
Model-Checking Algorithms for
Continuous-Time Markov Chains

Christel Baier, Boudewijn Haverkort, Senior Member, IEEE,

Holger Hermanns, and Joost-Pieter Katoen, Member, IEEE Computer Society

Abstract—Continuous-time Markov chains (CTMCs) have been widely used to determine system performance and dependability

characteristics. Their analysis most often concerns the computation of steady-state and transient-state probabilities. This paper

introduces a branching temporal logic for expressing real-time probabilistic properties on CTMCs and presents approximate model

checking algorithms for this logic. The logic, an extension of the continuous stochastic logic CSL of Aziz et al., contains a time-bounded

until operator to express probabilistic timing properties over paths as well as an operator to express steady-state probabilities. We

show that the model checking problem for this logic reduces to a system of linear equations (for unbounded until and the steady-state

operator) and a Volterra integral equation system (for time-bounded until). We then show that the problem of model-checking time-

bounded until properties can be reduced to the problem of computing transient state probabilities for CTMCs. This allows the

verification of probabilistic timing properties by efficient techniques for transient analysis for CTMCs such as uniformization. Finally, we

show that a variant of lumping equivalence (bisimulation), a well-known notion for aggregating CTMCs, preserves the validity of all

formulas in the logic.

Index Terms—Continuous-time Markov chain, lumping, model checking, temporal logic, steady-state analysis, transient analysis,

uniformization.

�

1 INTRODUCTION

CONTINUOUS-TIMEMarkov chains (CTMCs) [34], [46], [50],
[53], [69] are an important class of stochastic processes

that have been widely used in practice to determine system
performance and dependability characteristics. To mention
just a few practical applications, these models have been
used to quantify the throughput of production lines, to
determine the mean time between failure in safety-critical
systems, and to identify bottlenecks in high-speed commu-
nication networks. Due to the rapidly increasing size and
complexity of systems, obtaining such models in a direct
way becomes more and more cumbersome and error-prone.
To avoid the specification of CTMCs directly at the state
level, high-level model specification techniques have been
developed, most notably those based on queuing networks
[26], stochastic Petri nets [2], stochastic activity networks
[57], [61], and stochastic process algebras [41], [44]. With
appropriate software tools supporting these specification
methods, such as those provided by MACOM [52], SPNP
[21], UltraSAN [68], or TIPPtool [42], it is relatively
comfortable to specify performance and dependability
models of which the underlying CTMCs have millions of
states, cf. [69]. In combination with state-of-the art numer-

ical means to compute state-based probabilities, a good
workbench is available to construct and solve CTMC
models of complex systems.

The design of performance and dependability models is
usually complemented by a specification of the perfor-
mance and dependability measures of interest, such as
throughput, mean response time, and utilization. The
measure of interest determines the kind of analysis that is
to be carried out in order to compute the measure under
study. Whereas the specification of performance and
dependability models has become quite comfortable, the
specification of performance measures of interest often has
remained fairly cumbersome and is typically done in a
rather informal, ad hoc manner. In particular, usually only
simple state-based performance measures—such as steady-
state and transient-state probabilities—can be defined and
analyzed with relative ease. Steady-state probabilities refer
to the system behavior in the “long run,” whereas the
transient-state probabilities consider the system at a fixed
time instant t.

In contrast, in the area of formal methods, very powerful
means have been developed to express temporal properties
of systems, based on temporal logics. In this context,
systems are specified as transition systems consisting of a
finite set of states and a set of transitions that describe how
the system evolves from one state to another. Branching-
time logics such as CTL (Computation Tree Logic) [32]
allow one to express state-based properties as well as
properties over paths, i.e., state sequences through transi-
tion systems. Typical properties expressible in CTL are that
along all (or some) paths a certain set of (goal) states can
eventually be reached while visiting only states of a
particular kind before reaching one of these goal-states.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 7, JULY 2003 1

. C. Baier is with the Institut für Informatik I, University of Bonn,
Römerstraße 164, D-53117 Bonn, Germany.
E-mail: baier@cs.uni-bonn.de.

. B. Haverkort, H. Hermanns, and J.-P. Katoen are with the Department of
Computer Science, University of Twente, PO Box 217, NL-7500 AE
Enschede, The Netherlands. E-mail: {brh, hermanns, katoen}@cs.utwen-
te.nl.

Manuscript received 3 Apr. 2002; revised 18 Feb. 2003; accepted 24 Feb. 2003.
Recommended for acceptance by E. Clarke.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 116221.

0098-5589/03/$17.00 � 2003 IEEE Published by the IEEE Computer Society

Similar capabilities would also be very useful for specifying
performance and dependability measures over models such
as CTMCs. Note that we can view a finite-state CTMC as a
special kind of a transition system. The validity of
CTL-formulas over finite-state automata can be established
by fully automated techniques such as model checking [32],
[65]; for an overview, see [25]. The basis of model checking
CTL is a systematic, usually exhaustive, state-space ex-
ploration to check whether a property is satisfied in each
state of the model, thereby using effective methods to
combat the state-space explosion problem. Model checking
has been successfully used to validate, among others,
hardware and software systems, security protocols, and
e-commerce systems. With appropriate tools such as SMV
[22], SPIN [45], andMur’ [31], systems of several millions of
states have been analyzed.

In this paper, we present the branching-time logic CSL
(Continuous Stochastic Logic) that provides us ample means
to specify state as well as path-based performance and
dependability measures for CTMCs in a compact and
unambiguous way. This logic is basically a probabilistic
timed extension of CTL and is strongly based on the
(equally named) logic by Aziz et al. [9] and on PCTL, a
variant of CTL for discrete-time Markov chains (DTMCs)
[38]. Besides the standard steady-state and transient
measures, the logic allows for the specification of (con-
straints over) probabilistic measures over paths through
CTMCs. For instance, the probability can be expressed as
follows: Starting from a particular state, within t time units,
a set of goal-states is reached, thereby avoiding or
deliberately visiting particular intermediate states before.
This is a useful feature for dependability analysis, as
demonstrated in [40], and goes beyond the standard
measures in performance and dependability analysis.

The model checking problem for CSL is known to be
decidable [9] (for rational time bounds), but, to the best of
our knowledge, no algorithms have been considered yet to
verify CTMCs mechanically. In this paper, we investigate
which numerical methods can be adapted to “model check”
CSL-formulas over finite-state CTMCs. We show that next
and until-formulas (without time bound) can be treated in a
similar way as in the discrete-time probabilistic setting
using matrix-vector multiplication and solving a system of
linear equations [38]. Checking steady-state properties
reduces to solving a system of linear equations combined
with standard graph analysis methods, while checking until
formulas with a time bound requires the solution of a
(recursive) Volterra integral equation system. These char-
acterizations provide the theoretical basis for model
checking CSL over CTMCs in the same way as the fixed-
point characterizations for CTL provide the basis for the
model checking algorithms for CTL [23].

We show that model checking time-bounded until-
formulas can be reduced to the problem of computing
transient-state probabilities for CTMCs. In particular, our
result states that, for a given CTMC M and state s in M, the
measure ProbMðs; ’Þ for path-formula ’ to hold when the
system starts in state s can be calculated by means of a
transient analysis of another CTMC M0, which can easily be
derived from M using ’. This allows us to adopt efficient

and numerically stable techniques for performing transient
analysis of CTMCs, like uniformization [36], [37], [47], for
model checking time-bounded until-formulas. The reduc-
tion of the model checking problem for the time-bounded
until-operator to the transient analysis of a CTMC has the
advantage that—besides avoiding an awkward numerical
integration of the Volterra equation system—it employs a
measure-driven transformation of the CTMC.

In addition, we show that lumping—an equivalence
notion on Markov chains to aggregate state spaces [18],
[44] that can be viewed as a continuous variant of
probabilistic bisimulation [55]—preserves the validity of
all CSL-formulas. This allows us to switch from the original
state space to the (possibly much smaller) quotient space
under lumping prior to carrying out the model checking.
Using this property, we indicate how the state space for
checking probabilistic timing properties on the derived
CTMC M0 can be obtained. This result is in the same spirit
as [17] where bisimulation is shown to agree with CTL and
CTL* equivalence.

Summarizing, the main contributions of this paper are:

. the definition of a stochastic branching-time logic
that facilitates the formal specification of state-
based, path-based, and more complex performance
measures;

. the characterization of the probability measure for
time-bounded until formulas in terms of a Volterra
integral equation system;

. the transformation and subsequent computation of
probability measures for time-bounded until formu-
las by transient analysis;

. the preservation of the validity of CSL formulas
under lumping.

This paper is based on the extended abstract [11] and the
paper [12].

Organization of the paper. Section 2 introduces the basic
concepts of CTMCs. Section 3 presents the logic CSL and
provides fixed-point characterizations of CSL-formulas that
form the basis for a model checking procedure. Section 4
presents the reduction of the model checking problem for
time-bounded until to a transient analysis of CTMCs and
discusses the use of uniformisation. Section 5 discusses
lumping and the preservation of CSL-formulas. Section 6
presents efficiency considerations for model checking CSL,
whereas Section 7 places our work in the context of related
research. Finally, Section 8 concludes the paper.

2 CONTINUOUS-TIME MARKOV CHAINS

This section recalls the basic concepts of continuous-time
Markov chains (CTMCs) as originally developed by Markov
[56] for finite state spaces and Kolmogorov [51] for
denumerable and continuous state spaces. The presentation
is focused on the concepts needed for the understanding of
the rest of this paper; for a more elaborate treatment, we
refer to [34], [46], [49], [53], [69].

2.1 Labeled CTMCs

To ease the definition of the semantics of the logic CSL, we
slightly depart from the standard notations for CTMCs and

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 7, JULY 2003

consider a CTMC as an ordinary finite transition system
(Kripke structure) where the edges are equipped with
probabilistic timing information. Let AP be a fixed, finite set
of atomic propositions.

Definition 1. A (labeled) CTMC M is a tuple ðS;R; LÞ with
S as a finite set of states, R : S � S ! IR�0 as the rate
matrix, and L : S ! 2AP as the labeling function.

Intuitively, function L assigns to each state s 2 S the set
LðsÞ of atomic propositions a 2 AP that are valid in s. It
should be noted that Definition 1 does not require
Rðs; sÞ ¼ �

P
s0 6¼s Rðs; s0Þ, as is usual for CTMCs. In the

traditional interpretation, at the end of a stay in state s, the
system will move to a different state. According to
Definition 1, self-loops at state s are possible and are
modeled by havingRðs; sÞ > 0. We thus allow the system to
occupy the same state before and after taking a transition.
The inclusion of self-loops neither alters the transient nor
the steady-state behavior of the CTMC, but allows the usual
interpretation of linear-time temporal operators like next
step and until. This will be exploited when we address the
semantics of the logic CSL in Section 3.2. CTMCs are also
treated in this way in, among others, the textbook [64].

A state s is called absorbing iff Rðs; s0Þ ¼ 0 for all states s0.
Whenever appropriate, we assume that, for any state s, AP
contains an atomic proposition ats which is characteristic
for s, i.e., ats 2 LðsÞ and ats =2 Lðs0Þ for any s0 6¼ s. For
S0 � S, the atomic proposition atS0 stands for

W
s2S0 ats.

Intuitively, Rðs; s0Þ > 0 iff there is a transition from s to
s0. Furthermore, 1� e�Rðs;s0Þ�t is the probability that the
transition s ! s0 can be triggered within t time units. Thus,
the delay of transition s ! s0 is governed by the exponential
distribution with rate Rðs; s0Þ. If Rðs; s0Þ > 0 for more than
one state s0, a competition between the transitions originat-
ing in s exists, known as the race condition. The probability
to move from a nonabsorbing state s to a particular state s0

within t time units, i.e., the transition s ! s0 wins the race, is
given by:

Pðs; s0; tÞ ¼ Rðs; s0Þ
EðsÞ � 1� e�EðsÞ�t

� �
;

where EðsÞ ¼
P

s02S Rðs; s0Þ denotes the total rate at which
any transition outgoing from state s is taken. More
precisely, EðsÞ specifies that the probability of taking a
transition outgoing from state s within t time units is
1� e�EðsÞ�t, due to the fact that the minimum of two
exponentially distributed random variables is an exponen-

tially distributed random variable with as rate the sum of

their rates. Consequently, the probability of moving from a

nonabsorbing state s to s0 by a single transition, denoted

Pðs; s0Þ, is determined by the probability that the delay of

going from s to s0 finishes before the delays of other

outgoing edges from s; formally, Pðs; s0Þ ¼ Rðs; s0Þ=EðsÞ.
For an absorbing state s, the total rate EðsÞ is 0. In that case,

we have Pðs; s0Þ ¼ 0 for any state s0. The matrix P is usually

known as the transition matrix of the embedded discrete-

time Markov chain of M (except that usually Pðs; sÞ ¼ 1 for

absorbing s).

