A Logic for Reasoning about Time and
Reliability *

Hans Hansson and Bengt Jonsson

Swedish Institute of Computer Science, Box 1263, S-164 28 Kista, SWEDEN
E-mail: hansh@sics.se, bengt@sics.se
and

Department of Computer Systems, Uppsala University

SICS Research Report SICS/R90013

December 5, 1994

Abstract

We present a logic for stating properties such as, “after a request
for service there is at least a 98% probability that the service will
be carried out within 2 seconds”. The logic extends the temporal
logic CTL by Emerson, Clarke and Sistla with time and probabil-
ities. Formulas are interpreted over discrete time Markov chains.
We give algorithms for checking that a given Markov chain satis-
fies a formula in the logic. The algorithms require a polynomial
number of arithmetic operations, in size of both the formula and

*This research report is a revised and extended version of a paper that has ap-
peared under the title “A Framework for Reasoning about Time and Reliability” in
the Proceeding of the 10" TEEE Real-time Systems Symposium, Santa Monica CA,
December 1989. This work was partially supported by the Swedish Board for Tech-
nical Development (STU) as part of Esprit BRA Project SPEC, and by the Swedish
Telecommunication Administration.

the Markov chain. A simple example is included to illustrate the
algorithms.

Keywords: Branching time temporal logic, Markov chains, Model
checking, Real-time, Reliability

1 Introduction

Research on formal methods for specification and verification of com-
puter systems has to a large extent focussed on correctness of computed
values and qualitative ordering of events, while ignoring aspects that
deal with real-time properties such as bounds on response times. For
many systems, such as control systems, timing behavior is an important
aspect of the correctness of the system, and the interest for research on
these aspects of formal methods seems to be increasing at the moment
(see e.g. [Jos88]).

For some systems, it is very important that certain time bounds on
their behavior are always met. Examples are flight control systems and
many process control systems. Methods for reasoning about such hard
deadlines can be obtained by adding time to existing methods. One can
add time as an explicit (virtual) variable, and use standard verification
techniques [PH88, SL87, OWS87]. Logics that deal explicitly with time
quantities have been designed [BH81, JM86, KVdR83, EMSS89].

For some systems, one is interested in the overall average performance,
such as throughput, average response times, etc. Methods for analyzing
such properties usually employ Markov analysis. Often the systems are
described by different variants of timed or stochastic Petri nets [Mol82,
ABCS86, Zub85, RP84, HV87h].

In this paper, we shall investigate methods for reasoning about properties
such as “after a request for a service, there is at least a 98 percent
probability that the service will be carried out within 2 seconds”. We call
such properties soft deadlines. Soft deadlines are interesting in systems
in which a bound on the response time is important, but the failure to
meet the response time does not result in a disaster, loss of lives, etc.
Examples of systems for which soft deadlines are relevant are telephone
switching networks and computer networks.

We present a logic for stating soft deadlines. The logic is based on Emer-
son, Clarke, and Sistla’s Computation Tree Logic (CTL) [CES83]. CTL
is a modal (temporal) logic for reasoning about qualitative program cor-
rectness. Typical properties expressible in CTL are: p will eventually
hold on all future execution paths (AFp), ¢ will always hold on all future
execution paths (AGq), and r will hold continuously on some future ex-
ecution path (EGr). Recently, and independently of the work presented
here, Emerson, Mok, Sistla, and Srinivasan [EMSS89] have extended
CTL to deal with quantitative time. Examples of properties expressible
in the extended logic (RTCTL) are: p will become true within 50 time

units (AF<%p) and ¢ will continuously hold for 20 time units (AG<20¢).
RTCTL is suited for specification and verification of hard deadlines.

In our logic, we have equipped temporal operators with time bounds
in the same way as in RTCTL, i.e., time is discrete and one time unit
corresponds to one transition along an execution path. In addition, to
enable reasoning about soft deadlines we have replaced path quantifiers
with probabilities. FExamples of properties expressible in our logic are:
with at least 50% probability p will hold within 20 time units (FS22 p)
and, with at least 99% probability ¢ will hold continuously for 20 time
units (G;ggg q). We interpret formulas in our logic over structures that
are discrete time Markov chains. This relates our work to probabilistic
temporal logics (e.g., [HS84, HS84]) and temporal logics with proba-
bilistic models (e.g., [CVW86, CY88]) However, these works only deal
with properties that either hold with probability one or with a non-zero
probability.

A related research area is the work on Timed (and stochastic) Petri
Nets (TPN) [Mol82, ABC86, Zub85, RP84, HV87b]. Much effort in
the TPN research goes into generating Markov chains from TPN’s, and
that work could probably be integrated into our framework. The main
difference between the TPN approach and ours is the class of properties
that are analyzed for Markov Chains. In the TPN tradition, one analyzes
properties such as mean utilization, mean response time, and average
throughput.

In Section 2, we define our logic, Probabilistic real time Computation
Tree Logic (PCTL) and in Section 3 we provide examples of properties
that can be expressed in PCTL. In Section 4, we present and discuss
algorithms for checking if a given structure is a model of a PCTL-formula.
Section 5 presents a verification of a simple communication protocol. In
Section 6, we discuss related work. In Section 7, we summarize the results
and propose directions for further work. Proofs of some theorems and
claims are found in Appendix A. Finally, Appendix B contains details
of some extra algorithms.

2 Probabilistic real time CTL

In this section, we define a logic, called Probabilistic real time Compu-
tation Tree Logic (PCTL), for expressing real-time and probability in
systems.

Assume a finite set A of atomic propositions. We use a, ay, etc. to

denote atomic propositions. Formulas in PCTL are built from atomic
propositions, propositional logic connectives and operators for express-
ing time and probabilities. The set of PCTL formulas is divided into
path formulas and state formulas. Their syntax is defined inductively as
follows:

e Each atomic proposition is a state formula,

o If fi and f; are state formulas, then so are =f; , (fi A fa2),
(i Vv f2), (i = f2),

o If fi and f; are state formulas and ¢ is a nonnegative integer or oo,

then (f; US fy) and (fy US' f;) are path formulas,

o If fis a path formula and p is a real number with 0 < p < 1, then
[f]s, and [f]5, are state formulas.

We shall use f, fi, etc. to range over PCTL formulas. Intuitively, state
formulas represent properties of states and path formulas represent prop-
erties of paths (i.e., sequences of states). The propositional connectives
-, V, A and — have their usual meanings. The operator U is the
(strong) until operator, and U is the unless (or weak until) operator.
For a given state s, the formulas [f],, and [f],, express that f holds
for a path from s with a probability of at least p and greater than p,
respectively.

We shall use f; UZS; f2 as a shorthand for [fl Ust fg] o’ and fy ?/{ZS; fa
as a shorthand for [fl Ust f2] - Intuitively, fi U;; f2 means that

there is at least a probability p that both f; will become true within ¢
time units and that f; will be true from now on until f; becomes true.
Intuitively, fi U;; fo means that there is at least a probability p that
either f; will remain true for at least ¢ time units, or that both f; will
become true within ¢ time units and that f; will be true from now on
until f; becomes true. We will also use f; U;; f2 and fi Z/{;; f2, with
the analogous meaning.

