is the least fixpoint of a higher-
order function on (S — [0,1]) — (S — [0, 1]) where the underlying partial order on
S — [0, 1] is defined for Fl,F2 S = [0, 1] by i S Fy iff Fl(s) S FQ(S) forall s € S.



Thus, SL is a proper subset of this logic. The logic CSL [1, 3] (or, timed stochas-
tic CTL) is obtained in case J = [0, 00) for all sub-formulas. Similarly, we obtain
the new logic CRL (reward-based stochastic CTL) in case I = [0,00) for all
sub-formulas. In the sequel, intervals of the form [0, c0) are often omitted from
the operators.

We recall that y(o,t) denotes the cumulative reward along the prefix of o up
to time ¢. The intuition behind y(o,t) depends on the formula under considera-
tion and the interpretation of the rewards in the MRM M under consideration.
For instance, for ¢ = ¢good and path ¢ that satisfies ¢, the cumulative reward
y(o,t) can be interpreted as the cost to reach a good state within ¢ time units.
For ¢ = ©bad, it may be interpreted as the gain earned before reaching a bad
state within ¢ time units.

Alternative characterisations. We first observe that it suffices to consider time
and reward bounds specified by closed intervals. Let K = {z € I | p(s) -z € J}
for closed intervals I and J. The probability of leaving state s at some time point
z within the interval I such that the earned reward p(s) - z lies in J is can be
expressed by

PL(s) = /KE(S) e EO gp

For instance, P%g’go)(s) = 1—e~E()t the probability to leave state s within ¢
time units where the reward earned is irrelevant. If p(s) = 2, I = [1,3] and

J =1[9,11] then K = @ and P%(s) = 0. For X! & we obtain:
Prob™ (s, X1 &) = PL(s) - P(s, ).

For the case I = J = [0, 00) this reduces to equation (1).

Let I © z denote {t—=z | t € I,t > z}. For ¢ = & UL P, we have that
Prob™ (s, ) is the least solution of the following set of equations: Prob™ (s, ¢) =
1if s |z =@, A&y, inf I = 0 and inf J = 0,

sup K
/ S P(s, ) - Prob™(s', 6, UIST | 6,) da (3)
0 s'eS

if s = &1 APy, and

inf K
e E(s)inf K +/0 Z P(s, s, z) - Prob™ (s, &, U;gi(s).z $,) dx
s'eS

if s = @ AP, and 0 otherwise, where P(s,s',z) = R(s,s') - e F()% denotes
the probability of moving from state s to s’ within z time units. The above
characterisation is justified as follows. If s satisfies #; and —®,, the probability
of reaching a $,-state from s within the interval I by earning a reward r € J
equals the probability of reaching some direct successor s’ of s within z time
units (x < sup! and p(s) - ¢ < sup J, that is, x < sup K), multiplied by the
probability of reaching a ®-state from s’ in the remaining time interval I & x



while earning a reward of r—p(s) - z. If s satisfies &1 A ®2, the path-formula ¢
is satisfied if no transition outgoing from s is taken for at least inf K time units
(first summand).? Alternatively, state s should be left before inf K in which
case the probability is defined in a similar way as for the case s = @1 A =P,
(second summand). Note that inf K = 0 is possible (if e.g., inf J = inf I = 0). In
this case, s |E #1 A P, yields that any path starting in s satisfies @ L{f &5 and
Prob™ (s, & U} &) = 1.

If the reward constraint is trivial, i.e., J = [0, 00), and I is of the form [0, ¢]
for t € Ry, then the characterisation for ! reduces to the least solution of
the following set of equations: Prob™ (s, ®, U0 &,) equals 1 if s |= @5, equals

t
/ Z P(s, s, z) - Prob™ (s, & U2 &,) dx (4)
0 ses

if s |E &1 A =2, and 0 otherwise. This coincides with the characterisation for
time-bounded until in [3]. For the special case I = J = [0, 00) we obtain K =
[0,0) and hence the characterisation for U reduces to (2).

4 Duality

In this section we present the main result of the paper, a duality theorem that
has important consequences for model checking sub-logics of CSRL. The basic
idea behind this duality, inspired by [4], is that the progress of time can be
regarded as the earning of reward and vice versa. First we obtain a duality
result for MRMs where all states have a positive reward. After that we consider
the (restricted) applicability of the duality result to MRMs with zero rewards.