Definition 2. An initial distribution on M ¼ ðS;R; LÞ is a

function � : S ! ½0; 1� such that
P

s2S �ðsÞ ¼ 1.

In case there is a unique initial state s, the initial

distribution is denoted �1
s , where �1

sðsÞ ¼ 1 and �1
sðs0Þ ¼ 0

for any s0 6¼ s.

Example 1. As a running example, we address a triple

modular redundant system (TMR) taken from [39], a fault-

tolerant computer system consisting of three processors

and a single (majority) voter. We model this system as a

CTMC where state si;j models that i (0 � i � 3) proces-

sors and j (0 � j � 1) voters are operational. As atomic

propositions, we use AP ¼ fupi j 0 � i < 4g [fdowng.
The processors generate results and the voter decides

upon the correct value by taking a majority vote. Initially,

all components are functioning correctly, i.e., � ¼ �1
s3;1

.

The failure rate of a single processor is � and of the

voter � failures per hour (fph). The expected repair time

of a processor is 1=� and of the voter 1=� hours. It is

assumed that one component can be repaired at a time.

The system is operational if at least two processors and

the voter are functioning correctly. If the voter fails, the

entire system is assumed to have failed and, after a repair

(with rate �), the system is assumed to start “as good as

new.” The details of the CTMC modeling this system are

shown in Fig. 1 (with a clockwise ordering of states for

the matrix/vector-representation, starting with s3;1).
States are represented by circles and there is an edge

between state s and state s0 if and only ifRðs; s0Þ > 0. The
labeling is defined by Lðsi;1Þ ¼ fupig for 0 � i < 4 and
Lðs0;0Þ ¼ fdowng and is indicated near the states (set
braces are omitted for singletons). For the transition
probabilities, we have, e.g., Pðs2;1; s3;1Þ ¼ �=ð2�þ�þ�Þ
and Pðs0;1; s0;0Þ ¼ �=ð�þ�Þ.

BAIER ET AL.: MODEL-CHECKING ALGORITHMS FOR CONTINUOUS-TIME MARKOV CHAINS 3

Fig. 1. The CTMC modeling a triple modular redundant system.

2.2 Paths in CTMCs

Definition 3. LetM ¼ ðS;R; LÞ be a CTMC. An infinite path �

is a sequence s0!
t0
s1 !t1 s2 ! t2 . . . with, for i 2 IN , si 2 S,

and ti 2 IR>0 such that Rðsi; siþ1Þ > 0 for all i. A finite path

� is a sequence s0!
t0
s1!

t1
. . . sl�1!

tl�1
sl such that sl is absorbing,

and Rðsi; siþ1Þ > 0 for all i < l.1

For infinite path � and i 2 IN , let �½i� ¼ si, the ðiþ 1Þst
state of �, and �ð�; iÞ ¼ ti, the time spent in si. For t 2 IR�0

and i the smallest index with t �
Pi

j¼0 tj, let �@t ¼ �½i�, the
state in � occupied at time t. For finite � that ends in sl, �½i�
and �ð�; iÞ are only defined for i � l; they are defined for

i < l in the above way and �ð�; lÞ ¼ 1. For t >
Pl�1

j¼0 tj, let

�@t ¼ sl; otherwise, �@t is as above. For instance, for finite

path

� ¼ s0!
1:7
s1!
ffiffi
2

p
s2!

4
s3;

we have �ð�; 0Þ ¼ 1:7 and �ð�; 1Þ ¼
ffiffiffi
2

p
, �½0� ¼ s0 ¼ �@0:758,

�½1� ¼ s1 ¼ �@1:8, �½2� ¼ s2 ¼ �@3:4, �½3� ¼ s3 ¼ �@57, and
�@t ¼ s3 for all t > 5:7þ

ffiffiffi
2

p
. Let PathM denote the set of

(finite and infinite) paths in the CTMC M, and PathMðsÞ
the set of paths in M that start in s. The superscript M is
omitted whenever convenient.

2.3 Borel Space

Our definition of a Borel space on paths through CTMCs
follows [71], [38]. An initial distribution � yields a
probability measure Pr� on paths as follows: Let s0; . . . ; sk
2 S with Rðsi; siþ1Þ > 0 (0 � i < k) and I0; . . . ; Ik�1 none-
mpty intervals in IR�0. Then, Cðs0; I0; . . . ; Ik�1; skÞ denotes
the cylinder set consisting of all paths � 2 Pathðs0Þ such that
�½i� ¼ si (i � k), and �ð�; iÞ 2 Ii (i < k). Let FðPathÞ be the
smallest � algebra on Path which contains all sets
Cðs; I0; . . . ; Ik�1; skÞ, where s0; . . . ; sk ranges over all state-
sequences with s ¼ s0, Rðsi; siþ1Þ > 0 (0 � i < k) and
I0; . . . ; Ik�1 ranges over all sequences of nonempty intervals
in IR�0. The probability measure Pr� on FðPathÞ is the
unique measure defined by induction on k by Pr�ðCðs0ÞÞ ¼
�ðs0Þ and, for k � 0:

Pr�ðCðs0; I0; . . . ; sk; I 0; s0ÞÞ ¼ Pr�ðCðs0; I0; . . . ; skÞÞ

�Pðsk; s0Þ� e�EðskÞ�a � e�EðskÞ�b
� �

;

where a ¼ inf I 0 and b ¼ sup I 0. (For b ¼ 1 and � > 0, let
e���1 ¼ 0.) Note thatZ

I 0
EðskÞ�e�EðskÞ�t dt ¼ e�EðskÞ�a � e�EðskÞ�b

is the probability of taking a transition outgoing from
state sk in the interval I 0, where the probability density
function of the residence time of sk equals EðskÞ�e�EðskÞ�t (for
time instant t).

As opposed to the traditional approach in real-time

systems [6], we do not assume time divergence for infinite

paths � ¼ s0!
t0
s1!

t1
. . . . Although

P
j�0 tj might converge, in

which case � represents an “unrealistic” computation where

infinitely many transitions are taken in a finite amount of

time, the probability measure of such non-time-divergent

paths is 0 (independent of �) as stated in the following

proposition. This allows a lazy treatment of the notation

�@t in the description of measurable sets of paths.

Proposition 1. For any state s0, the probability measure of the set

of infinite paths � ¼ s0!
t0
s1 !t1 . . . for which

P
i�0 ti is

converging is zero.

Proof. Let M ¼ ðS;R; LÞ be a CTMC and let � ¼
maxfRðs; s0Þ j s; s0 2 Sg the maximum rate in M. Let

ConvPathðsÞ denote the set of all convergent paths that

start in state s. We show that PrðConvPathðsÞÞ ¼ 0.

Consider the set BðsÞ of all paths � that start in state s

for which the delay of the transitions never exceeds one
time unit. Formally, BðsÞ consists of all paths � ¼
s!t0 s1!

t1
s2 ! t2 . . . such that ti � 1 for all i. We first

show that the set BðsÞ has probability measure 0. The

cylinder set BnðsÞ ¼ Cðs; ½0; 1�; s1; ½0; 1�; . . . ; ½0; 1�; snÞ is

the superset of BðsÞ that contains exactly those paths

� ¼ s!t0 s1!
t1
s2 ! t2 . . . , where ti � 1 for all i < n. Clearly,

BðsÞ ¼
T

n�1 BnðsÞ. By induction on n, we obtain:

Pr BnðsÞð Þ � 1� e��
� �n

. Since 0 < 1� e�� < 1, we obtain:

PrðBðsÞÞ ¼ lim
n!1

PrðBnðsÞÞ ¼ 0:

We now show that the probability measure of the set of

convergent paths is 0. For any convergent path

� ¼ s!t0 s1!
t1
s2!

t2
. . . , the sum

P1
i¼0 ti converges. In parti-

cular, the sequence ðtiÞi�1 converges to 0. Thus, there

exists some natural number n � 1with ti � 1 for all i > n.

This implies that the “suffix path” (starting in state sn)

sn!
tn
snþ1!

tnþ1
snþ2!

tnþ2
. . . belongs to BðsnÞ. ConvPathðsÞ is

thus a subset of[
n�1

[
s1;...;sn2S

f� 2 PathðsÞ j � is of the form

s!t0 . . . !tn�2
sn�1!

tn�1
�0 for some �0 2 BðsnÞ

and t0; . . . ; tn�1 2 IRg:

This yields:

PrðConvPathðsÞÞ �
X1
n¼0

X
s1;...;sn2S

PrðBnðsÞÞ ¼ 0:

Here, we use the fact that themeasure of the set consisting

of all paths with a prefix of the form � ¼ s!t0 s1!
t1
s2!

t2

. . . !tn�1
sn (where t0; . . . ; tn are arbitrary nonnegative reals)

is at most 1, as it equalsPðs; s1Þ�Pðs1; s2Þ� . . . �Pðsn�1; snÞ:tu
Proposition 1 can also be deduced, though not in an easy

way, from [3, Theorem 4.1].

2.4 Steady-State and Transient-State Probabilities

For a CTMC, two major types of state probabilities are

distinguished: steady-state probabilities where the system is

considered “on the long run,” i.e., when an equilibrium has

been reached, and transient-state probabilities where the

system is considered at a given time instant t. Formally, the

transient probability

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 7, JULY 2003

1. Formally, paths are maximal alternating sequences s0; t0; s1; t1; s2; . . .
that are either infinite or end in an absorbing state.

�Mð�; s0; tÞ ¼ Pr�f� 2 PathM j �@t ¼ s0g

stands for the probability to be in state s0 at time t given
the initial distribution �.2 We denote with �Mð�; tÞ the
vector of state probabilities (ranging over states s0) at time t,
when the initial distribution equals �, i.e., �Mð�; tÞ ¼
ð. . . ; �Mð�; s; tÞ; . . .Þ. The transient probabilities are char-
acterized by a system of linear differential equations, also
known as the forward Chapman-Kolmogorov differential
equations [34], [50], [53], [69]:

d

dt
�Mð�; tÞ ¼ �Mð�; tÞ�Q given �Mð�; 0Þ ¼ �; ð1Þ

whereQ is the infinitesimal generatormatrix ofM defined by
Q ¼ R� diagðEÞ. E ¼ diagðEÞ denotes the diagonal matrix
with Eðs; sÞ ¼ EðsÞ and 0 otherwise.

Steady-state probabilities are given by [34], [50], [53],
[69]: �Mð�; s0Þ ¼ limt!1 �Mð�; s0; tÞ. This limit always
exists for finite CTMCs [53]. For S0 � S, let �Mð�; S0Þ ¼P

s02S0 �Mð�; s0Þ denote the steady-state probability for S0

given �, i.e.,

�Mð�; S0Þ ¼ lim
t!1

Pr�f� 2 PathM j �@t 2 S0g:

We let �Mð�; ;Þ ¼ 0. Probabilities �Mð�; s0Þ are computed
from a system of linear equations

�MðsÞ�Q ¼ 0 with
X
s0

�Mðs; s0Þ ¼ 1: ð2Þ

Notational remarks: In case of a unique initial state s, i.e.,
� ¼ �1

s , we write Prs for Pr�, �ðs; s0; tÞ for �ð�; s0; tÞ, and
�ðs; s0Þ for �ð�; s0Þ. For strongly connected CTMCs, steady-
state probabilities are independent of the initial distribu-
tion. We then write �ðs0Þ for �ð�; s0Þ.

Notice that the above two types of measures are truly
state-based. In many cases, however, there is a need to
determine the occurrence probability of certain (sets of)
state sequences. Stated differently, we would also like to be
able to express measures that address the probability on
paths through the CTMC obeying particular properties.
Except for the recent work by Obal and Sanders [60],
suitable mechanisms to express such measures have not
been considered. In Section 3, we will introduce a logic-
based approach that allows us to express such path-based
measures.

3 THE CONTINUOUS STOCHASTIC LOGIC CSL

This section presents the syntax and the semantics of the
continuous stochastic logic CSL. Next to that, fixed-point
characterizations will be given for the stochastic operators
in the logic that serve as the basis for the model-checking
algorithms for CSL.

3.1 Syntax of CSL

CSL is a branching-time temporal logic á la CTL [32] with
state and path formulas based on [9]. The state formulas are
interpreted over states of a CTMC, whereas the path
formulas are interpreted over paths in a CTMC. CSL

extends CTL with two probabilistic operators that refer to

the steady state and transient behavior of the system being

studied. Whereas the steady-state operator refers to the

probability of residing in a particular set of states (specified

by a state formula) in the long run, the transient operator

allows us to refer to the probability of the occurrence of

particular paths in the CTMC, similar to [38]. In order to

express the time span of a certain path, the path operators

until ðUÞ and next (X) will be extended with a parameter

that specifies a time interval.