PCTL formulas are interpreted over structures that are discrete time
Markov chains. A specified initial state is associated with the structure.
In addition, for each state there is an assignment of truth values to
atomic propositions appearing in a given formula. Formally, a structure
is a quadruple (S,s',7, L), where

S is a finite set of stales, ranged over by s, 31, etc.,

st € 8 is an initial state,

T is a transition probabilily function, 7 : S x S — [0, 1], such that
for all sin S we have

Z T(s,s") =1,

s'eS

L is a labeling function assigning atomic propositions to states, i.e.,
L:S — 24,

Intuitively, each transition is considered to require one time unit. We will
display structures as transition diagrams, where states (circles) are la-
beled with atomic propositions and transitions with non-zero probability
are represented as arrows labeled with their probabilities (e.g., the ar-
row going from state s; to state s; is labelled with 7 (s, s7)). The initial
state (s') is indicated with an extra arrow. For example, figure 1 shows a
structure with 4 states and 5 transitions with non-zero probability. The
state labeled with a1, a9 is the initial state.

Figure 1: An example of a structure
A path o from a state sp in a structure is an infinite sequence
Sg—>81— + — 8, — -

of states with sg as the first state. The n:th state (s,) of o is denoted
o[n], and the prefix of o of length n is denoted oln, i.e.,

oln = sg—81— -+ — 38,

For each structure and state sqg we define a probability measure p,, on
the set of paths from sg. Following measure theory [Coh80, KSK76], t,

is defined on the probability space (X,.A), where X is the set of paths
starting in sp and A is a sigma-algebra on X generated by sets

{oeX:oln= sg—8— + —8,}
of paths with a common finite prefix sg — sy — .-+ — s,. The measure
L is defined as follows: for each finite sequence sy — s1 — -+ — s, of

states,
Um({o€ Xt 0ln=s9g—81— -+ —=35,}1) =T (80,81) %X XT (Sp—1,5n) ,

i.e., the measure of the set of paths o for which 6fn = sg— 81— -+ — s,
is equal to the product 7 (sg,$1) X -+ X 7 (Sp—1,5,). For n = 0 we define
Um({o0 € X : 070 = sp}) = 1. This uniquely defines the measure i,
on all sets of paths in the sigma-algebra A.

We define the truth of PCTL-formulas for a structure K by a satisfaction
relation

sk S
which intuitively means that the state formula f is true at state s in the
structure K. In order to define the satisfaction relation for states, it is
helpful to use another relation

ocEx [

which intuitively means that the path o satisfies the path formula f in
K. The relations s |=x f and o Ex [are inductively defined as follows:

skExa iff @ € L(s)

sl=x f iff not s =k f

sEx fi A f2 iff s Ex f1 and s Ex fo

sEx fi V f iff s Ex fiorskExf

sEx fi — fo iff s ExfiorsfErfo

ol=x fi US' fo iff there exists an ¢ < t such that ofi] =x fo and Vj: 0<j<i: (o[s] Ex fr)

o=k fi uUst f2 iff o Ex A U<t faorVj: 0<5<t: (o[y] Ex f1)

s Ex [f]zp iff the pm-measure of the set of paths o starting in s for which ¢ [Ex f is at least p.
s Ex [f]>p iff the pm-measure of the set of paths o starting in s for which ¢ [Ex f is greater than p.
We define
Fxkf = s'Ex [

where s’ is the initial state of K.

3 Properties expressible in PCTL

In this section we present examples of properties that can be expressed
in PCTL. First, we discuss some of the facilities of PCTL which makes
it suitable for specification of soft and hard deadlines.

The main difference between PCTL and branching time temporal logics
such as CTL, is the quantification over paths and the ability to spec-
ify quantitative time. CTL allows universal (Af) and existential (£ f)
quantification over paths, i.e., one can state that a property should hold
for all computations (paths) or that it should hold for some computa-
tions (paths). It is not possible to state that a property should hold for
a certain portion of the computations, e.g. for at least 50% of the com-
putations. In PCTL, on the other hand, arbitrary probabilities can be
assigned to path formulas, thus obtaining a more general quantification
over paths. An analogy to universal and existential quantification can

in PCTL be defined as:

Af
Ef

sy
[0

Quantitative time allows us to specify time-critical properties that relate
the occurrence of events of a system in real-time. This is very important
for programs that operate in distributed and real-time environments,
e.g., communication protocols and industrial control systems. In PCTL
it is possible to state that a property will hold continuously during a
specific time interval, or that a property will hold sometime during a time
interval. Combining this with the above quantification we can define

<t _ <t
G% I = [Us, Jalse

— 1<
F5, [= true U3, f
Intuitively, G;; f means that the formula f holds continuously for ¢
time units with a probability of at least p, and F;; [means that the
formula f holds within ¢ time units with a probability of at least p.

An important requirement on most real-time and distributed systems
is that they should be continuously operating, e.g., every time the con-
troller receives an alarm signal from a sensor the controller should take
the appropriate action. We can express such requirements with the fol-
lowing PCTL operators:

AGS = fUST false

AF[=true US f

EGf = [U false
EFf =true U;go f

Intuitively, AG f means that f is always true (in all states that can be
reached with non-zero probability), AF f means that a state where f
is true will eventually be reached with probability 1, FG f means that
there is a non-zero probability for f to be continuously true, and FF f
means that there exists a state where f holds which can be reached with
non-zero probability. Owicki and Lamport [OL82] have defined a leads-to
operator (¢ ~+ b), with the intuitive meaning that whenever a becomes
true, b will eventually hold. We can in PCTL define a quantified leads-to
operator as:

<t

fine o = AG (= FE 1)

<p
Intuitively, fi ~> fo means that whenever f; holds there is a probabil-
>t

ity of at least p that f, will hold within ¢ time units. Analogies to many
modal operators can be derived from the basic PCTL operators. We can
for instance define an operator that corresponds to the CTL [CES83]
operator A[f; U f;] as follows:

AL U f2] = hH U§f° J2

As an example we will specify a mutual exclusion property. Consider
two processes (P; and P;) using the same critical section. The atomic
propositions N;, T;, and C; indicates that P; is in its non-critical, trying,
and critical regions, respectively. The mutual exclusion property can be
expressed as:

AG ["(Cl N CQ)]

This is not sufficient for most real-time systems since the property only
states that “bad behavior” must be avoided (safety). To capture the
real-time behavior we can specify that whenever P; enters its trying
region, it will enter its critical region within 4 time units. This can in
PCTL be expressed as:

<4
T A~ Cl
>1
For some systems, it might be sufficient that the deadline is almost

always met (e.g. in 99% of the cases). The relaxed property can be
expressed as:

Relaxing the timing requirement might enable a less costly implemen-
tation that still shows acceptable behavior. To be on the safe side we
could add a strict upper limit to the relaxed property, combining the
hard and soft deadlines above. If we assume that we want P; to always
enter its critical region within 10 time units, and almost always within
4 time units we get the property:

<10 <4
(Tl N> 01) A (Tl N> Cl)
>1 >0.99

4 Model Checking in PCTL

In this section, we present a model checking algorithm, which given a
structure K = (9, si,T,L> and a PCTL formula f determines whether
Ex f. The algorithm is based on the algorithm for model checking in
CTL [CES83]. It is designed so that when it finishes each state will be
labeled with the set of subformulas of f that are true in the state. One
can then conclude that = f if the initial state (s') is labeled with f.