Transformation of MRMs. Let M = (S,R, L, p) be an MRM that satisfies
p(s) > 0 for any state s. Define MRM M~ = (S,R/, L, p') that results from M
by: (i) rescaling the transition rates by the reward of their originating state (as
originally proposed in [4]), i.e., R'(s,s") = R(s,s’)/p(s) and, (ii) inverting the
reward structure, i.e., p'(s) = 1/p(s). Intuitively, the transformation of M into
M1 stretches the residence time in state s with a factor that is proportional to
the reciprocal of its reward p(s) if p(s) > 1, and it compresses the residence time
by the same factor if 0 < p(s) < 1. The reward structure is changed similarly.
Note that M = (M~1)~1.

One might interpret the residence of ¢ time units in M~! as the earning of ¢
reward in state s in M, or (reversely) an earning of a reward r in state s in M
corresponds to a residence of r in M™!. Thus, the notions of time and reward
in M are reversed in M~!. Accordingly:

Lemma 1. For MRM M = (S,R, L, p) with p(s) > 0 for all s € S and CSRL
state-formulas @, P, and P :

1. Prob™(s, X1 &) = Prob™ ™" (s, X{ &)

2 By convention, inf @ = co.



2. Prob™(s, &, UL &) = Prob™ (s, &, U] &,).

We informally justify 2. for I = [0,¢] and J = [0,7] with r,¢ € IR3. Let

MRM M = (S,R, L,p) with p(s) > 0 for all s € S. Let s € S be such that
—1
s = & A —®,. From equation (3) we have that Prob™ (s, &, U &,) equals
/ > P(s,s,x)- Prov™ ™ (s', &, US40 B2) da.
K' ges

for K' = {z € [0,¢]|p'(s)-z € [0,r] },i.e.,, K' = [0, min(t, ﬁ)] By the definition
of M~ this equals

! s -
/ RE:8) o~ 5e . prop™™ (s, &, UISE,_ 8) do.
K' Jcs p(s) "

By substitution y = ﬁ this integral reduces to:

/ Z R(s,s') - e E(s)y . PTObM_l(s',¢1 u}feeyp(s)'y &) dy

K ges

where K = [O,min(p(t—s),r)]. Thus, the function that maps (s,I,.J) onto
ProbM_l(s,sﬁl U{ &5) meets the fixed point equation for Prob™ (s, &, UL &,).
Using arguments of fixed point theory, i.e., Tarski’s theorem for least fixed points
of monotonic functions on lattices, it can be shown that these fixed points agree
(as they both are the least fixed point of the same operator). Thus, we obtain

/ Z P(s,s',y) - Prob™M(s', &, L{ﬁgg(s)_y &) dy
Kyes

and this equals Prob™ (s, ®; UL &,) for s |= &1 A =Py, cf. (3).

For CSRL state-formula @ let $~! be defined as ¢ where for each sub-
formula in & of the form X! or U} the intervals I and J are swapped.
This notion can be easily defined by structural induction on & and its def-

inition is omitted here. For instance, for & = P;O.g(—'Fu[[fg’fg)] F) we have
o1 = P;o.g("FU[[;g,’gg]) F). We now have:

Theorem 1. For MRM M = (S,R,L,p) with p(s) > 0 for all s € S and
CSRL state-formula &:

SatM(®) = SatM ($7Y).

If M contains states equipped with a zero reward, this duality result does not
hold, as the reverse of earning a zero reward in M when considering ¢ should
correspond to a residence of 0 time units in M ! for =1, which — as the advance
of time in a state cannot be halted — is in general not possible. However, the
result of Theorem 1 applies to some restricted, though still practical, cases, viz.



if (i) for each sub-formula of & of the form X} &' we have J = [0,00), and
(ii) for each sub-formula of the form &; U} &, we either have J = [0,00) or
SatM(®,) C {s eS| p(s) >0}, ie., all $;-states are positively rewarded. The
intuition is that either the reward constraint (i.e., time constraint) is trivial in
& (in $71), or that zero-rewarded states are not involved in checking the reward
constraint. Here, we define M~! by setting R/(s, s') = R(s,s’) and p/(s) = 0 in
case p(s) = 0 and as defined above otherwise. For instance, Theorem 1 applies

[50,50] f

to the property Pxo.9(~FU, ) for the multi-processor example, since all

[10,00)
—F-states have a positive reward.

5 Application of the logic

In this section, we discuss model checking of CSRL. We furthermore illustrate
that CSRL and its fragments CSL and CRL provide ample means for the
specification of performability measures.