Definition 4. Let p 2 ½0; 1� be a real number, �/ 2 f�; <;>;�g
a comparison operator, and I � IR�0 a nonempty interval. The

syntax of CSL formulas over the set of atomic propositions AP

is defined inductively as follows:

. tt is a state-formula.

. Each atomic proposition a 2 AP is a state formula.

. If � and � are state formulas, then so are :� and
� ^�.

. If � is a state formula, then so is S�/ pð�Þ.

. If ’ is a path formula, then P�/ pð’Þ is a state formula.

. If � and � are state formulas, then XI � and � UI �
are path formulas.

Before we provide the formal semantics, we give an

informal explanation of the CSL formulas. S�/ pð�Þ asserts

that the steady-state probability for a � state meets the

boundary condition �/ p. P�/ pð’Þ asserts that the probability

measure of the paths satisfying ’ meets the bound given by

�/ p. The operator P�/ pð:Þ replaces the usual CTL path

quantifiers 9 and 8. Intuitively, 9’—there exists a path for

which ’ holds—corresponds to P>0ð’Þ, and 8’—for all

paths ’ holds—corresponds to P�1ð’Þ. For instance,

P>0
ð�aÞ is equivalent to 9 � a, and P�1ð�aÞ stands for 8 � a

given a fair interpretation [33] of the CTL formula 8 � a. In a

fair interpretation of CTL, paths that do not satisfy certain

fairness constraints, like “visit a set of states infinitely

often,” are ruled out. Satisfaction of formulae is only with

respect to the remaining fair paths. An elaborate discussion

about the relation between fairness and probabilities goes

beyond the scope of this paper; we refer the interested

reader to [14]. The temporal operator XI is the timed

variant of the standard next operator in CTL; the path

formula XI� asserts that a transition is made to a � state at

some time point t 2 I. Operator UI is the timed variant of

the until operator of CTL; the path formula � UI� asserts

that � is satisfied at some time instant in the interval I and

that at all preceding time instants � holds.

3.2 Semantics

The state formulas are interpreted over the states of a

CTMC. Let M ¼ ðS;R; LÞ with labels in AP . The meaning

of CSL state formulas is defined by means of a satisfaction

relation, denoted by 	 , between a CTMC M, one of its

states s, and a state formula �. The pair ðs;�Þ belongs to the

relation 	 , denoted by s 	 �, if and only if � is valid in s.

Definition 5. Let Satð�Þ ¼ fs 2 S j s 	 �g. The relation 	 for

CSL state formulas is defined by:

BAIER ET AL.: MODEL-CHECKING ALGORITHMS FOR CONTINUOUS-TIME MARKOV CHAINS 5

2. The fact that the set f� 2 PathM j �@t ¼ s0g is measurable, follows by
easy verification.

s 	 tt for all s 2 S
s 	 a iff a 2 LðsÞ
s 	 :� iff s 6	 �
s 	 � ^� iff s 	 � ^ s 	 �
s 	 S�/ pð�Þ iff �Mðs; Satð�ÞÞ�/ p
s 	 P�/ pð’Þ iff ProbMðs; ’Þ�/ p:

ProbMðs; ’Þ denotes the probability measure of all paths
� 2 Path satisfying ’ when the system starts in state s, i.e.,

ProbMðs; ’Þ ¼ Prsf� 2 PathM j � 	 ’g:

The fact that the set f� 2 Path j � 	 ’g is measurable can be
verified from the Borel space construction in Section 2.3.

In a similar way as for state formulas, the meaning of
path formulas is defined by means of a satisfaction relation,
(also) denoted by	 , between a CTMCM, one of its paths �,
and path formula ’.

Definition 6. The relation	 for CSL path formulas is defined by:

� 	 XI� iff �½1� is defined and �½1� 	 � ^ �ð�; 0Þ 2 I;
� 	 � UI� iff 9t 2 I: �@t 	 � ^ ð8t0 2 ½0; tÞ:�@t0 	 �Þð Þ:

We note that, for I ¼ ;, the formula � UI� is not
satisfiable. Other Boolean connectives are derived in the
usual way, i .e . , ff ¼ :tt, � _� ¼ :ð:� ^ :�Þ, and
�) � ¼ :� _�. The usual (untimed) next and until
operator are obtained as follows: X� ¼ X½0;1Þ� and
� U� ¼ � U½0;1Þ�. In the sequel, intervals of the form
½0;1Þ are often omitted from the operators. Temporal
operators like � (“eventually”) and its real-time variant �I
are derived as follows:

P�/ pð�
I �Þ ¼ P�/ pðtt U

I�Þ and P�/ pð� �Þ ¼ P�/ pðtt U�Þ:

For ut (“always”) and its timed variant utI , we have, for
example:

P�pðutI �Þ ¼ P�1�pð�I :�Þ and P�pðut �Þ ¼ P�1�pð� :�Þ:

3.3 Specifying Properties in CSL

What types of performance and dependability properties
can be expressed using CSL? First, we remark that, in CSL,
one does not specify a measure but, in fact, a constraint (or:
bound) on a performance or dependability measure. Four
types of measures can be identified: steady-state measures,
transient-state measures, path-based measures, and nested
measures.

Steady-state measures. The formula S�/ pðatsÞ imposes a
requirement on the steady-state probability to be in state s.
(Recall that the atomic proposition ats is valid in state s and
invalid in any other state.) For instance, S�10�5ðats2;1Þ is valid
in state s3;1 (cf. the running example) if the steady-state
probability of having a system configuration in which a
single processor has failed is at most 0.00001 (when starting
in state s3;1). This can be easily generalized toward selecting
sets of states by using more general state formulas. The
formula S�/ pð�Þ imposes a constraint on the probability to
be in some � state on the long run. For instance, the formula
S�0:99ðup3 _ up2Þ states that, in the long run, for at least
99 percent of the time, at least two processors are
operational.

Transient measures. The combination of the probabil-
istic operator with the temporal operator �½t;t� can be used to
reason about transient probabilities since

�Mðs; s0; tÞ ¼ ProbMðs; �½t;t� ats0 Þ:

More specifically, P�/ pð�½t;t� ats0 Þ is valid in state s if the

transient probability at time t to be in state s0 satisfies the

bound �/ p. For instance, P�0:2ð�½5;5� ats2;1Þ is valid in state s3;1
if the transient probability of state s2;1 at time t is at most 0:2

when starting in state s3;1. In a similar way as done for

steady-state measures, the formula P>0:99ð�½t;t� ðup3 _ up2ÞÞ
requires that the probability to have at least two processors

running at time t exceeds 0.99.
Path-based measures. The standard transient measures

on (sets of) states are expressed using a specific instance of
the P-operator. However, by the fact that this operator
allows an arbitrary path formula as argument, much more
general measures can be described. An example is the
probability of reaching a certain set of states provided that
all paths to these states obey certain properties. For
instance,

P�0:01ððup3 _ up2ÞU½0;10� downÞ

is valid in state s3;1 if the probability of the system being
down within 10 time units after having continuously
operated with at least two processors is at most 0.01 when
starting in state s3;1.

Nested measures. By nesting the P and S operators,
more complex properties of interest can be specified. These
are useful to obtain a more detailed insight into the system’s
behavior and allow, e.g., to express probabilistic (timed)
reachability that are conditioned on the system being in
equilibrium. The property

S�0:9ðP�0:8 ut½0;10�:downÞ

is valid in those states that guarantee that, in equilibrium
with probability at least 0.9, the probability that the system
will not go down within 10 time units is at least 0.8.
Conversely,

P�0:5ðð:downÞU½10;20�S�0:8ððup3 _ up2ÞÞÞ

is valid for those states that,with probability at least 0.5, will
reach a state s between 10 and 20 time units, which
guarantees the system to be operational with at least two
processors when the system is in equilibrium. Besides, prior
to reaching state s, the system must be operational
continuously. These measures are of interest from a
practical point of view, but could not be expressed precisely
before.

To summarize, Table 1 surveys some performance and
dependability measures and their formulation in CSL,
where up characterizes all states in which the system is
operational.

There are two main benefits when using CSL for

specifying constraints on measures-of-interest over CTMCs.

First, the specification is entirely formal such that the

interpretation is unambiguous. Whereas this is also the case

for standard transient and steady-state measures (like

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 7, JULY 2003

Cases a and b in Table 1), this often does not apply to

measures that are derived from these elementary measures.

Such measures are typically described in an informal

manner. A rigorous specification of such more intricate

measures is of the utmost importance for their automated

analysis (as proposed in the sequel). Furthermore, an

important aspect of CSL is the possibility of stating

performance and dependability requirements over a selec-

tive set of paths through a model, which was not possible

previously. Finally, the possibility of nesting steady-state

and transient measures provides a means to specify

complex, though important measures in a compact and

flexible way.

3.4 Model-Checking CSL

Once we have formally specified the (constraint on the)
measure-of-interest in CSL by a formula � and have
obtained the model, i.e., CTMC M, of the system under
consideration, the next step is to model check the formula.
To that end, we adapt the model-checking algorithm for
CTL [23] to support the automated validation of � over a
given state s in M. The basic procedure is as for model
checking CTL: In order to check whether state s satisfies
formula �, we recursively compute the set Satð�Þ of states
that satisfy � and, finally, check whether s is a member of
that set. For the nonprobabilistic state operators, this
procedure is the same as for CTL. The only main remaining
question is how to compute Satð�Þ for the S and
P operators. We deal with these operators separately.

Computing steady-state measures. Let G be the under-
lying directed graph of M, where vertices represent states
and where there is an edge from s to s0 iff Rðs; s0Þ > 0.
Subgraph B is a bottom strongly connected component (BSCC)
of G if it is a maximal strongly connected component such
that it has no edges to outside its vertices, i.e., ReachðsÞ ¼ B

for all s 2 B. Let BðMÞ denote the BSCCs of CTMC M.
From the semantics of CSL state formulas, it directly follows
that s 2 SatðS�/ pð�ÞÞ iff �ðs; Satð�ÞÞ�

/ p. In order to compute
the probability �ðs; S0Þ for some set of states S0, we exploit
the following result.

Proposition 2. For CTMC M ¼ ðS;R; LÞ with s 2 S, S0 � S:

�ðs; S0Þ ¼
X

B2BðMÞ
Probðs; � atBÞ�

X
s02B\S0

�Bðs0Þ
 !

;

where �Bðs0Þ is the steady-state probability of s0 in BSCC B.

Proof. Follows directly from [53, Theorem 6.16]. tu

Proposition 2 suggests the following algorithm for

checking whether s 	 S�/ pð�Þ: We first recursively deter-

mine the set of states that satisfy �. Then, the BSCCs are

computed using (a slight variant of) an algorithm for

computing strongly connected components [1], [70]. For

each BSCC B that contains a � state, the steady-state

probabilities are determined using standard means for

solving the linear equation system (2). Formally, �Bðs0Þ ¼ 1

if B ¼ fs0g; otherwise, �B is a vector of size jBj satisfying the

linear system of equations for state s0 in B:X
s2B
s 6¼s0

�BðsÞ�Rðs; s0Þ ¼ �Bðs0Þ�
X
s2B
s6¼s0

Rðs0; sÞ

with
X
s2B

�BðsÞ ¼ 1:

States not contained in any BSCC have steady-state

probability 0, independent of the initial state. The cumula-

tive probability
P

�Bðs0Þ is weighted with the probability of

eventually reaching BSCC B. These weights can be

computed as the least solution in ½0; 1� of the linear equation
system:

Probðs; �atBÞ ¼
1 if s 	 atBX
s0

Pðs; s0Þ�Probðs0; � atBÞ otherwise

(

Note that for the—often encountered—case in which the

CTMC M is strongly connected, i.e., M has a single BSCC

consisting of all states, this entire procedure reduces to a

standard steady-state analysis [69] and cumulating the

steady-state probabilities for all � states.

Example 2. Consider CTMC M depicted in Fig. 2 and let us

check S>0:75ðbÞ in state s0. Clearly, M is not strongly

connected and has three BSCCs as indicated by the

gray shaded sets of states: B1 ¼ fs3g, B2 ¼ fs4g, and

B3 ¼ fs2; s5g. As states s3 and s5 are the only b states, we

have:

�ðs0; SatðbÞÞ
¼ Probðs0; � atB1

Þ��B1ðs3Þ þ Probðs0; � atB3
Þ��B3ðs5Þ:

The probability of eventually reaching BSCC B1 from

state s0 is obtained by solving:

BAIER ET AL.: MODEL-CHECKING ALGORITHMS FOR CONTINUOUS-TIME MARKOV CHAINS 7

TABLE 1
Measures and Their Logical Specification

Probðs0; � atB1
Þ ¼ 1

2
þ 1

2
�Probðs1; � atB1

Þ;

Probðs1; � atB1
Þ ¼ 1

2
�Probðs0; � atB1

Þ:

which yields 1
2 �
P1

k¼0ð14Þ
k ¼ 2

3 . Likewise, the probability of

reaching B3 from s0 equals 1
6 . Trivially, �B1ðs3Þ ¼ 1.