For each state of the structure, the algorithm uses a variable label(s) to
indicate the subformulas that are {rue in state s. Initially, each state s is
labeled with the atomic propositions that are true in s, i.e., label(s) :=
L(s), Vs € S. The labeling is then performed starting with the smallest
subformula of f that has not yet been labeled, and ending with labeling
states with fitself. Composite formulas are labeled based on the labeling
of their parts. Assuming that we have performed the labeling of f;
and fy, the labeling corresponding to negation (—f;) and propositional
connectives (f1 A fa, f1 V fo and fi — f2) is straightforward, i.e.,

label(s) := label(s)U{-f1} if f1 & label(s),

label(s) = label(s)U{f1 N fa} if f1,f2 € label(s),

label(s) = label(s)U{f1 V f2} if f1 € label(s) or fy € label(s),
label(s) = label(s)U{f1 — f2} if fi & label(s) or fy € label(s),

where in addition the new formula must be a subformula of f.

In the sequel, we shall treat the modal operators. Section 4.1 presents
two algorithms for labeling states with the modal subformulas of PCTL.
In Section 4.2 we discuss labeling in cases with extreme parameter values
(eg. p=1,p=0,and t = x).

10

4.1 Labeling states with the modal subformulas of PCTL

We shall give an algorithm for the labeling of states for the formula
HhU ;; f2, assuming that we have done the labeling for formulas f; and
f2, and that ¢ # oo (an algorithm for ¢{ = oo will be given in Section
4.2). Let us introduce the function P(%,s) for s € S and ¢ an integer.
If t > 0, we define P(t,s) to be the p,,-measure for the set of paths o
starting in s for which o Ex fi US' fo. I 1 < 0, we define P(1,s) = 0.
In Appendix A we prove that P(¢,s) for ¢ > 0 satisfies the following
recurrence equation:

P(t,s)= if f; € label(s) then 1
else if fy ¢ label(s) then 0 (1)
else Y T(s,s")x P(t—1,s)
s'eS

This recurrence equation gives an algorithm that labels the state s with
N USE f2 it P(1,8) > p.

The above recurrence equation can also be formulated in terms of matrix
multiplication. Let sq,...,sy be the states in . Partition S into three
subsets, S5, S, and 5;, as follows:

Ss - the success states, are states labeled with f; (i.e., states for which

f2 € label(s)).

Sy - the failure states, are states which are not labeled with f; nor f,

(i.e., states for which fi, fo & label(s)).

S; - the inconclusive states, are states labeled with f; but not with f;

(i.e., states for which f; € label(s) and f; ¢ label(s)).

Define the N x N-matrix M by

T(Sk,sl) if s, € .5;
M(sg,s1] = 1 ifsp &S, AN k=1 (2)

0 otherwise

Let P(t) be a column vector of size N whose ith element is P(¢)[s;].
Define P(0)[s;] to be 1if fo € label(s;), otherwise P(0)[s;] is 0. Then we
have

P(t) = M'+P(0) (3)
for t > 0. A possible optimization is to collapse the S and Sy states
into two representative states: s; and sy. This will reduce the size of M

to (1S:] +2) x (18] + 2).

11

In Appendix A we prove that equations (1) and (3) are equivalent.

For formulas of form f; U;; f2 we can use the same calculations as for
bl U;; f2, but we will only label states for which P(¢,s) > p. Model

checking for formulas of the form f; Z/{;; f2 and fy Z/{;; f2 can be done
via the dual formulas: -

RUSE fo= = |(=R) Uy (CA A =)
hUSH 2=~ [(=0) USh_,) (A A)]

Alternatively, we can define an analogy to P(¢, s) for the Unless case and
construct algorithms similar to algorithms 1 and 2 below. This is done
in Appendix B.

Calculating P(t,s)

We propose two algorithms for calculating P(¢, s). The first algorithm is
more or less directly derived from equation (1) and the second algorithm
uses matrix multiplication and the matrix M as in equation (3).

fori:=0tot do
for all s € 5 do
if f; € label(s) then P(i,s):=1
else begin
P(i,s):=0;
if f; € label(s) then for all s’ € S do
P(i,s):=P(i,s)+ T (s,8)«P(i—1,8)

Algorithm 1:

end

for all s € 5 do
if fy € label(s) then P(0)[s] := 1
else P(0)[s] := 0;

P(t) = M'+«P(0)

Algorithm 2:

Algorithm 1 requires O(¢ x | S|?) ! arithmetical operations. Ignoring the
zero-probability transitions in 7 we can reduce the number of arithmeti-
cal operations required to O(t x (|S| + | E|)), where | E| is the number of
transitions in 7 with non-zero probability. For a fully connected struc-
ture these expressions coincide, since |E| = |S|%. The matrix multiplica-
tion in Algorithm 2 can be performed with O(log(t) * |5|*) arithmetical

!The actual worst case complexity can be reduced to ((t+ 1) * (|S| + 1) * 2 % |S]),
since the outermost loop will be run through ¢+ 1 times, the “for all” loops will be run
through |S| times, there is one assignment statement just before the innermost loop,
and there are two arithmetical operations in the innermost assignment statement.

12

operations, since M* can be calculated with O(log ¢) matrix multipli-
cations, each requiring |S|? arithmetical operations. Let us define the
size of a modal operator as log(t), where ¢ is the integer time param-
eter of the operator. The size |f| of a PCTL formula f is defined as
the number of propositional connectives and modal operators in f plus
the sum of the sizes of the modal operators in f. Then the problem
whether a structure satisfies a formula f can be decided using at most
Otmaz * (|S] + |E|) * | f]) or O(]S]? * | f|) arithmetical operations, de-
pending on the algorithm, where || is the number of states, |F| the
number of transitions with non-zero probability, ¢,,,, is the maximum
time parameter in a formula, and |f| is the size of the formula. The
second expression of complexity is polynomial in the size of the formula
and the structure. In Section 5 we illustrate the use of both algorithms
in the verification of a simple communication protocol.

4.2 Alternative algorithms for labeling states with modal
subformulas

In this section we will discuss alternative algorithms for cases when the
modal operator has extreme time (0 or co) or probability (1 or 0) pa-
rameter values. As in Section 4.1, we will only consider Until formulas,
since the Unless case can be handled via the dual modal operators. To
improve performance in an actual implementation, it will probably be
desirable to use separate algorithms for the Unless case. Such algorithms
are defined in Appendix B.

Table 1 gives a classification of possible combinations of p and ¢ param-
eter values as well as complexities of performing the labeling. The three
entries in the left column, corrsponding to ¢ = 0 state that the labeling
problem then collapses to the problem of labeling states with f;. The
general case in the middle entry has been considered in Subsection 4.1.
In the following, we will present alternative algorithms for the remaining

cases of the table: fy US) fa, f1 USS® fa, 1 USS fa, f1 US] fa, and
N Uzgloo fa.

4.2.1 The case f; U;é f2

To label states with f; U;é f2 we will use the partitioning of states
defined in Section 4.1, i.e., S;, S5, and Sy. The algorithm will (trivially)
label states in S;. States in 9; will be labeled if there exists a path
which is shorter than ¢ + 1 from the state to a state in 5. Inspired by

13

TIME

0 variable o0
>0 |skxf| EF[A USR] | CTLEF[L U £
o(5)) o(5))
PROB- variable | s Ex fo | The general case | “probabilistic CTL”
ABILITY (’)(t*(|5|+ |E|)) (f)(|5|281)
or O(log t * |S|?)
> 1 skx f2 | AF |1 US' CTL AF
o(5)) oD

Table 1: Combinations of p and ¢ parameter values in formulas.