Model checking. CSL model checking can be carried out in the following
way. Spp(P) gives rise to a system of linear equations for each bottom strongly
connected component of the graph underlying the CTMC [3]. The probability
to satisfy U/ - and X-path formulas can be obtained as the solution of a system
of linear equations, resp. a single matrix-vector multiplication [7], based on (1)
and (2). Finally, the probability to satisfy a ¢! -formula can be obtained as the
solution of a system of Volterra integral equations (4), that can be computed
by either numerical integration [3], or transient analysis of the CTMC [2]. From
Theorem 1, we can conclude that model checking an MRM against a CRL-
formula can be performed using the algorithms established for model checking
CTMCs against CSL:

Corollary 1. For an MRM without any zero rewards, model checking CRL is
reducible to model checking CSL.

In a number of interesting, albeit restricted cases (cf. Sec 4), the corollary carries
over to MRMs with zero rewards. The duality theorem does not provide an algo-
rithmic recipe for CSRL, but a direct solution using numerical integration can
be constructed based on the fixpoint characterisation for /£. An investigation of
the feasibility of applying known efficient performability evaluation algorithms
to model checking CSRL is ongoing.

Typical performability measures. Performability measures that frequently
appear in the literature, e.g., [15], can be specified by simple CSRL-formulas.
This is illustrated by Table 1 where we listed a (non-exhaustive) variety of typ-
ical performability measures for the multi-processor system together with the
corresponding CSRL formulas. Measure (a) expresses a bound on the steady-
state availability of the system and (b) expresses (a bound on) the probability
to be not in a failed state at time ¢, i.e., the instantaneous availability at time .
Measure (c) expresses the time until a failure, starting from a non-failed state.
Evaluating this measure for varying ¢, gives us the distribution of the time to



performability measure formula logic

(a) steady-state availability Spap(—F) SL
(b)  instantaneous availability at time ¢ Poap(O1-F)  CSL
(c) distribution of time to failure Poap(~FUY F) CSL
(d)  distribution of reward until failure ’qup(ﬁFI/I[O - F) CRL
(e) distribution of cumulative reward until ¢ ’PNP(O% i]tt) CSRL

Table 1. Performability measures and their logical specification

failure. Measure (d) complements this by expressing the distribution of the re-
ward accumulated until failure. Measure (e) generalises (c) and (d) by expressing
the simultaneous distribution of the accumulated reward against time, i.e., it ex-
presses the probability for the reward accumulated at t to be at most r. This
measure coincides with the performability distribution as proposed in the sem-
inal paper [12]. Note that for the computation of all these measures efficient
algorithms do exist [9]. We emphasize that, in its full generality, CSRL allows
to specify much more complex performability measures than previous ad hoc
methods.

A possible extension of CSRL. Consider state s in MRM M. For time ¢ and
set of states S, the instantaneous reward p™ (s, S',t) equals Yes aM(s,8',t)-
p(s") and denotes the rate at which reward is earned in some state in S’ at time ¢.
The ezpected (or long run) reward rate p™ (s, S") equals Y-, oo 7 (s,5") - p(s').
We can now add the following operators to our framework:

s = E5(D) iff pM(s, SatM(P)) € J
s = EL(D) iff pM(s, Sat™M(B),t) € J
s = CL(®) iff [, pM(s, Sat™(P),u) du € T

Although the duality principle is not applicable to the new operators, their model
checking is rather straightforward. The first two formulas require the summation
of the &-conforming steady-state or transient state probabilities (as computed
for measure (a) and (b)) multiplied with the corresponding rewards. The oper-
ator C1(®) states that the expected amount of reward accumulated in @-states
during the interval I lies in J. It can be evaluated using a variant of uniformi-
sation [9,16]. Some example properties are now: £;(—F), which expresses the
expected reward rate (e.g., the system’s capacity) for an operational system,
EL(tt) expresses the expected instantaneous reward rate at time ¢ and C [o: t]( tt)
expresses the amount of cumulated reward up to time ¢.

6 Concluding remarks

We introduced a continuous-time, reward-based stochastic logic which is ade-
quate for expressing performability measures of a large variety. Two important
sub-logics were identified, viz. CSL [1, 3], and the novel logic CRL that allows
one to express reward-based properties. The main result of the paper is that CSL



and CRL are complementary, implying that CRL-properties for a Markov re-
ward model can be interpreted as CSL-properties over a derived CTMC, so that
existing model checking procedures for CSL can still be employed. The model
checking of the full logic CSRL, in particular properties in which time- and
reward-bounds are combined, is left for future work.

Acknowledgement. We thank the reviewers for their helpful comments.
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