�B3ðs5Þ is obtained by solving the equation system

� 2�B3ðs2Þ þ �B3ðs5Þ ¼ 0 and �B3ðs2Þ þ �B3ðs5Þ ¼ 1:

This yields �B3ðs5Þ ¼ 2
3 . Following Proposition 2, we have

�ðs0; SatðbÞÞ ¼ 7
9 . As this exceeds the bound 0.75, it

follows s0 	 S>0:75ðbÞ.
Computation of probabilistic path-measures. The basis

for model-checking probabilistic path-formulas is charac-

terizations for Probðs; ’Þ, i.e., the probability measure for

the set of paths that fulfill ’ and that start in s. We consider

such characterizations for the timed-next and timed-until

operators and show that the characterizations for their

untimed variants coincide with those for model checking

PCTL over discrete-time Markov chains [10], [27], [38]. We

first observe that it suffices to consider time bounds

specified by closed intervals since:

Probðs;� UI�Þ ¼ Probðs;� UclðIÞ�Þ and
Probðs;XI�Þ ¼ Probðs;XclðIÞ�Þ;

where clðIÞ denotes the closure of I. This follows from the

fact that the probability measure of a basic cylinder set

Cðs; I0; . . . ; Ik�1; skÞ does not change when some of the

intervals Ii (0 � i < k) are replaced by their closure. In the

sequel, we assume that interval I is compact.

Proposition 3. For s 2 S, interval I � IR�0 and CSL state

formula �:

Probðs;XI�Þ

¼ e�EðsÞ� inf I � e�EðsÞ� sup I
� �

�
X
s0	�

Pðs; s0Þ:

Proof. By straightforward verification from the Borel space

construction. tu

Proposition 3 suggests the following algorithm: First, set

Satð�Þ is computed. State s is added to SatðP�/ pðXI�ÞÞ if

Probðs;XI�Þ�/ p. Vector

ProbðXI�Þ ¼ ð. . . ; Probðs;XI�Þ; . . .Þ

can be obtained by multiplying P with the vector bI , where
bIðsÞ ¼ e�EðsÞ� inf I � e�EðsÞ� sup I if s 2 Satð�Þ and bIðsÞ ¼ 0
otherwise.

For time-bounded until formula ’, Probðs; ’Þ is char-

acterized by a fixed-point equation. This is similar to CTL

[23] where appropriate fixed-point characterizations con-

stitute the key toward model checking until formulas. In

the sequel, let I
 x denote ft� x j t 2 I ^ t � xg and

Tðs; s0; xÞ denote the density of moving from state s to s0

in x time units, i.e., Tðs; s0; xÞ ¼ Pðs; s0Þ�EðsÞ�e�EðsÞ�x ¼
Rðs; s0Þ�e�EðsÞ�x. Recall that EðsÞ�e�EðsÞ�x is the probability

density function of the residence time in state s at instant x.

Let I denote the set of all (nonempty) intervals I � IR�0.

Theorem 1. Let s 2 S, interval I � IR�0 with a ¼ inf I and
b ¼ sup I and �;� be CSL state formulas. The function
S � I ! ½0; 1�, ðs; IÞ 7! Probðs;� UI�Þ is the least fixed
point of the higher-order operator

� : ðS � I ! ½0; 1�Þ ! ðS � I ! ½0; 1�Þ;

where

�ðF Þðs; IÞ ¼
1 if s 	 :� ^�

and a ¼ 0Z b

0

X
s02S

Tðs; s0; xÞ�F ðs0; I
 xÞ dx if s 	 � ^ :�

e�EðsÞ�a þ
Z a

0

X
s02S

Tðs; s0; xÞ�F ðs0; I
 xÞ dx if s 	 � ^�

0 otherwise:

8>>>>>>>>>><>>>>>>>>>>:
Proof. First, we show that the function ðs; IÞ 7! Probðs; IÞ

¼ Probðs;� UI�Þ is a fixed point of �. Let s 2 S and I be
an arbitrary nonempty interval in IR�0. We define
a ¼ inf I, b ¼ sup I. Pathðs; IÞ denotes the collection of
all paths � that start in state s and fulfill the path formula
� UI�. We may assume w.l.o.g. that I is closed, i.e., I ¼
½a; b� if b < 1 and I ¼ ½a;1½ if b ¼ 1. We consider the
following cases:

Case 1. a ¼ 0 and s 	 �. Then, any path starting in s
satisfies � UI�. Hence,

Probðs; IÞ ¼ 1 ¼ �ðProbÞðs; IÞ:

Case 2. s 	 � ^ :�. Then, Pathðs; IÞ consists of all
paths � which are of the form s!x �0, where 0 � x � b and
�0 2 Pathðs0; I
 xÞ for some state s0. Hence,

Probðs; IÞ ¼Z b

0

X
s02S

Tðs; s0; xÞ � Probðs0; I
 xÞ dx:

Case 3. a > 0 and s 	 � ^�. Then, Pathðs; IÞ consists
of all paths � of the form s!x �0, where 1) either 0 � x � a
and �0 2 Pathðs0; I
 xÞ for some state s0 or 2) x > a.
Thus, Probðs; IÞ is the sum of the probability to stay for
more than x time units in state s0 plus the probability to
take a transition from s to s0 within x time units (where
x � a) and to fulfill � UI
x� along a path starting in s0.
We obtain

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 7, JULY 2003

Fig. 2. An example nonstrongly connected CTMC.

Probðs; IÞ ¼ e�EðsÞ�a

þ
Z a

0

X
s02S

Tðs; s0; xÞ � Probðs0; I
 xÞ dx:

It is clear that Probðs; IÞ ¼ 0 in all remaining cases (if
s 6	 � _� or a > 0 and s 	 :� ^�).

We now explain why the function ðs; IÞ 7! Probðs; IÞ
is the least fixed point of �. Let Pathnðs; IÞ denote the set

of all paths � ¼ s0!
t0
s1!

t1
. . . !tn�1

sn�1!
tn
sn!

tnþ1
. . . , where s0 ¼

s and n is minimal with the properties 1) s0; . . . ; sn�1 	 �

and sn 	 � and 2) t0 þ t1 þ . . .þ tn 2 I. Let Path�nðs; IÞ
¼
S

0�i�n Pathiðs; IÞ and Prob�nðs; IÞ the probability

measure of all paths � 2 Path�nðs; IÞ. It is easy to see

that, for n ¼ 1; 2; 3; . . . ,

Prob�nðs; IÞ ¼ �ðProb�n�1Þðs; IÞ:

Moreover, limn!1 Prob�nðs; IÞ ¼ Probðs; IÞ. Let F : S �
I ! ½0; 1� be a fixed point of �. By induction on n, we
obtain: F ðs; IÞ � Prob�nðs; IÞ. This yields F ðs; IÞ �
limn!1 Prob�nðs; IÞ ¼ Probðs; IÞ. tu
A few remarks are in order. First, in the special case

I ¼ ½t; t� (where t > 0) and � ¼ tt, � ¼ ats00 for some state s00

we obtain:

�Mðs; s00; tÞ ¼ Probðs; �½t;t�ats00 Þ ¼Z t

0

X
s02S

Tðs; s0; xÞ � �Mðs0; s00; t�xÞ dx:

From this, the Chapman-Kolmogorov differential equation
system (see Section 2.4) can be derived. A second observa-
tion is that the recursive characterization for unbounded
intervals, e.g., I ¼ ½t;1½, yields that Probðs;� U�t �Þ equalsZ t

0

X
s02S

Tðs; s0; xÞ � Probðs0; I
 xÞ dx

þ
X
s0	�

Pðs; s0Þ 1� eEðsÞ�t
� �

:

The characterization in Theorem 1 is informally justified
as follows: If s satisfies � and :�, the probability of
reaching a � state from s within the interval I equals the
probability of reaching some direct successor s0 of s in x
time units (x � sup I), multiplied by the probability of
reaching a � state from s0 in the remaining time interval
I
 x (along a� path). If s satisfies � ^�, the path formula ’
is satisfied if no transition outgoing from s is taken for at
least inf I time units (first summand). Alternatively, state s
should be left before inf I in which case the probability is
defined in a similar way as for the case s 	 � ^ :� (second
summand). Note that inf I ¼ 0 is possible. In this case, s 	
� ^� yields ProbMðs;� UI�Þ ¼ 1.

Example 3. Consider our running CTMC example again
with � ¼ 0:01 and � ¼ 0:001. We check s3;1 	 P�0:2

ðup3 U½2;5� up2Þ. According to Theorem 1, it follows:

Probðs3;1; up3 U½2;5� up2Þ ¼Z 5

0

3��e�ð3�þ�Þ�x�Probðs3;1; up3 U½2�x;5�x� up2Þ dx:

Distinguishing the cases x � 2 and 2 � x � 5 yields

Probðs3;1; up3 U½2;5� up2Þ ¼Z 2

0

3��e�ð3�þ�Þ�x�Probðs2;1; up3 U½2�x;5�x� up2Þ dx

þ
Z 5

2

3��e�ð3�þ�Þ�x�Probðs2;1; up3 U½0;5�x� up2Þ dx:

According to Theorem 1, Probðs2;1; up3 U½2�x;5�x� up2Þ is 0
for x � 2 (case otherwise) and equals 1 for 2 � x � 5 so

that we finally obtain:

Probðs3;1; up3 U½2;5� up2Þ ¼Z 5

2

3��e�ð3�þ�Þ�x dx ¼ e�ð3�þ�Þ�2 � e�ð3�þ�Þ�5
� �

� 3�

3�þ �
:

This probability equals 0.2006 and as this exceeds 0.2,

P�0:2ðup3 U½2;5�up2Þ is fulfilled by state s3;1.

We discuss specific algorithms to compute Probð� UI �Þ in
Section 4.

Corollary 1. For s 2 S and �;� CSL state formulas:

1. Probðs;X �Þ ¼
X
s0	�

Pðs; s0Þ.

2. The function S ! ½0; 1�, s 7!Probðs;� U �Þ is the
least fixed point of the higher-order operator � : ðS !
½0; 1�Þ ! ðS ! ½0; 1�Þ where:

�ðF ÞðsÞ ¼
1 if s 	 �X
s02S

Pðs; s0Þ�F ðs0Þ if s 	 � ^ :�

0 otherwise:

8><>:
Proof. Directly from Proposition 3, Theorem 1, and the fact

that X ¼ X½0;1Þ and U ¼ U½0;1Þ. tu

The results in Corollary 1 are identical to the discrete-time

probabilistic case, i.e., the probabilities in DTMCs for

satisfying next and until formulas in the logic PCTL are

determined in the same way, cf. [10], [38]. This suggests the

following algorithms: For the formulas P�/ pðX �Þ, the

computation boils down to a simple matrix-vector multi-

plication, i.e., the vector ProbðX �Þ ¼ P�i�, where i� char-

acterizes the set Satð�Þ (i�ðsÞ ¼ 1 if s 	 � and i�ðsÞ ¼ 0

otherwise). For P�/ pð� U �Þ, solving a system of linear

equations suffices; the vector Probð� U �Þ is the least

solution of the following set of equations:

x ¼ bPP � xþ i� where bPPðs; s0Þ ¼ Pðs; s0Þ
if s 	 � ^ :� and 0 otherwise:

This system of equations can, in general, have more than

one solution. The least solution can be obtained by applying

an iterative method or a graph analysis combined with

standard methods (like Gaussian elimination or some

iterative method [69]) to solve regular linear equation

systems. As for the discrete-time probabilistic case, more

efficient, tailored algorithms can be used to check

P>0ð� U �Þ and P�1ð� U �Þ; see [27], [38].

BAIER ET AL.: MODEL-CHECKING ALGORITHMS FOR CONTINUOUS-TIME MARKOV CHAINS 9

4 EXPLOITING TRANSIENT ANALYSIS

One of the main results of the previous section was the
characterization of probability measures for time-bounded
until formulas in terms of a Volterra integral equation
system. This section first briefly discusses some numerical
techniques to solve this equation system directly. To
overcome the encountered problems in doing so, we
propose a strategy that reduces the model-checking
problem for time-bounded until properties to the problem
of calculating transient probabilities in CTMCs. This is
presented in Section 4.2. This strategy allows us to
implement model checking of UI by means of a well-
established transient analysis techniques for CTMCs such as
uniformization.

4.1 Numerically Solving the
Integral Equation System

Two obvious techniques that could be applied to solve the
recursive integral equation of Theorem 1 is to either use
numerical integration or to solve the differential equation
system that corresponds to the integrals directly. We briefly
discuss both approaches for ’ ¼ � U½0;t� � and argue that
these techniques are not attractive for our purposes.