Dijkstra’s shortest path algorithm [Gib85] and observing that we only
need to consider paths that are shorter than {41 we define the algorithm
LABEL_EU as follows:

LABEL_EU: unseen := 5; U Sg;
fringe := S;;
mr := min(].5;],1);
Vs € fringe do addlabel(s,f);
for i:=0 to mr do { unseen := unseen - fringe;
fringe := {s: (s € unseen A s’ € fringe: (7 (s,s") > 0))};

Intuitively, unseenis the set of states in S; and S5 that have not yet been
considered for labeling, fringe are the states that are being labeled, and
addlabel(s,f)labels state s with the formula f, i.e., label(s) := label(s)U
{f}. After passing the for loop with index i, the algorithm will have
labeled all states that satisfy f; U;é fa. A proof of correctness for the
algorithm is given in Appendix A.

Emerson et.al. [EMSS89] presents a similar algorithm for model check-
ing in RTCTL. The main difference compared with our algorithm is
that they do not partition the state set and that they label states with

intermediate formulas, i.e., if £/ [fl U<k fg] holds in state s and the in-
vestigated formula is F [fl Ust fg] their algorithm will label s with the
t — k formulas F [fl U< fz] (k <1 <'t), whereas our algorithm only
labels s with f; US) fa.

14

4.2.2 The case f; U§5’° fo

This case can be reduced to the case f; U;é f2 by the following propo-
sition, i.e., the algorithm LABFEL_FEU can be used.

Proposition 1 The formula f; U;go f2 holds in a state iff f1 U§(|)Si| fa
holds in that state.

Proof:

(<) We first observe that if a path o satisfies f; USISi| f,, then it will
also satisfy fi US® f,. It follows that the measure of the set of paths
satisfying fi; US® f, is at least as large as the measure of the set of
paths satisfying f; UsIsi fa.

(=) If a state s satisfies fy U§5’° f2 then there exists a finite sequence
of states starting in s whose last state satisfies f;, whose remaining
states satisfy fi, and where all transitions have non-zero probability. We
can furthermore choose this sequence so that no state is visited twice.
The longest such sequence has length |9;], since it can at most visit all
states in 5; followed by a state in S5. It follows that s must also satisfy

h U;ésil Ja

4.2.3 The case f; U;;O f2

In this case, the algorithms in Section 4.1 can not be used, since they
would require infinite calculations. Instead we define P(00,s) to be the
fm-measure for the set of paths ¢ from s for which ¢ =Ex fi e fa.
In this algorithm we extend the failure states to also include states in
S; from which no success state is reachable via transitions with non-zero
probability. We define @) to be the new set of failure states. The first
step of the algorithm is to identify the statesin). This can be done with
an algorithm similar to LABEL_FU. The difference is that we here are
interested in the states in 5; that are not labeled by the algorithm, i.e.,
states from which no state in S5 is reachable. @ contains the union of
these states and S¢. Similarly, we can extend the success states to also
include states in S; for which the p,,-measure for eventually reaching
a success state (s : s € 55) is 1. We define R to be the new set of
success states. The states in R can be identified in a way similar to the
identification of states in (). Algorithms for identifying the states in @
and R are given in Appendix B. The next step is to solve the set of
linear equations defined by:

15

P(oo,s)= if s € R then 1
else if s € () then 0 (4)
else > T(s,s) x P(o0,s)

s'eS

This can be done with Gaussian elimination, with a complexity of O [(|S]| — |Q| — | R|)*®!]
[AHU74]. In Appendix A we verify that the solution of the system of

equations (4) is unique, and that the solution P(o0,s) gives the p,,-

measure of the set of paths o from s for which ¢ Ex fi US f,.

4.2.4 The case f; U;f fa

In this case we must ensure that the gives the p,,-measure of the set
of paths ¢ from s for which ¢ Ex fi US! fo is 1. The algorithm
LABFEL_AU is defined as follows:

LABEL_ATU:
unseen := S;;
fringe := S§;
seen := (J;

mr := min(|.5;],1) ;

Vs € fringe do addlabel(s,f);

unseen := unseen - fringe;

seen := seen U fringe;

fringe := {s: [s € unseen A Vs':(7(s,s’) > 0:(s" € seen))]}

for 1:=0 to mr do

Intuitively, seen are the states that have already been labeled. The other
variables have analogous intuitive meanings as in algorithm LABEL_EU.
After passing the for loop with index i, the algorithm will have labeled
all states that satisfy f; US! f,.

4.2.5 The case f; U;loo fa

Similarly to f; U;go f2, this case can be reduced to f; U;f f2 by the
following proposition, i.e., the Algorithm LABEL_AU can be used.

Proposition 2 The formula fi U;loo f2 holds in a state iff fi U;{Sﬂ fa
hols in that state. - -

Proof: The proof follows the same lines as the proof of Proposition 1. O

16

5 Example

In this section we provide a simple example to illustrate the proposed
method. We will verify that a soft deadline is met by a communication
protocol. The protocol, Parrow’s Protocol (PP) [Par85], is a simpli-
fied version of the well known Alternating Bit Protocol [BSW69]. PP
provides an error free communication over a medium that might lose
messages. For simplicity it is assumed that acknowledgements (ack) are
never lost. PP consists of three entities: a sender, a medium, and a
receiver. The components and their interactions are described in Figure
2. The structure in Figure 3 presents the behavior of PP. It is assumed
that 10% of the messages are lost.

send Tec
i ack t
SENDER in out | RECEIVER
. MEDIUM
(0]

Figure 2: The components of Parrow’s Protocol

1 send 1 in 0.9 out
—_— S9 S3
to
ack 0.1 1

rec

Figure 3: The behavior of PP. The labels on arcs are only added for
clarity

PP will be used to illustrate the verification of a soft deadline, namely
the property that a rec (receive) will appear in at least 99% of the
cases within 5 time units from the submission of a send. In PCTL, this

17

property can be expressed as:

<6

f: 80’_/)54

>0.99

5.1 Verification of PP

We will use the model checking algorithms from Section 4 to verify that
PP is a model of f. First, f is formulated in terms of the basic PCTL
operators:

f = So t'\r?j_e/U>0.99 84 U§1°° false
fi f2 fa fa
fs
fe
f

The labeling of states starts with the smallest subformulas, i.e. fi, fo,
f3 and fy, which is trivial (sp will be labeled with f;, all states will
be labeled with f;, state sy will be labeled with f5, and no state will
be labeled with f;). For labeling of states with f5 we will use both
algorithms for calculation of P(t,s) presented in Section 4.

Algorithm 1: The labeling of states with f5 using Algorithm 1 in
Section 4.1 is illustrated in Table 2. The table shows the result of the
successive calculations, performed from left (time=0) to right (time=6).
We can conclude that all states should be labeled with f5, since after 6
time units p > 0.99 for all states.

Algorithm 2: When labeling states with f5 using algorithm 2 we start
by deriving the matrix M and the column vector P(0) from the structure.