Theorem 1 suggests the following iterative method to
approximate the probability Probðs; ’Þ: let F0ðs; tÞ ¼ 0 for
all s, t, and Fkþ1 ¼ �ðFkÞ. Then,

lim
k!1

Fkðs; tÞ ¼ Probðs;� U½0;t� �Þ:

Each step in the iteration amounts to solve an integral of the
following form:

Fkþ1ðs; tÞ ¼
Z t

0

X
s02S

Rðs; s0Þ�e�EðsÞ�x�Fkðs0; t� xÞ dx;

if s 	 � ^ :�. These integrals can be solved numerically
using integration methods such as trapezoidal, Simpson
and Romberg integration [63]. Experiments have shown
that this approach is rather time consuming and that
numerical stability is hard to achieve [43].

Alternatively, the recursive integral formula equation of
Theorem 1 can be reformulated as a heterogeneous linear
differential equation of the following form. With yðtÞ
denoting the vector Probð� U½0;t� �Þ, we have:

y0ðtÞ ¼ bRR � yðtÞ þ bðtÞ; where

bRRðs; s0Þ ¼
Rðs; s0Þ if s; s0 	 � ^ :�
0 otherwise

�
and

bsðtÞ ¼

X
s0	�

Rðs; s0Þ � e�EðsÞ�t if s 	 � ^ :�

0 otherwise:

8<:
The vector yðtÞ agrees with the following solution of the
above heterogeneous linear differential equation:

yðtÞ ¼ e
bRR�t� i� þ

Z t

0

e�
bRR�x � bðxÞ dx

� �
where e

bRR�x ¼
X1
k¼0

ðbRR � xÞk

k!
:

Unfortunately, there does not seem to exist a closed-form

solution for this integral. In the sequel, we present

transformations of the CTMC that avoid the integration,

still resulting in a numerical solution for yðtÞ.

4.2 Four Correctness-Preserving Transformations

We now propose a strategy that reduces the model-

checking problem for time-bounded until to a transient

analysis of the CTMC. This is inspired by the observation

that determining the transient state probabilities of a CTMC

at time t, say, corresponds to calculating the probabilities of

the path-formula �½t;t�ats0 , for some initial state s:

�Mðs; s0; tÞ ¼ ProbMðs; �½t;t�ats0 Þ:

As a slight generalization, we obtain (cf. Section 3.3):

�Mðs; Satð�Þ; tÞ ¼ ProbMðs; �½t;t��Þ ¼
X
s0	�

�Mðs; s0; tÞ ð3Þ

for arbitrary state-formula �.
We first observe that unbounded time intervals ½t;1Þ can

be treated by combining time-bounded until and un-

bounded until since:

Probðs;� U½t;1Þ �Þ
¼
X
s0	�

Probðs;� U½t;t� ats0 Þ � Probðs0;� U �Þ:

In the sequel, we partition the problem into four types of

time-bounded until formulas with a nonempty compact

interval I and show how they all can be reduced to

instances of two simple base cases. We first define a CSL

state-formula-driven transformation on CTMCs.

Definition 7. For CTMC M ¼ ðS;R; LÞ and CSL state

formula � let CTMC M½�� result from M by making all

� states in M absorbing, i.e., M½�� ¼ ðS;R0; LÞ, where

R0ðs; s0Þ ¼ Rðs; s0Þ if s 6	 � and 0 otherwise.

Note that M½��½�� ¼ M½� _��.
Case A: Time-bounded until for absorbing goal states.

Let ’ ¼ � U½0;t� � and assume that all � states are

absorbing, i.e., once a � state is reached it cannot be left

anymore. We first observe that once a ð:� ^ :�Þ state is

reached, ’will be invalid, regardless of the future evolution

of the system. As a result, we may switch from M to

M½:� ^ :�� and consider the property on the new CTMC.

The assumption that all � states are absorbing allows us to

conclude that ’ is satisfied if a � state is occupied at time t.

Thus,

Proposition 4. If all � states are absorbing in M, i.e.,

M ¼ M½��, then:

ProbMðs;� U½0;t� �Þ
¼ ProbM½:�^:��ðs; �½t;t� �Þ
¼
X
s00	�

�M½:�^:��ðs; s00; tÞ:

Proof. From the CSL semantics it follows that

ProbMðs;� U½0;t� �Þ equals

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 7, JULY 2003

Prsf� 2 PathM j 9x 2 ½0; t�: �@x 	 �

^ ð8y 2 ½0; xÞ: �@y 	 �Þg:
ð4Þ

Since � states are absorbing, it follows that once �
reaches a � state at time instant x, then it will stay in �
states at all later time instants. This reduces (4) to:

Prsf� 2 PathM j �@t 	 �

^ ð8y 2 ½0; tÞ:�@y 	 � _�Þg:
ð5Þ

There are no paths in M½:� ^ :�� relevant for this
probability measure that pass through :ð� _�Þ states.
Thus, (5) equals:

Prsf� 2 PathM½:�^:�� j�@t 	 �g ¼ ProbM½:�^:��ðs; �½t;t� �Þ;

which can be computed in a standard way, cf. (3). tu
Case B: Time-bounded until. Let ’ ¼ � U½0;t� � and

consider an arbitrary CTMC M. Property ’ is fulfilled if a
� state is reached before (or at) time t via some � path.
Once such a � state has been reached, the future behavior of
the CTMC is irrelevant for the validity of ’. Accordingly,
the � states can safely be made absorbing without affecting
the validity of ’. As a result, it suffices to consider the
probability of being in a � state at time t for M½��, thus
reducing to the case in Proposition 4. As M½��½:� ^ :�� ¼
M½:� _��, we obtain:

Theorem 2. For any CTMC M:

ProbMðs;� U½0;t� �Þ
¼ ProbM½��ðs;� U½0;t� �Þ
¼
X
s00	�

�M½:�_��ðs; s00; tÞ:

Proof. Straightforward verification. tu
Example 4. Consider the TMR model with initial distribu-

tion � ¼ �1
s3;1

and let �0 ¼ P�0:05 ð� U½0;4� �Þ for � ¼
up3 _ up2 and � ¼ up2 _ up1 be the property under
consideration for state s3;1. According to the first part of
Theorem 2, model checking �0 on the original CTMC of
Example 1, depicted in Fig. 3a, amounts to verifying this
property on the CTMC depicted in Fig. 3b where the
gray-shaded states indicate the (now absorbing) states
satisfying �. Proposition 4 now yields that it suffices to
check the property P�0:05ð�½4;4��Þ on the CTMC of Fig. 3c,
where the gray-shaded states indicate the ð:� ^ :�Þ

states. The transient-state probability of the only remain-
ing reachable state that satisfies �, i.e., state s2;1, is
approximately 0.041 at t ¼ 4 (for � ¼ 0:01 and � ¼ 0:001);
so, �0 is invalid for state s3;1.

Case C: Point-interval until. Let ’ ¼ � U½t;t� � and
assume �) �. Similar to Proposition 4, ð:� ^ :�Þ states
are made absorbing. Since �) �, it follows that Probðs; ’Þ
equals the probability to occupy a � state at time t in the
obtained CTMC:

Proposition 5. If �) �, we have for any CTMC M:

ProbMðs;� U½t;t� �Þ
¼ ProbM½:�^:��ðs; �½t;t� �Þ
¼
X
s00	�

�M½:�^:��ðs; s00; tÞ:

Proof. Straightforward verification. tu

Case D: Interval until. Let ’ ¼ � U½t;t0 � � with 0 < t � t0

and let M be an arbitrary CTMC. First, we observe that

Probðs;� U½t;t0 � �Þ
6¼ Probðs;� U½0;t0 � �Þ � Probðs;� U½0;t� �Þ;

e.g., for a CTMC with just a single state s equipped with a
self-loop, where s satisfies � and �, the probability on the
righthand side would be 0, whereas Probðs;� U½t;t0 � �Þ ¼ 1.

Theorem 3. For any CTMC M and 0 < t � t0:

ProbMðs;� U½t;t0 � �Þ
¼
X
s0	�

X
s00	�

�M½:��ðs; s0; tÞ��M½:�_��ðs0; s00; t0 � tÞ:

Proof. Let ’ ¼ � U½t;t0 � � with 0 < t � t0. For any path �with
� 	 ’, it follows directly from the semantics of U½t;t0 � that
� continuously holds in the interval ½0; tÞ (i.e.,
� 	 ut½0;tÞ �), in particular, �@t ¼ s0 2 Satð�Þ. Let �0 2
Pathðs0Þ be the suffix of � that starts at time t, i.e., �0 is the
unique path with �0@x ¼ �@ðtþ xÞ for any positive real
x. If � 	 ’, the suffix �0 	 � U½0;t0�t� �. Let

�ðs0Þ ¼ f� 2 PathMðsÞ j �@t ¼ s0 ^ � 	 ’g

be the set of paths that start in state s, that satisfy ’, and
that pass the intermediate state �@t ¼ �0@0 ¼ s0. Then,

BAIER ET AL.: MODEL-CHECKING ALGORITHMS FOR CONTINUOUS-TIME MARKOV CHAINS 11

Fig. 3. Successive transformations on the TMR example for ðup3 _ up2ÞU½0;t�ðup2 _ up1Þ.

Prsð�ðs0ÞÞ ¼ ProbMðs;� U½t;t�ats0 Þ�Probðs0;� U½0;t0�t� �Þ:

As the sets �ðs0Þ for s0 2 Satð�Þ are pairwise disjoint, we
obtain:

ProbMðs;� U½t;t0 � �Þ
¼
X
s0	�

ProbMðs;� U½t;t�ats0 Þ�ProbMðs0;� U½0;t0�t� �Þ:

Applying Proposition 5 to the left factor and Theorem 2

to the right factor yields:X
s0	�

ProbM½:��ðs; �½t;t�ats0 Þ

�ProbM½��ðs0;� U½0;t0�t� �Þ:

Rewriting these probabilities to transient state probabil-
ities—again using Proposition 5 and Theorem 2—finally
results in:

ProbMðs;� U½t;t0 � �Þ

¼
X
s0	�

�M½:��ðs; s0; tÞ�
X
s00	�

�M½:�_��ðs0; s00; t0�tÞ
 !

:

ut

Example 5. Consider the model of the TMR system with
initial distribution � ¼ �1

s3;1
and let �0 ¼ P�0:05ð� U½3;7� �Þ

for � ¼ up3 _ up2 and � ¼ up2 _ up1 and ’ ¼ � U½3;7� �.
Note that Theorem 3 indicates to compute the probability

Probðs3;1; ’Þ by considering two different CTMCs:M½:��
and M½:� _��. According to Theorem 3, verifying �0

boils down to first computing the transient probabilities
at time 3, i.e., �0 ¼ �M1ðs3;1; 3Þ for all states in CTMC M1

of Fig. 4, where all :� states (indicated in gray) of the
original model are made absorbing. We obtain �0 ¼
ð0:968; 0:0272; 0:011; 0; 0:003Þ with a precision of " ¼ 10�6

for � ¼ 0:01, � ¼ 0:001, � ¼ 1:0, and � ¼ 0:2. In the second
phase, Theorem 3 suggests computing the transient
probabilities at time 4 in CTMC M2 of Fig. 3c starting
from distribution �0. This yields

P
s00	up2

�M2ð�0; s00; 4Þ
� 0:1365. Thus, s3;1 	 �0.

Corollary 2. For CTMC M:

ProbMðs;� U½t;t� �Þ ¼
X

s0	�^�
�M½:��ðs; s0; tÞ:

Proof. Directly from Theorem 3. tu

Note that (3) is a simplified version of this corollary.

4.3 Uniformisation

In the previous sections, we have shown that the calculation

of Probðs;� UI�Þ boils down to instances of transient

analysis on CTMCs. Formally, transient state probabilities

are obtained as a solution to the Chapman-Kolmogorov

differential equations (cf. Section 2.4) and are given by the

Taylor-MacLaurin series:

�ð�; tÞ ¼ ��eQ�t ¼ ��
X1
i¼0

ðQ � tÞI

i!

with Q ¼ R� diagðEÞ;
ð6Þ

where we recall that �ð�; tÞ denotes the vector of state

probabilities at time t. This characterization is not attractive

for a numerical algorithm since [58], [69] 1) it suffers from

numerical instability as Q contains both positive and

negative entries and 2) it is difficult to find a proper

truncation criterion for the infinite summation. Therefore,

other algorithms to compute transient state probabilities for

CTMCs have been developed of which uniformization [36],

[37], [47] is currently regarded as the most attractive. Under

special conditions, e.g., when the rates in R differ a large

number of magnitudes, Runge-Kutta-like methods might

perform better, see [66], [67]. For the sake of completeness,

we briefly discuss the main aspects of uniformization here.