S0 S1 S9 S3 S4 S0

S0 0 1 0O 0 O S0 0

- S1 0 1 0 0 = o S1 0
M= s | 0 01 0 09 0 P0) = s | 0
S3 0 0 0 0 1 S3 0

S4 0 0 0 0 1 Sy 1

18

time: |0 | 1| 2 3 4 5 6
state
S0 0(0| O 0 0.9 | 0.9 | 0.99
81 00| 0 {09 09 |]0.99]| 0.99
S9 0[0]09]091|0.99 | 0.99 | 0.999
S3 011 1 1 1
S4 1|1 1 1 1

Table 2: Successive calculations using algorithm 1

The next step is to calculate P(6):

P(6) = MS+P(0) = | 0.999

We conclude that all states should be labeled with f5, since P(6)[s;] >
0.99 for all states. Not surprisingly, the probabilities in the vector P(6)
are exactly the same as the probabilities after 6 time units obtained with
Algorithm 1.

Next, we will label all states with fg, since all states are labeled with f5.
The labeling of states with f can be done via the dual formula:

(_

[= = |-false U;go = fe A —false
S—— S~~~ S——
fr fs fo
fo
L 1 J
f

The labeling of states with f7, fs, fo, and fig is trivial (all states will be
labeled with f7 and fg, and no state will be labeled with fg or fig). For
labeling states with f1; we use the label_E'U algorithm. No states will be
labeled with fi1, Since S; = S5 =) and Sy = 5. Finally, we can label all
states with f, since no state is labeled with fi1. Note that the labeling

19

procedure in this last step is very naive. It can be drastically simplified
by using a special algorithm for labeling states with formluas of the form
AG[f'. In this case, such an algorithm is straightforward, since all states

should be labeled with AG f’ if all states are labeled with f’.

The labeled structure is shown in Figure 4. We can conclude that f
holds for the structure, since the initial state (sg) is labeled with f.

T2, 55 Je
f77f87f

S3

f27f57f6
- f77f87f
S2

f27f57f6
f77f87f

S1

f17f27f57f6
f77f87f

S0

f27f37f5
f67f77f87f

S4

Figure 4: The resulting labeled structure

6 Related Work

6.1 Performance Analysis

One of the most used tools for performance analysis is Time Petri Nets
(TPNs). There are many variants of the TPN model. TPN are mainly
used to calculate exact performance measures of computer system de-
signs. That is, the system is assumed given together wih performance of
its parts. The aim is to get a performance measure of the system which
is as accurate as possible. Much of the work is therefore to make the
model as true as possible to actual systems while retaining the possibility
of analysis.

Time Petri nets were introduced by Zuberek [Zub85] and extended by
Razouk and Phelps [Raz84, RP84]. The TPN model is based on Petri
Nets and associates firing frequencies and deterministic firing times with
each transition in the net. The key steps in TPN analysis are:

1. Model the system as a TPN

20

2. Generate a finite-state Markov chain from the TPN. The gener-
ation can take much computational effort, and the state space of
the Markov chain can become large. Consequently, much effort is
spent finding methods to reduce the computational complexity of
this part.

3. Analyze the Markov chain by standard methods to find the long
run fraction of time spent in each state. From this information
one can make conclusions about utilization of resources such as
memory, buses, etc. Waiting times can be analyzed by looking at
the fraction of time spent in waiting states.

It follows that the utility of TPN analysis is much in the analysis of
designed systems for tuning the behavior of its components. One can
make experiments with various values of system parameters to determine
optimal configurations. Holliday and Vernon have carried out such anal-
yses for a number of different systems, such as multiprocessor memories
[HV8T7a], cache protocols [VH86]. There are several software packages
available that help in the analysis for these models e.g. [HV86, Chi85].

TPN’s have a relation to our approach, because our structures are similar
to Markov Chains. Much effort in the TPN research goes into generating
Markov Chains from TPN’s, and that work could probably very well be
integrated into our framework. The main difference between the TPN
approach and ours is the class of properties that are analyzed for Markov
Chains. In TPN tradition, one analyzes mean utilization, and mean
waiting times. From these data one can also obtain mean throughput.
One does not analyze actual response times in the way we have done. In
our approach, we have focussed attention on soft deadlines, as described
in the introduction. This kind of analysis can be seen as a complement
to the mean-time analysis for TPN’s.

6.2 Logics for Real Time

Many of the logics employed to state properties of concurrent programs
are various forms of modal logics [Pnu82, Abr80], the most common ones
being forms of temporal logic. Many of these are suitable to reasoning
about how events or predicates may be ordered in time, without bother-
ing about time quantities. The logic we use is inspired by a simple such
logic, CTL [CES83, ECR82]. CTL is simple and has a polynomial time
model-checking algorithm [CES83] and an exponential time satisfiability
algorithm [EC82]. In [ESS89] is described a logic with a polynomial time
satisfiability algorithm.

21

Emerson, Mok, Sistla, and Srinivasan [EMSS89] have extended CTL to
deal with quantitative time. As in our logic, they associate one time
unit to each transition. A different time model is reported by Alur and
Henzinger [AH89]. In their logic, time between successive states is only
required not to decrease: it may remain the same, or increase by an
arbitrary amount. An early reference to work which has tried to extend
modal logics with quantitative time is [BH81], in which traditional linear
time temporal logic is extended to cope with quantitative time. Bern-
stein and Harter present inference rules in the spirit of the proof lattices
of Owicki and Lamport [OL82]. No attempt to look at completeness
is made. A related logic is presented in [KVdR&3], which is richer and
includes past-time operators, but there no inference system is presented.

A different approach is the Real-Time Logic (RTL) of Jahanian and Mok
[JM86]. RTL is not a modal logic, but a first-order logic. In RTL, one
can reason about occurrences of events and the elapsed times between
them. The logic is decidable without uninterpreted function symbols, as
a special case of Presburger arithmetic. Of course such a decision pro-
cedure is highly inefficient. Jahanian and Mok have therefore developed
algorithms for checking that a class of finite-state processes satisfy an
RTL formula (modelchecking).

6.3 Probabilistic Logics and Logics with Probabilistic mod-
els

The above mentioned logics for real-time are not suitable for expressing
or reasoning about soft deadlines, since probabilities are not included.
On the other hand, there are several examples in the litterature of modal
logics that are extended with probabilities (but not time), e.g., PTL by
Hart and Sharir [HS84], and TC by Lehman and Shelah [LS82]. However,
these works only deal with properties that either hold with probability
one or with a non-zero probability.

Probabilistic modal logics have been used in the verification of proba-
bilistic algorithms. Mostly, the objective has been to verify that such
algorithms satisfy certain properties with probability 1. The proof meth-
ods for these properties resemble the classical proof methods for proving
liveness properties under fairness assumptions. There are both non-finite
state versions [PZ86], and finite-state modelchecking versions [Var85,

Fel83, HSP83, HS84, VWS6).

Courcoubetis and Yannakakis [CY88, CY89] have investigated the com-
plexity of modelchecking for linear time propositional temporal logic of

22

sequential and concurrent probabilistic programs. In the sequential case,
the models are (just as our models) Markov chains. They give a mod-
elchecking algorithm that runs in time linear in the program and expo-
nential in the specification, and show that the problem is in PSPACE.
Also, they give an algorithm for computing the exact probability that a
prograimn satisfies its specification.

7 Conclusions and directions for further work

We have defined a logic, PCTL, that enables us to formulate soft deadline
properties, i.e., properties of the form: “after a request for service there
is at least a 98% probability that the service will be carried out within
2 seconds”.

We interpret formulas in our logic over models that are discrete time
Markov chains. Several model checking algorithms, with different suit-
ability for different classes of formulas, have been presented.

The use of Markovian models relates our work to the work on Timed
Petri Nets. TPNs could be used as the basis for defining a specification
language with our structures as underlying semantic model. Thus, it
might be possible to integrate our logic and model checking algorithms
into the TPN framework.

The main difference between the TPN approach and ours is the class
of properties that are analyzed for Markov chains. In TPN tradition,
a steady state solution of the Markov chain is calculated. From this
solution mean utilization, mean waiting times, and mean throughput
can be obtained. One does not analyze the transient behavior in the way
we have done. Qur analysis can thus be seen as a complement to the
mean-time analysis for TPNs. Also, our logic makes it more convenient
to formulate the properties of interest.

So far, we have only considered very simple examples. It would be in-
teresting to examine how well more realistic examples can be handled,
both in terms of specification and verification efforts.

Acknowledgements

We are grateful to Ivan Christoff, Linda Christoff, Fredrik Orava, and
Parosh for reading and discussing drafts of this manuscript. This work
was partially supported by the Swedish Board for Technical Development
(ESPRIT/BRA project 3096, SPEC) and the Swedish Telecommunica-
tion Administration (project: PROCOM).

23

References

[ABCS6]

[Abr80]

[AHS9]

[AHU74]

[BHS1]

[BSW69]

[CESS3]

[Chi85]

[Coh80]
[CVWS6]

[CYS8S]

[CY89)]

M. Ajmone Marsan, G. Balbo, and G. Conte. Performance
Models of Multiprocessor Systems. MIT Press, 1986.

K. Abrahamson. Decidability and Fxpressiveness of Logics of
Processes. PhD thesis, Univ. of Washington, 1980.

R. Alur and T. Henzinger. A really temporal logic. In Proc.
30 Annual Symp. Foundations of Compuler Science, 1989.

A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and
Analysis of Computer Algorithms. Addison-Wesley Publish-
ing Company, 1974.

A. Bernstein and P.K. Harter. Proving real-time properties of
programs with temporal logic. In Proc. §th Symp. on Operal-
ing System Principles, pages 1-11, Pacific Grove, California,
1981.

K. Bartlett, R. Scantlebury, and P. Wilkinson. A note on re-
liable full-duplex transmissions over half duplex lines. Com-
munications of the ACM, 2(5):260-261, 1969.

E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic veri-
fication of finite-state concurrent systems using temporal log-
ics specification: A practical approach. In Proc. 10" ACM
Symp. on Principles of Programming Languages, pages 117—
126, 1983.

G. Chiola. A software package for the analysis of generalized
stochastic Petri net models. In Proc. Int. Workshop on Time
Petri Nets, pages 136-143, July 1985.

D. E. Cohn. Measure Theory. Birkhauser, 1980.

C. Courcoubetis, M. Vardi, and P. Wolper. Reasoning about
fair concurrent programs. In Proc. 18" ACM Symp. on The-
ory of Computing, pages 283-294, 1986.

Courcoubetis and Yannakakis. The complexity of probabilis-
tic verification. In Proc. 29" Annual Symp. Foundations of
Computer Science, pages 338-345, 1988.

Courcoubetis and Yannakakis. The complexity of probabilis-
tic verification. Bell labs Murry Hill, 1989.

24

[EC82]

[EMSS89]

[ESS89]

[Fel83]

[Gib85]

[Gri81]

[HS84]

[HSP83]

[HVS6]

[HV87a]

[HVS7b]

[TMS6]

E. Emerson and E. Clarke. Using branching time tempo-

ral logic to synthesize synchronization skeletons. Science of
Computer Programming, 2(3):241-266, 1982.

A. Emerson, A. Mok, A. Sistla, and J. Srinivasan. Quan-
titative temporal reasoning. In Proc. Workshop on Auto-
matic Verification Methods for Finite State Systems, Greno-
ble, 1989.

E. Emerson, T. Sadler, and J. Srinivasan. Efficient temporal
reasoning. In Proc. 16" ACM Symp. on Principles of Pro-
gramming Languages, pages 166-178, Austin, Texas, 1989.

Y.A. Feldman. A decidable propositional probabilistic dy-
namic logic. In Proc. 15" ACM Symp. on Theory of Com-
puting, pages 298-309, Boston, 1983.

A. Gibbons. Algorithmic Graph Theory. Cambridge Univer-
sity Press, 1985.

D. Gries. The Science of Programming. Springer Verlag,
1981.

S. Hart and M. Sharir. Probabilistic temporal logics for finite
and bounded models. In Proc. 16" ACM Symp. on Theory
of Computing, pages 1-13, 1984.

S. Hart, M. Sharir, and A. Pnueli. Termination of proba-
bilistic concurrent programs. ACM Trans. on Programming
Languages and Systems, 5:356-380, 1983.

M.A. Holliday and M.K. Vernon. The gtpn analyzer: numer-
ical methods and user interface. Technical Report 639, Sept.
CS, Univ. Wisconsin — Madison, Apr. 1986.

M.A. Holliday and M.K. Vernon. Exact performance esti-
mates for multiprocessor memory and bus interface. IFEF
Trans. on Computers, C-36:76-85, Jan. 1987.

M.A. Holliday and M.K. Vernon. A generalized timed Petri
net model for performance analysis. IFEF Trans. Software
Fng.., SE-13(12), 1987.

F. Jahanian and A. Mok. Safety analysis of timing properties
in real-time systems. IFEF Trans. on Software Fngineering,
SE-12(9):890-904, Sept. 1986.

25

[Jos88]

[KSK76]

[KVAR83]

[LS82]

[Mol82]

[OL82]

[OWST]

[Par85]

[PHSS]

[Pnu82]

[PZ86]

[Raz84]

M. Joseph, editor. Formal Techniques in Real-Time and
Fault-Tolerant Systems. LNCS 331, Springer-Verlag, 1988.

J. Kemeny, L. Snell, and A. Knapp. Denumerable Markov
Chains. Springer Verlag, 1976.

R. Koymans, J. Vytopil, and W.P. de Roever. Real-time pro-
gramming and asynchronous message passing. In Proc. 2*?
ACM Symp. on Principles of Distributed Compuling, Minaki,
Canada, pages 187-197, Montreal, Canada, 1983.

D. Lehmann and S. Shelah. Reasoning with time and chance.
Information and Control, 53:165-198, 1982,

M.K. Molloy. Performane analysis using stochastic petri nets.
IEEFE Trans. on Computers, C-31(9):913-917, Sept. 1982.

S. Owicki and L. Lamport. Proving liveness properteis of con-
current programs. ACM Trans. on Programming Languages
and Systems, 4(3):455-495, 1982.

J. Ostroff and W. Wonham. Modelling, specifying and veri-
fying real-time embedded computer systems. In Proc. IEFE
Real-time Systems Symp., pages 124-132, Dec. 1987.

Joachim Parrow. Fairness Properties in Process Algebra. PhD
thesis, Uppsala University, Uppsala, Sweden, 1985. Available
as report DoCS 85/03, Department of Computer Systems,
Uppsala University, Sweden.