These details will play a significant role in discussing the

efficiency of our model-checking algorithms, cf. Section 6.
For CTMC M ¼ ðS;R; LÞ, the uniformized DTMC is

ðS;U; LÞ, where U is defined by U ¼ I þQ=q with

q � maxifEðsiÞg. The uniformization rate q can be chosen to

be any value exceeding the shortest mean residence time.

All rates in the CTMC are normalized with respect to q. For

each state s with EðsÞ ¼ q, one epoch in the uniformized

DTMC corresponds to a single exponentially distributed

delay with rate q, after which one of its successor states is

selected probabilistically. As a result, such states have no

additional self loop in the DTMC. If EðsÞ < q, i.e., state s

has, on average, a longer state residence time than 1
q , one

epoch in the DTMC might not be “long enough”; hence, in

the next epoch, these states might be revisited with some

positive probability. This is represented by equipping these

states with a self loop with probability 1� EðsÞ
q þ Rðs;sÞ

q .
Transient state probabilities are now computed as

follows: Substituting Q ¼ q�ðU� IÞ in (6) yields:

�ð�; tÞ

¼ ��
X1
i¼0

e�q�t ðq�tÞ
I

i!
Ui ¼

X1
i¼0

e�q�t ðq�tÞ
I

i!
�i;

ð7Þ

where e�q�t�ððq�tÞi=i!Þ is the ith Poisson probability with

parameter q�t and �i is the state probability distribution

vector after i epochs in the DTMC with transition matrix U

determined recursively by �i ¼ �i�1�U with �0 ¼ �. The

Poisson probabilities can be computed in a stable way with

the Fox-Glynn algorithm [35]. The number of terms k� in (7)

to be taken given a required accuracy � is the smallest value

satisfying:

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 7, JULY 2003

Fig. 4. The CTMC M½:��.

Xk�
n¼0

ðq�tÞn

n!
� 1� �

e�q�t ¼ ð1� �Þ�eq�t: ð8Þ

If the product q�t is large, k� tends to be of order Oðq�tÞ. On

the other hand, if q�t is large, the DTMC described by U

might have reached steady state along the way. Such an

“on-the-fly” steady-state detection can be integrated in the

computational procedure, see [59]. This steady-state trunca-

tion point is often smaller than k�, making the trailing

matrix-vector multiplications superfluous. For further de-

tails, see [39], [69].

Example 6. Consider the TMR example and � ¼ P�0:99ðtu½0;3�

ðup3 _ up2ÞÞ. As explained in Example 5, it suffices to

verify � on the CTMC of Fig. 4. This CTMC is equivalent

to the CTMC depicted in Fig. 5a, as will be justified in the

next section. Assume � > �. Checking � reduces to a

transient analysis of the uniformized DTMC depicted in

Fig. 5b, where q ¼ 2�þ�þ�. With a required accuracy

� ¼ 10�5 and � ¼ 0:01, � ¼ 0:001, and � ¼ 1:0, we obtain

(with five digits of precision) q ¼ 1:021, k� ¼ 13, and

�ðs3;1; 3Þ ¼ ð0:96856; 0:02724; 0:00148Þ, where the last va-

lue corresponds to the state probability of the absorbing

state. Summing the first two probabilities yields s3;1 	 �.

5 ABSTRACTION WITH BISIMULATION

In this section, we discuss a technique to aggregate the state

space of a CTMC. This technique is based on the

observation that a slight variant of bisimulation, also known

as lumping on CTMCs, preserves all CSL formulas. The

result presented below is similar to that for relating

bisimulation and CTL (and CTL* equivalence) [17] and

probabilistic bisimulation and PCTL [8].

5.1 Bisimulation (Lumping) Equivalence

Lumpability is an important notion on CTMCs that allows

their aggregation without affecting performance properties

[18], [49]. We adapt the standard notion in order to deal

with CTMCs with state labelings. Rather than considering a

state labeling with atomic propositions, it is convenient for

our purposes to consider labelings with more general sets

of CSL formulas. Let M ¼ ðS;R; LÞ be a CTMC, F a set of

CSL formulas, and LF : S ! 2F a labeling defined by

LF ðsÞ ¼ f� 2 F j s 	 �g.
Definition 8. An F bisimulation on M ¼ ðS;R; LÞ is an

equivalence R on S such that, whenever ðs; s0Þ 2 R, then

LF ðsÞ ¼ LF ðs0Þ and Rðs; CÞ ¼ Rðs0; CÞ
for all C 2 S=R;

where S=R denotes the quotient space under R and
Rðs; CÞ ¼

P
s02C Rðs; s0Þ. States s and s0 are F bisimilar

iff there exists an F bisimulation R that contains ðs; s0Þ.

Thus, any two bisimilar states are equally labeled (with
respect to F) and the cumulative rate of moving from
these states to any equivalence class C is equal. The notion
of F bisimulation is a slight variant of lumping equiva-
lence [18] and Markovian bisimulation [19], [44]. For s 2 S,
let ½s�R denote the equivalence class of s under R. For
M ¼ ðS;R; LÞ, the CTMC M=R is defined by M=R ¼
ðS=R;RR; LRÞ with RRð½s�R; CÞ ¼ Rðs; CÞ and LRð½s�RÞ
¼ LF ðsÞ. The performance measures of M and M=R are
strongly related. The transient state probability of the
lumped CTMC M=R being in state ½s�R at time t given
initial distribution �R equals [18], [49]:

�M=Rð�R; ½s�R; tÞ ¼
X
s02½s�R

�Mð�; s0; tÞ;

where �Rð½s�RÞ ¼
P

s02½s�R �ðs
0Þ. The same correspondence

holds for steady-state probabilities.

Example 7. The reflexive, symmetric, and transitive closure
of the relation

R ¼ fð0111; 1011Þ; ð1011; 1101Þ; ð0011; 0101Þ; ð0101; 1001Þg

is an AP bisimulation on the set of states of the CTMCM
depicted in Fig. 6. For convenience, double arrows are
used to indicate that there exists a transition from a state
to another state and vice versa. The lumped CTMC M=R
consists of five aggregated states: the singleton states
½1111�R, ½0000�R, and ½0001�R and the states ½0111�R ¼
f0111; 1011; 1101g and ½0011�R ¼ f0011; 0101; 1001g. In
fact, this yields the CTMC of the TMR system of
Example 1.

5.2 Bisimulation and CSL Equivalence

Let CSLF denote the smallest set of CSL formulas that
includes F and that is closed under all CSL operators. In the
following, we write 	M for the satisfaction relation 	 (on
CSL) on M.

Theorem 4. Let R be an F bisimulation on M and s a state in
M. Then,

1. For all CSLF formulas �, s 	M � iff ½s�R 	M=R �.
2. For all CSLF path formulas ’,

ProbMðs; ’Þ ¼ ProbM=Rð½s�R; ’Þ:

In particular, F -bisimilar states satisfy the same CSLF

formulas.

Proof. Straightforward by structural induction on � and ’.tu

As the verification of S formulae amounts to carrying out a
steady-state analysis (after a graph analysis) and the
verification of P formulae boils down to a transient-state
analysis (on a transformed CTMC), this result is not
surprising given that bisimulation—ordinary lumping

BAIER ET AL.: MODEL-CHECKING ALGORITHMS FOR CONTINUOUS-TIME MARKOV CHAINS 13

Fig. 5. (a) A CTMC and (b) the corresponding uniformized DTMC.

equivalence—preserves steady-state and transient-state
probabilities. Theorem 4 allows us to verify CSL formulas
on the possibly much smaller M=R rather than on M, for
AP bisimulation R.

Theorem 5. s 	M � iff s0 	M � for all CSL formulas iff s and s0

are AP bisimilar.

Proof. The “if” part of the proof follows directly from
Theorem4. The “only if” partwas recently shown in [30].tu

We can exploit the above result and apply it to the
transformations of the previous section by using the
following observation: From 1 of Theorem 4, it follows:X

s0	M �

�Mðs; s0; tÞ ¼
X

S0	M=R �

�M=Rð½s�R; S0; tÞ ð9Þ

for any CSLF formula � and F bisimulation R. This
observation allows us to simplify the CTMCs M½. . .� that
occur in Cases A-D of the model checking procedure
presented in Section 4 in the following way. For Cases B and
D, we compute the transient probabilities for � states in the
CTMC M0 ¼ M½:� _��. Let F ¼ f:� ^ :�;�g and R be
the smallest equivalence on the state space S of M0 that
identifies all � states and all ð:� ^ :�Þ states. Clearly, R is
an F bisimulation on M0. The state space of M0=R is

S=R ¼ Satð� ^ :�Þ [½Satð�Þ�R [½Satð:� ^ :�Þ�R: ð10Þ

Since � is a CSLF formula, (9) yieldsX
s00	�

�M
0ðs; s00; tÞ ¼ �M0=Rðs; ½Satð�Þ�R; tÞ

for any state s 2 Satð� ^ :�Þ. Similar arguments are applic-
able to Cases A and C. As a result, the sets ½Satð:� ^ :�Þ�R
and ½Satð�Þ�R in Cases A-D can be considered as single
states. This may yield a substantial reduction of the state
space of the CTMC under consideration; more precisely, the
resulting state space S=R has size jSatð� ^ :�Þj þ 2. From a
computational point of view, the switch from M to the
modifiedM½. . .�=R is quite simple as we just collapse certain
states into a single absorbing state. The rate matrix for
M½. . .�=R can be obtained by simple manipulations of the
rate matrix R for M.

Example 8. According to the above observations, in the
CTMC of Fig. 4, we may aggregate states ½Satð�Þ�R ¼
fs0;1; s0;0; s1;1g into a single state using a f�;�g

bisimulation, where � and � are given in Example 4.
This new state is reachable from s3;1 with rate � and
from s2;1 with rate 2�þ�. This yields the CTMC
depicted in Fig. 5a. As a second example, in the
CTMC of Fig. 5c, we may collapse ½Satð�Þ�R ¼
fs2;1; s1;1g and ½Satð:� ^ :�Þ�R ¼ fs0;0; s0;1g into single
states using a f:�;�g bisimulation.

Note that the bisimulations constructed in this way have at
most two nontrivial classes. We can exploit the above
theorems further by aggregating the model M as far as
possible during model checking or prior to model checking.
For the latter purpose, we consider the coarsest AP
bisimulation R on M and construct the quotient Markov
model M=R prior to model checking M. R can be
computed by a modification of the standard partition
refinement algorithm [29]. It now follows from Theorem 5
that any CSL formula can be equally well checked on M=R
instead of on M.

Furthermore, we can add a formula-specific aggregation.
Let AP ð�Þ denote the set of atomic propositions occurring
in �. Note that � belongs to CSLAP ð�Þ. Due to Theorem 4, �
can be model checked on M=R0 instead of on M, where R0

is the coarsest AP ð�Þ bisimulation on M. R0 can again be
computed by partition refinement.

6 EFFICIENCY CONSIDERATIONS

In this section, we summarize the results of the previous
sections and discuss the space and time complexity of
model checking CSL as well as some implementation
considerations.

Let M ¼ ðS;R; LÞ be a CTMC, M the number of nonzero
entries in the rate matrix R, and N ¼ jSj the number of
states in M. For a fully connected CTMC M, we thus have
M ¼ N2, but, in practice, we often find M < kN for a small
constant k. Without loss of generality, we assume M � N .
Consider CSL state formula �. The general strategy is
identical to the model checking procedure for CTL [23]. The
set Satð�Þ of states satisfying � is computed in an iterative
way, starting with considering the subformulas of � of
length 1, i.e., the atomic propositions in �. These sub-
formulas correspond to the leaves in the parse tree of �. In
the ðiþ 1Þth iteration of the algorithm, subformulas of
length iþ 1 are considered using the results of all
subformulas of length at most i, i.e., the results of all

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 7, JULY 2003

Fig. 6. A detailed version of the TMR model.

subnodes in the parse tree. This computation continues
until the formula � of length j�j, i.e., the root of the parse
tree, is considered. We consider the required computations
for each kind of subformula (node). The computation for
nodes in the parse tree of the form tt, :�, or � ^� is
straightforward and takes OðNÞ time.

Steady-state operator. First, a graph analysis is carried
out to determine the BSCCs of M. This takes OðNþMÞ time
[70]. In the worst case, for each identified BSCC B, a linear
system of jBj equations needs to be solved once. Ranging
over all BSCCs, this leads to at most N equations since each
state belongs to at most one BSCC. Finally, the probability
of reaching a BSCC B needs to be computed for each BSCC.
This requires solving a linear system of N equations, taking
OðN3Þ (or better) time [1]. In practice, it is often preferred to
use iterative, numerical methods such as Power, Gauss-
Seidel, or similar [69] for large N . Then, convergence
depends on the structure of the equation system and is in
principle not guaranteed.

Next formulas. The nodes that represent formulas of the
form P�/ pðXI�Þ require OðMÞ time as OðMÞ scalar multi-
plications and additions are needed to perform the matrix-
vector multiplication with P given a suitably chosen sparse
matrix storage structure. The same applies for the un-
bounded next operator.

Unbounded until. Formulas of the form P�/ pð� U �Þ
require the solution of a linear system of N equations,
taking OðN3Þ time. The special case P>0ð� U �Þ and
P�1ð� U �Þ can be treated in OðNÞ time [38].

Time-bounded until. For formulas of the form

P�/ pð� UI �Þ, we distinguish two cases: I ¼ ½0; t0� and I ¼
½t; t0� with 0 < t � t0. To model check the formula

P�/ pð� U½0;t0 � �Þ, the CTMC M is transformed into M½:� _
�� (cf. Theorem 2) and transient analysis is carried out on

M½:� _�� to compute

Probðs;� U½0;t� �Þ ¼
X
s00	�

�M½:�_��ðs; s00; t0Þ:

The transformation takes OðMÞ time. To compute �ðs; t0Þ on
M½:� _�� using uniformization, the sum of Oðq0�t0Þ vectors
is required, each of which is the result of a matrix-vector
multiplication. Here, q0 is the uniformization rate of
M½:� _��. Given a sparse implementation of the latter,
we require OðMÞ multiplications and additions for the
matrix-vector product so that the overall computational
complexity of computing �ðs; t0Þ is OðM�q0�t0Þ. A naive
approach to model check P�/ pð� U½0;t0 � �Þ requires to per-
form this procedure for each state s as suggested in [12]. An
improvement suggested in [48] cumulates the entire vector
Probð� U½0;t� �Þ for all states simultaneously, yielding a time
complexity of OðM�q0�t0Þ.

For formulas of the form P�/ pð� U½t;t0 � �Þ with 0 < t � t0,
the computation is split into two parts, according to
Theorem 3. This means that transient analysis is needed
two times (for t and for t0 � t) on different transformed
Markov chains, M½:�� and M½:� _��. Each transforma-
tion takes OðMÞ time. The effort needed to carry out
uniformization on either chain can be quantified as
follows. Even though the uniformization rates in these
two chains may differ, we can use the uniformization rate q

of M as an upper bound for them and, hence, each
transient analysis has a time complexity of OðM�q�t0Þ. Note
that t0 � t � t0 � t. The method of [48] can be generalized
such that two transient analyses suffice to compute the
required probabilities for each s. In summary, we obtain
that model checking the time bounded-until operator takes
OðM�q�t0Þ time.

Besides, the special case P>0ð� UI �Þ, for nonempty I,
can be treated in the same way as the CTL formula
9ð� U �Þ. This yields a worst-case time complexity of OðNÞ
for this case, cf. [23]. The timing constraint I is not relevant
here: If there exists a path in M satisfying � U �, then, with
some positive probability, a � state can be reached for some
t 2 I. Note, however, that P�1ð� UI �Þ cannot be treated as
the CTL formula 8ð� U �Þ.

A few efficiency improvements are possible. First, for
large t0, the number of computation steps needed in practice
might be much smaller than the above bound when using
on-the-fly steady-state detection [59]. Furthermore, the
uniformization rate is in practice determined chain specifi-
cally, i.e., after transformation. Also, it is favorable to reduce
the size of the state spaces and, hence, of the probability
vectors to be computed. For the ½0; t0� case, for instance, we
can exploit the fact that the CTMCM½:�� can be aggregated
to M½:��=R for R a f:� ^ :�;�g bisimulation.

Bisimulation aggregation. Orthogonal to the model
checking algorithm, we have the means to interweave
abstraction steps whenever appropriate during model
checking M. A priori, we can compute the best possible
formula-independent lumping by constructing the coarsest
possible AP bisimulation R and considering the quotient
M=R instead of M. The computation of R and M=R takes
OðM logNÞ time, using an adapted version of the algorithm
in [29]. With the same computational effort, we can also
compute a formula-dependent quotient M=R0 for R0 the
coarsest AP ð�Þ bisimulation, in order to reduce the number
of computation steps required for subsequent model
checking of subformula �.

Summary. The results for each operator are collected in
Table 2, where the complexity results are based on a sparse
storage structure for the rate and transition matrix and
where Gaussian elimination is used for solving linear
equation systems and uniformization is used for transient
analysis. Cumulating over all nodes in the parse tree, i.e., all
subformulas of �, we obtain, for the worst-case time
complexity of model checking CSL:

Oðj�j�ðM�q�tmax þN3ÞÞ;

where tmax is the maximum time bound of the time-
bounded until subformulas occurring in �. Recall that q is
the uniformization rate, which can be chosen as the
maximum entry of E. If we make the practically often
justified assumption that M < kN for a constant k, then the
space complexity is linear in N using a sparse matrix data
structure.

Theorem 6. For M, a finite state CTMC and CSL state formula
�, the time and space complexity of the model checking
algorithm described in Section 4 is polynomial in the size ofM
and linear in the length of the formula �.

BAIER ET AL.: MODEL-CHECKING ALGORITHMS FOR CONTINUOUS-TIME MARKOV CHAINS 15

7 RELATED WORK

Model-checking probabilistic systems. Early work has
concentrated on discrete-time models. Methods to verify a
DTMC or a Markov decision process against a linear-time
temporal logic (LTL) formula (or a Büchi automaton) have
been considered, e.g., [28], [62], [71]. The basis of these works
is the nontrivial reduction of the model-checking problem to
the computation of the probabilities to reach certain sets of
states (mostly, BSCCs). Courcoubetis and Yannakakis [27]
describe an algorithm for checking whether a DTMC
satisfies an LTL formula.

As stated in the introduction, PCTL model checking has
been brought up by Hansson and Jonsson [38]. For the
CSL operators that do not refer to the real-time behavior of
the CTMC, the PCTL algorithms can be exploited. The logic
PCTL* contains both LTL and PCTL. Its verification is
studied in [8], [15], [16]. Its basic idea is the reduction to the
verification of quantitative LTL properties.

Branching-time model checking of Markov decision
processes is considered in [4], [14], [15], [16]. Here,
nondeterminism is resolved by adversaries. The model
checking of until formulas reduces to the computation of a
minimum (or maximum) probability, depending whether
one quantifies over all or some adversaries, respectively.

Model-checking real-time probabilistic systems. A
qualitative model-checking algorithm for a continuous
probabilistic variant of timed automata has been proposed
in [7]. This technique is based on regions, finite partitions of
the infinite continuous-time domain tailored to the property
and model under consideration. Recently, this approach has
been adopted for quantitative model checking [54].

Model-checking continuous-time Markov chains. A
stochastic extension of CTL, also called CSL, was initially
proposed in [9]. Using transcendental number theory, the
elementary result that the model-checking problem for CSL
is decidable for rational time bounds is proven. No concrete
algorithms were provided, though.

In [11], we extended CSL with the steady-state operator
presented here to reason about the stationary behavior of
CTMCs. The first work on logics and model-checking
algorithms for studying the stationary behavior of stochas-
tic systems, in particular semi-Markov decision processes,
has been reported in [4], [5]. Semi-Markov decision
processes extend CTMCs with nondeterminism and non-

exponential distributions. Apart from the fact that we are
considering a more specific model, our approach differs in
several aspects. To enable the specification of long-run
average properties, [4], [5] uses experiments, automata that
are intended to be traversed infinitely often. Experiments
are used to either measure the probability with which an
LTL formula holds or to measure the expected time to reach
a given set of goal states. In contrast, steady-state properties
are first-class citizens of CSL—they can be combined
arbitrarily with other operators—whereas experiments can
only occur as top-level “operator.”

Another related approach is that of [60]. Here, automata
are used to define path-based stochastic variables on a
Markov model described as a stochastic activity network
[57]. Analysis takes place by considering a synchronous
product of the model and the specification automaton.
Other recent works on CSL are the extension to continuous-
space Markov processes [30], the use of discrete-event
simulation and hypothesis testing [72], and the use of
Kronecker algebra to exploit the structure of the CTMC [20].

8 CONCLUDING REMARKS

This paper proposed the use of the temporal logic CSL to
specify performance and reliability measures for CTMCs
and introduced automated verification algorithms. This
yields:

. a flexible means to specify standard and complex
measures succinctly,

. automated means to analyze these measures over
CTMCs, and

. automated measure-driven aggregation (lumping) of
CTMCs.

The automated verification hides specialized algorithms
from the performance engineer.

The following algorithms are used: Next and (un-
bounded) until formulas can be treated using matrix-vector
multiplication and solving a system of linear equations like
in [38]. Checking steady-state properties amounts to solving
a system of linear equations combined with standard graph
analysis methods. We showed that checking the time-
bounded until operator can be reduced to the problem of
computing transient state probabilities for CTMCs. This
allows us to adopt efficient and numerically stable

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 7, JULY 2003

TABLE 2
Algorithms for Model Checking CSL and Their (Worst Case) Time Complexity

techniques for model-checking CTMCs. The time and space
complexity of our model-checking algorithms is polynomial
in the size of the model and linear in the length of the
formula. A prototype implementation and experimental
results have been reported in [43].

In addition, we showed that AP bisimulation preserves
the validity of all CSL formulas. This allows us to switch
from the original state space to the (possibly much smaller)
quotient space under AP bisimulation prior to carrying out
the model checking.

ACKNOWLEDGMENTS

The authors would like to thank Joachim Meyer-Kayser and
Markus Siegle (both from the University of Erlangen-
Nürnberg) for valuable discussions. H. Hermanns is
supported by the Netherlands Organization for Scientific
Research (NWO) and J.-P. Katoen is partially supported by
the Dutch Technology Foundation (STW). The cooperation
between the research groups in Aachen, Bonn, Erlangen-
Nürnberg, and Twente takes place as part of the Validation
of Stochastic Systems (VOSS) project, funded by the NWO
and the German Research Council DFG. This work was
performed while B. Haverkort was at RWTH Aachen,
Germany.

REFERENCES

[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullmann, The Design and Analysis
of Computer Algorithms. Addison-Wesley, 1974.

[2] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G.
Franceschinis, Modeling with Generalized Stochastic Petri Nets. John
Wiley & Sons, 1995.

[3] L. de Alfaro, “Formal Verification of Probabilistic Systems,” PhD
dissertation, Stanford Univ., 1997.

[4] L. de Alfaro, “Temporal Logics for the Specification of Perfor-
mance and Reliability,” Proc. Fourth Ann. Symp. Theoretical Aspects
of Computer Science, 1997.

[5] L. de Alfaro, “How to Specify and Verify the Long-Run Average
Behavior of Probabilistic Systems,” Proc. IEEE 13th Symp. Logic in
Computer Science, pp. 174-183, 1998.

[6] R. Alur and D. Dill, “A Theory of Timed Automata,” Theoretical
Computer Science, vol. 126, pp. 183-235, 1994.

[7] R. Alur, C. Courcoubetis, and D. Dill, “Model-Checking for
Probabilistic Real-Time Systems,” Automata, Languages, and Pro-
gramming, 1991.

[8] A. Aziz, V. Singhal, F. Balarin, R. Brayton, and A. Sangiovanni-
Vincentelli, “It Usually Works: The Temporal Logic of Stochastic
Systems,” Computer-Aided Verification, 1995.

[9] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton, “Model Checking
Continuous Time Markov Chains,” ACM Trans. Computational
Logic, vol. 1, no. 1, pp. 162-170, 2000.

[10] C. Baier, “On Algorithmic Verification Methods for Probabilistic
Systems,” habilitation thesis, Univ. of Mannheim, Germany, 1999,
avaliable at web.informatik.uni-bonn.de/I/papers/haupt.ps.

[11] C. Baier, J.-P. Katoen, and H. Hermanns, “Approximate Symbolic
Model Checking of Continuous-Time Markov Chains,” Concur-
rency Theory, 1999.

[12] C. Baier, B.R. Haverkort, and H. Hermanns, J.-P. Katoen, “Model
Checking Continuous-Time Markov Chains by Transient Analy-
sis,” Computer Aided Verification, 2000.

[13] C. Baier, B.R. Haverkort, H. Hermanns, and J.-P. Katoen, “On the
Logical Characterisation of Performability Properties,” Automata,
Languages, and Programming, 2000.

[14] C. Baier and M. Kwiatkowska, “On the Verification of Qualitative
Properties of Probabilistic Processes Under Fairness Constraints,”
Information Processing Letters, vol. 66, no. 2, pp. 71-79, 1998.

[15] C. Baier and M.Z. Kwiatkowska, “Model Checking for a
Probabilistic Branching Time Logic with Fairness,” Distributed
Computing, vol. 11, pp. 125-155, 1998.

[16] A. Bianco and L. de Alfaro, “Model Checking of Probabilistic and
Nondeterministic Systems,” Foundations of Software Technology and
Theoretical Computer Science, 1995.