A. Pnueli and E. Harel. Applications of temporal logic to
the specification of real-time systems. In M. Joseph, editor,
Proc. Symp. on Formal Techniques in Real-Time and Fault-
Tolerant Systems, pages 84-98. Springer Verlag, 1988. LNCS
331.

A. Pnueli. The temporal semantics of concurrent programs.
Theoretical Computer Science, 13:45-60, 1982,

A. Pnueli and L. Zuck. Verification of multiprocess proba-
bilistic protocols. Distributed Computing, 1(1):53-72, 1986.

R.R. Razouk. The derivation of performance expressions

for communication protocols from timed Petri net models.
In Proc. ACM SIGCOMM °84, pages 210-217, Montréal,
Québec, 1984.

26

[RP84]

[SL87]

[Var85]

[VHS6]

[VWS6]

[Zub&5]

R.R. Razouk and C.V. Phelps. Performance analysis of timed
Petri net models. In Proc. Ifip WG 6.2 Symp. on Protocol
Specification, Testing, and Verification IV, pages 126-129.
North-Holland, June 1984.

A.U. Shankar and S.S. Lam. Time dependent distributed
systems: Proving safety, liveness and real-time properties.
Distributed Computing, 2, 1987.

M. Vardi. Automatic verification of probabilistic concurrent
finite-state programs. In Proc. 26" Annual Symp. Founda-
tions of Compuler Science, pages 327-337, 1985.

M.K. Vernon and M.A. Holliday. Performance analysis of
multiprocessor cache concistency protocols using generalized
timed Petri nets. In Proc. of Performance 86 and ACM
SIGMETRICS 1986 Joint conf. on Computer Performance
Modelling, Measurement, and Fvaluation, pages 9-17. ACM
press, May 1986.

M.Y. Vardi and P. Wolper. An automata-theoretic approach
to automatic program verification. In Proc. IFEE Symp. on
Logic in Computer Science, pages 332-344, June 1986.

Zuberek. Performance evaluation using extended timed Petri
nets. In Proc. International Workshop on Timed Peiri Nets,
Torino Italy, 1985. IEEE Computer Society 674.

27

A Proofs of Some Claims

A.1 Proof of the Recurrence Equation in Section 4.1

Proposition 3 Assume that in a structure, states that satisfy fi (f2)
have been labeled by fi (f2). Define P(t,s) to be 0 if t < 0, and otherwise

through the recurrence equation

P(t,s) = if fo € label(s) then 1
else if fi ¢ label(s) then 0
else > T(s,s") x P(t—1,s).

s'eS

Then P(t,s) is the p,,-measure for the set of paths o from s for which
o Ex fi U= fp.

Proof: For states s and integers ¢, let x(t, s) be the set of finite sequences
s — s — --- — s; of states from s such that j <, s; =k f2, and for
all ¢ with 0 < ¢ < j we have s; Ex f1 and s; [k fo. Let uf (s) denote
the p,-measure of the set of paths o from s for which o Ex f1 US? f,.
By definition, uf,(s) satisfies

fi (8) = > T(s,81) X -+ x T(sj-1,8;)

s—51— o —5;€X(1,5)

We consider three cases.

Case s =x fo: By definition, any path o from s satisfies o Ex fi Ust f,
when ¢ > 0, hence pul,(s) = 1.

Case s [£i fo and s £k fi: By definition, for any path o from s we
have o [Ex f1 US! fy, hence p! (s) = 0.

Case s [£x fo and s =i f1: Here we consider two cases.
Case t = 0: By definition, for a path o from s we have ¢ Ex
fL U0 foiff s =k fo, thus pd,(s) = 0.
Case ¢ > 0: Since s £k fa, any finite sequence in x(Z, s) will have
at least two states. Hence we can denote each such sequence

o as s — o', where ¢’ is the sequence ¢ minus its first state.
For such a sequence we have o € x(¢,s)iff o' € x(t —1,0'[1]).

28

Hence we have

pt(s) = Z T(s,81) X -+ xT(sj-1,58;)

s—s51— - —s;EX(1,5)

s1— - —s;Ex(t—1,51)

> T(s,81) x pi ' (s1)
51

We see that p!, (s) satisfies exactly the same recurrence equa-
tion as P(t,s). Since the equation has a unique solution, we
conclude that pl (s) = P(t, s).

A.2 The definitions of P(t,s) in Section 4.1 are equivalent

Proposition 4 Assume that P(t,s) is defined by recurrence equation
(1), and that P(t) is defined by (3) in Section 4.1. Then P(t,s) = P(t)[s]

for all states s and integers t.

Proof: Assume a structure K = (5,s*, 7, L). We consider different cases.
Case: t =10

By Definition (1), we have P(0,s) = 1, if s =g f2, otherwise P(0,s) =
0. By Definition (3), we have P(0)[s] = 1, if s € 5 (i.e., s Ex f2),

otherwise P(0)[s] = 0. Thus the two definitions are equivalent.

Case: t >0
Definition (3) gives P(t) = M x P(t — 1). We consider three cases:

1. if s € S5 then (since M[s,s’] = 1if s = s’ otherwise 0) we have
P(t)[s] = P(t—1)[s]. Since P(0)[s] = 1 we conclude that P(t)[s] =
1.

2. if s € S then (since M([s,s'] = 1if s = s’ otherwise 0) we have
P(1)[s] = P(t—1)[s]. Since P(0)[s] = 0 we conclude that P(¢)[s] =
0.

3. if s € §; then (since M[s,s'] = T (s,s’)) we have
P(t)[s] = Z T(s,8") x P(t — 1)[s"].

s'es

In all three cases we see that P(¢)[s] has exactly the same definition as

P(t,s). O

29

27(5,51) X Z T (s1,82) X -

X T(8j-1,5;)

A.3 Proof of Correctness of algorithm LABEL_FEU

We will use standard program verification methods (see e.g. Gries [Gri81])
to prove the correctness of the algorithm LABEL_ET.

As a first step we add assertions to the program. The result is shown
in Figure 5. It is assumed that s Ex fi < labeled(s, fi) and that
s Ex f2 < labeled(s, f3). PO is the initial assumption, Li denotes the
i:th statement of the program, P, P’, and Pi denote assertions, and Q
denotes the property to be verified. Termination follows trivially, since
the only loop is a “for”-loop.

LABEL_EU:

PO = {Vs € 5 : —labeled(s, f)}
L1: (unseen := (5;US); fringe:= Ss; mr := min(|S;],1))
L2: for¢:=0 to mr do
P= {Vse§:
<i—1
labeled(s, f) < (s Ex fi USE f2) |
—labeled(s, f) < s € (unseen U Sy) & s i fi U;S_l fa
s € fringe & (s EFx fi U;é fo N sHEK N U;é_l f2)
(unseen U fringe) C (Ss U S;)
L3: (Vs € fringe do addlabel(s, f))
L4: (unseen := unseen — fringe)
L5: (fringe:= {s:(s € unseen A 3Is' € fringe: (7 (s,s") > 0))})
P'= Vse§:
labeled(s, f) & (5 Ex fi USE fg)
—labeled(s, f) < s € (unseen U S¢) & s i fi U;é fa
s € fringe & (5 Frx f U;SH fo N sHEK N U;S f2>
(unseen U fringe) C (SsUS;)

Q={VseS:skx fi US) f» < labeled(s, [)}

Figure 5: The algorithm Label EU with added assertions

In the verification we will verify the Hoare-triple {P0} Label EU {Q}.