[17] M. Brown, E. Clarke, and O. Grumberg, “Characterizing Finite
Kripke Structures in Propositional Temporal Logic,” Theoretical
Computer Science, vol. 59, pp. 115-131, 1988.

[18] P. Buchholz, “Exact and Ordinary Lumpability in Finite Markov
Chains,” J. Applied Probability, vol. 31, pp. 59-75, 1994.

[19] P. Buchholz, “Markovian Process Algebra,” Technical Report 500,
Fachbereich Informatik, Univ. of Dortmund, 1994.

[20] P. Buchholz, J.-P. Katoen, P. Kemper, and C. Tepper, “Model-
Checking Large Structured Markov Chains,” J. Logic and Algebraic
Programming, to appear.

[21] G. Ciardo, J.K. Muppala, and K.S. Trivedi, “SPNP: Stochastic Petri
Net Package,” Proc. Third Int’l Workshop Petri Nets and Performance
Models, pp. 142-151, 1989.

[22] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “NuSMV: A
New Symbolic Model Checker,” J. Software Tools for Technology
Transfer, vol. 2, pp. 410-425, 2000.

[23] E. Clarke, E. Emerson, and A. Sistla, “Automatic Verification of
Finite-State Concurrent Systems Using Temporal Logic Specifica-
tions,” ACM Trans. Programming Languages and Systems, vol. 8,
pp. 244-263, 1986.

[24] E. Clarke, M. Fujita, P.C. McGeer, and J.C-Y. Yang, “Multi-
Terminal Binary Decision Diagrams: An Efficient Data Structure
for Matrix Representation,” Formal Methods in System Design,
vol. 10, nos. 2/3, pp. 149-169, 1997.

[25] E. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT Press,
1999.

[26] A.E. Conway and N.D. Georganas, Queueing Networks: Exact
Computational Algorithms. MIT Press, 1989.

[27] C. Courcoubetis and M. Yannakakis, “Verifying Temporal Proper-
ties of Finite-State Probabilistic Programs,” Proc. Ann. Symp.
Foundations of Computer Science, pp. 338-345, 1988.

[28] C. Courcoubetis and M. Yannakakis, “The Complexity of
Probabilistic Verification,” J. ACM, vol. 42, no. 4, pp. 857-907, 1995.

[29] S. Derisavi, H. Hermanns, and W.H. Sanders, “Optimal State-
Space Lumping in Markov Chains,” Information Processing Letters,
to appear.

[30] J. Desharnais and P. Panangaden, “Continuous Stochastic Logic
Characterizes Bisimulation of Continuous-Time Markov Pro-
cesses,” J. Logic and Algebraic Programming, to appear.

[31] D.L. Dill, “The Murphi Verification System,” Computer-Aided
Verification, 1996.

[32] E.A. Emerson and E.M. Clarke, “Using Branching Time Temporal
Logic to Synthesize Synchronization Skeletons,” Science of Com-
puter Programming, vol. 2, pp. 241-266, 1982.

[33] E.A. Emerson and C.-L. Lei, “Modalities for Model Checking:
Branching Time Logic Strikes Back,” Science of Computer Program-
ming, vol. 8, no. 3, pp. 275-306, 1987.

[34] W. Feller, An Introduction to Probability Theory and Its Applications.
John Wiley & Sons, 1968.

[35] B.L. Fox and P.W. Glynn, “Computing Poisson Probabilities,”
Comm. ACM, vol. 31, no. 4, pp. 440-445, 1988.

[36] W.K. Grassmann, “Finding Transient Solutions in Markovian
Event Systems through Randomization,” Numerical Solution of
Markov Chains, pp. 357-371, 1991.

[37] D. Gross and D.R. Miller, “The Randomization Technique as a
Modeling Tool and Solution Procedure for Transient Markov
Chains,” Operations Research, vol. 32, no. 2, pp. 343-361, 1984.

[38] H. Hansson and B. Jonsson, “A Logic for Reasoning about Time
and Reliability,” Formal Aspects of Computing, vol. 6, pp. 512-535,
1994.

[39] B.R. Haverkort, Performance of Computer Communication Systems: A
Model-Based Approach. John Wiley & Sons, 1998.

[40] B. Haverkort and H. Hermanns, J.-P. Katoen, “On the Use of
Model Checking Techniques for Quantitative Dependability
Evaluation,” Proc. IEEE Symp. Reliable Distributed Systems,
pp. 228-238, 2000.

[41] H. Hermanns, U. Herzog, and J.-P. Katoen, “Process Algebra for
Performance Evaluation,” Theoretical Computer Science, vol. 274,
nos. 1-2, pp. 43-87, 2002.

[42] H. Hermanns, U. Herzog, U. Klehmet, V. Mertsiotakis, and M.
Siegle, “Compositional Performance Modeling with the TIPPtool,”
Performance Evaluation, vol. 39, nos. 1-4, pp. 5-35, 2000.

BAIER ET AL.: MODEL-CHECKING ALGORITHMS FOR CONTINUOUS-TIME MARKOV CHAINS 17

[43] H. Hermanns, J.-P. Katoen, J. Meyer-Kayser, and M. Siegle, “A
Markov Chain Model Checker,” J. Software Tools and Technology
Transfer, vol. 4, no. 2, pp. 153-172, 2003.

[44] J. Hillston, A Compositional Approach to Performance Modeling.
Cambridge Univ. Press, 1996.

[45] G.J. Holzmann, “The Model Checker Spin,” IEEE Trans. Software
Eng., vol. 23, no. 5, pp. 279-295, May 1997.

[46] R.A. Howard, Dynamic Probabilistic Systems: Markov Models, vol. 1.
John Wiley & Sons, 1971.

[47] A. Jensen, “Markov Chains as an Aid in the Study of Markov
Processes,” Skand. Aktuarietidskrift, vol. 3, pp. 87-91, 1953.

[48] J.-P. Katoen, M.Z. Kwiatkowska, G. Norman, and D. Parker,
“Faster and Symbolic CTMCModel Checking,” Process Algebra and
Probabilistic Methods, 2001.

[49] J.G. Kemeny and J.L. Snell, Finite Markov Chains. Van Nostrand,
1960.

[50] A.N. Kolmogorov, “Über die analytische Methoden in der
Wahrscheinlichkeitsrechnung,” Mathematische Annalen, vol. 104,
pp. 415-458, 1931.

[51] A.N. Kolmogorov, “Anfangsgründe der Theorie der Markoffschen
Ketten mit unendlichen vielen möglichen Zuständen,” Matema-
ticheskii Sbornik N. S., pp. 607-610, 1936.

[52] U. Krieger, B. Müller-Clostermann, and M. Sczittnick, “Modeling
and Analysis of Communication Systems Based on Computational
Methods for Markov Chains,” IEEE Trans. Selected Areas in Comm.,
vol. 8, no. 9, pp. 1630-1648, 1990.

[53] V.G. Kulkarni, Modeling and Analysis of Stochastic Systems. Chap-
man Hall, 1995.

[54] M.Z. Kwiatkowska, G. Norman, R. Segala, and J. Sproston,
“Automatic Verification of Real-Time Systems with Discrete
Probability Distributions,” Theoretical Computer Science, vol. 282,
no. 1, pp. 101-150, 2002.

[55] K.G. Larsen and A. Skou, “Bisimulation through Probabilistic
Testing,” Information and Computation, vol. 94, no. 1, pp. 1-28, 1992.

[56] A.A. Markov, “Investigations of an Important Case of Dependent
Trials,” Izvestia Acad., Nauk VI, Series I, vol. 61 (in Russian), 1907.

[57] J.F. Meyer, A. Movaghar, and W.H. Sanders, “Stochastic Activity
Networks: Structure, Behavior, and Application,” Proc. Int’l
Workshop Timed Petri Nets, pp. 106-115, 1985.

[58] C. Moler and C.F. vanLoan, “Nineteen Dubious Ways to Compute
the Exponential of a Matrix,” SIAM Rev., vol. 20, no. 4, pp. 801-835,
1978.

[59] J.K. Muppala and K.S. Trivedi, “Numerical Transient Solution of
Finite Markovian Queueing Systems,” Queueing and Related
Models, 1992.

[60] W.D. Obal II and W.H. Sanders, “State-Space Support for Path-
Based Reward Variables,” Performance Evaluation, vol. 35, pp. 233-
251, 1999.

[61] B. Plateau and K. Atif, “Stochastic Automata Networks for
Modeling Parallel Systems,” IEEE Trans. Software Eng., vol. 17,
no. 10, pp. 1093-1108, Oct. 1991.

[62] A. Pnueli and L. Zuck, “Probabilistic Verification,” Information and
Computation, vol. 103, pp. 1-29, 1993.

[63] W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical
Recipes in C: The Art of Scientific Computing. Cambridge Univ.
Press, 1989.

[64] M.L. Puterman, Markov Decision Processes: Discrete Stochastic
Dynamic Programming. John Wiley & Sons, 1994.

[65] J.-P. Quielle and J. Sifakis, “Specification and Verification of
Concurrent Systems in CESAR,” Proc. Int’l Symp. Programming,
1982.

[66] A.L. Reibman, R. Smith, and K.S. Trivedi, “Markov and Markov
Reward Models Transient Analysis: An Overview of Numerical
Approaches,” European J. Operational Research, vol. 4, pp. 257-267,
1989.

[67] A.L. Reibman and K.S. Trivedi, “ Numerical Transient Analysis of
Markov Models,” Computers and Operations Research, vol. 15, no. 1,
pp. 19-36, 1988.

[68] W.H. Sanders, W.D. Obal II, M.A. Qureshi, and F.K. Widnajarko,
“The UltraSAN Modeling Environment,” Performance Evaluation,
vol. 24, pp. 89-115, 1995.

[69] W.J. Stewart, Introduction to the Numerical Solution of Markov
Chains. Princeton Univ. Press, 1994.

[70] R.E. Tarjan, “Depth-First Search and Linear Graph Algorithms,”
SIAM J. Compting, vol. 1, pp. 146-160, 1972.

[71] M.Y. Vardi, “Automatic Verification of Probabilistic Concurrent
Finite State Programs,” Proc. Ann. Symp. Foundations of Computer
Science, pp. 327-338, 1985.

[72] H. Younes and R. Simmons, “Probabilistic Verification of Discrete
Event Systems Using Acceptance Sampling,” Computer-Aided
Verification, 2002.

Christel Baier received the master’s degree in
mathematics in 1990 from the University of
Mannheim, Germany. She received the PhD
degree (1994) and the venia legendi (1999),
both from the Department of Computer Science
at the University of Mannheim. Since the autumn
of 1999, she has been a professor of computer
science at the Rheinische Friedrich-Wilhelms
Universität Bonn. Her research interests are the
theory of concurrent and probabilistic systems,

verification, semantics of programming languages, and process calculi
and mathematical logic.

Boudewijn Haverkort received the engineering
and PhD degrees in computer science, both
from the University of Twente, in 1986 and 1991,
respectively. He is the chair for the “design and
analysis of communication systems” at the
University of Twente, The Netherlands, in both
the Department of Computer Science and
Electrical Engineering since 2003. Prior to that,
he was a professor of performance evaluation
and distributed systems at the RWTH Aachen,

Germany, a lecturer in computer science at the University of Twente in
The Netherlands, and visiting researcher in the Teletraffic Research
Centre at the University of Adelaide. His research interests encompass
the design and performance and dependability evaluation of computer-
communication systems, model checking, parallel and distributed
computing, and fault-tolerant computer systems. He has published
more than 75 papers in international journals and conference proceed-
ings, edited several books and conference proceedings, and wrote a
monograph on model-based performance evaluation of computer and
communication systems. He is a senior member of the IEEE.

Holger Hermanns studied applied mathematics
at the University of Bordeaux I, France, and
computer science at the University of Erlangen-
Nürnberg, Germany, where he received the
diploma degree in 1993 (with honors) and the
PhD degree from the Department of Computer
Science in 1998 (with honors). Since 1998, he
has been with the Faculty of Computer Science,
University of Twente, The Netherlands, holding
an associate professor position since October

2001. In 2003, he also became a professor of computer science at
Saarland University, Germany. His research interests include distributed
systems engineering, compositional performance and dependability
modeling, model checking, and state space compression.

Joost-Pieter Katoen received the master’s
degree (with honors, 1987) and PhD degree
(1996) in computer science, both from the
University of Twente, The Netherlands. He is
currently an associate professor in the Formal
Methods and Tools Group at Twente and is a
visiting research fellow at the University of
Birmingham, United Kingdom. Prior to this, he
held positions at the University of Erlangen-
Nürnberg, Germany, Eindhoven University of

Technology, and Philips Research Laboratories. His research interests
include specification and verification of distributed and embedded
systems, semantics, model checking, object-based systems, and the
integration of formal methods and performance evaluation techniques.
He is a member of the IEEE Computer Society.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

18 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 7, JULY 2003