30

This is done by verifying the following three Hoare-triples (X[z/y] de-
notes X with all occurrences of y replaced by z):

1. {P0} L1 {P[0/i]}
2. {P} 12 13 L4 {P)
3. P’[mr/i] = Q

1. Here, we must verify the three conjuncts of P after the assignment
L1, i.e., we must verify that PO implies

labeled(s,) < (S EFx f U>So_1 f2)

—labeled(s,)& s € (S US; USy) & slEr fi U>S0_1 2
SES, & (s Fr 1 USS fa A sHEr fL USy ! f2)
(SsU8;) C(SsUSH)

(Vs € S)

The first conjunct is trivially true since no states are labeled. The
second conjunct follows, since no states satisfies f; U>So_1 f2 and
S5 =5,US5,US5¢. The third conjunct follows since for s € 55 we
have s Ex fi U;g f2. The fourth conjunct is trivial.

2. Here we must verify that P implies the following assertion:

’- labeled(s, f) V s € fringe & (s =x fi U;é f2)

—(labeled(s, f) V s € fringe) < s € ((unseen — fringe)U Sy) < s Ex fi U;é J
(Vs € 8)| (s €unseen A 3s' € fringe: (T(s,s') >0)) <

& (skEx A UST B A sx i USS f)

| unseen C (55U Sy)

The first conjunct follows from the first and third conjuncts in P.
The second conjunct follows from the second, third, and fourth
conjuncts in P. The third conjunct follows from the second and
third conjunct in P. The fourth follows trivially from the fourth
conjunct in P.

3. Follows directly from the first part of P’ and Proposition 1.

A.4 Correctness of Equation (4)

P(o0,s) is the p,, measure for the set of paths o for which ¢ Ex

1 US> fo.

31

Proposition 5 Assume that in a structure, states that satisfy fi (f2)
have been labeled by f1 (f2). Let Q and R be as defined in Section 4.2.

Then the solution of the system of linear equations

P(oo,s) = if s € R then 1
else if s € Q then 0
else > T(s,s) x P(o0,s)
s'es

salisfy that for each s, P(o0,s) is the p, measure for the set of paths o
from s for which o Ex fi US™® f,.

Proof: If s € R or s € (), then the definitions of R and ¢ imply the
proposition. In other cases, we can analogously to the proof of Proposi-
tion 3 show that the u,, measure for the set of paths ¢ from s for which
o Ex fi US™ f, satisfies the same equations as P(oc,s). This shows
the existence of a solution of the equations which is the desired one. The
uniqueness of the solution can be seen as follows. Assume that there
are two solutions. Then the difference between them, denoted A(s) for
s € 5, satisfies the equations

A(s)= Y T(s,8) x A(s)

s'€S\(RUQ)

for s € S\ (RUQ). We know Z T(s,s") = 1 forall s € 5. If we
s'es

consider the set Max of states s in S\ (RU Q) for which A(s) has the

highest absolute value, this implies that there are no transitions from a

state in Max to a state outside Max with non-zero probability. This

would imply that Maez C ¢) which is a contradiction. O

B Additional Algorithms

B.1 Algorithm 1 in Section 4.1 modified for the Unless
case

Let us introduce the function R(%,s) for s € 5, t an integer. We define
R(t,s) to be the pp,-measure for the set of paths o from s for which
o lEx fi US! fo. T 1 < 0, then we use the convention that R(t,s) = 1.
Analogously to P(t, s), we can define R(t,s) for ¢t > 0 as follows:

32

R(t,s)= 1if f; € label(s) then 1
else if fy ¢ label(s) then 0 (5)
else > T(s,s")x R(t—1,5)
s'eS

Note that the difference in the definition of P(¢,s) and R(t, s) is derived
only from the values for ¢ < 0. The following algorithm calculates R(t, s):

fori:=0tot do
for all s € 5 do
if f € label(s) then R(¢,s):=1
else begin
R(i,s):=0;
if f1 € label(s) then for all s’ € 5 do
R(i,s):=R(t,s)+ T(s,s")*R(i—1,5")

Algorithm 1°:

end

The state s will be labeled with f; U;; f2 it R(t,s) > p.

B.2 Algorithm 2 in Section 4.1 modified for the Unless
case

Analogusly to Algorithm 1’ above we can define an algorithm for the
Unless case that corresponds to Algorithm 2.

forall s € 5 do
if f2 € label(s) or fi € label(s) then R(0)[s] :=1
else R(0)[s] := 0;

R(t) = M'xR(0)

Algorithm 2’:

B.3 Algorithm LABEL _EUnless

The algorithm LABEL_EUnless labels states s for which s =x fi U;é fa

with f; U;é f2. Intuitively, the algorithm will not label states in (.5;US7)
from which all sequences of states of length < ¢ pass through 5.

33

LABEL_EUnless:

unseen := S;;
fringe := Sy;
bad := 0;

mr := min(].5;],1) ;

bad:= bad U fringe;
for i:=0 to mr do { unseen := unseen - fringe;

fringe := {s: [s € unseen A Vs :(7(s,s") > 0: (s € bad
Vs ¢ bad do addlabel(s,f);

Intuitively, the variable bad will after passing through the for-loop with
index ¢ contain all states in Sy U.S; from which all sequences of states of
length <4 pass through Sy.

B.4 Algorithm LABEL_AUnless

The algorithm LABEL_AUnless labels states, s, for which s Ex fi Z/{;f fa
with fi U;f f2. Intuitively, the algorithm will not label states in S; U S5
from which there is a sequence of states in S; U Sy of length at most ¢
which ends in 5.

LABEL_AUnless:
unseen := 9;;
fringe := S7y;
bad := 0;
mr := min(].5;],1) ;
bad := bad U fringe;
for i:=0 to mr do { unseen := unseen - fringe;
fringe := {s: [s € unseen A 3s': (7 (s,s") > 0: (s € frin
Vs ¢ bad do addlabel(s,f);

Intuitively, the variable bad will after passing through the for-loop with
index ¢ contain all states in Sy U S5; from which there is a sequence of
states of length < ¢ which passes through Sy without going to Si.

B.5 Algorithm Identify_Q

All states in Sy, and all states from which it is not possible to reach a
state in 9 should be included in Q. The algorithm is the same as the
algorithm LABEL_EU for ¢ = |59

34

Identify_Q: unseen := 5; U S;
fringe := 9;
mark := (;
mark := mark U fringe;
for i:=0 to |9;| do ¢ unseen := unseen - fringe;
fringe := {s: (s € unseen A 3¢’ € fringe: (7 (s,s') > 0))};
Q := S - mark;

B.6 Algorithm Identify R

All states for which the p,, measure is 1 for eventually reaching a success
state should be included in R. These are exactly the states in S, and
the states in 5; from which there is no sequence of transitions outside
with non-zero probability, leading to) or Sy.

Identify _R: Identify_Q;

unseen := S;;
fringe := Sy U Q;
mark := (J;

mark := mark U fringe;
for i:=0 to |9;| do ¢ unseen := unseen - fringe;
fringe := {s: (s € unseen A 3¢’ € fringe : (7 (s,s") > 0))};
R := S - mark;
In the algorithm, first () becomes the set of states from which no success
states are reachable. Then mark becomes the states from which a state
in Sy or @) is reachable. Thus, R should be the complement of the set
mark.

35

