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1 Introduction

Explicit timing constraints are naturally present in réfd-systems (transmission delays, response time,
etc...). Classical models (finite automata, Petri nets.,.ptian not express such real-time constraints. Since
their introduction by Rajeev Alur and David Dill in [AD90, A®{], timed automata are one of the most
studied models for real-time systems: in those systemsitijative properties of delays between events can
easily be expressed. Numerous works have been devoted ‘ihéoeetical” comprehension of timed au-
tomata: determinization [AFH94], minimization [ACD®2], power of clocks [ACH94, HKWT95], power
of e-transitions [BDGP98], extensions of the model [DZ98, HRS@G00, BFH 01], logical charac-
terizations [Wil94, HRS98], etc... have in particular baewvestigated. Practical aspects of the model
have also been considered and several model-checkerswravadable (W TeEcH [HHWT97], Kro-
NOS[DOTY96], UPPAAL [LPY97]). These model-checkers have been used to verifyriratustrial case
studies (see the web pages of the tools, given page 23).

One of the major properties of timed automata is probablyrtechability properties are decidable [AD94],
though timed automata have an infinite number of configunatid@he core of this result is the construc-
tion of the so-called region automaton, which finitely abstbehaviours of timed automata in such a way
that checking reachability in a timed automaton reduces&rking reachability in a (somewhat larger)
finite automaton. This construction has many other apjtinat as for example the decidability of the
TCTL model-checking [ACD93] (TCTL is the timed extensiontbé logic CTL). However, many prob-
lems remain undecidable, as not everything can be reduded tmtimed framework. For example, timed
automata are neither determinizable, nor complement&id®4]. Checking if a timed automaton is de-
terminizable (or complementable) is even an undecidaldklem [Tri03]. An other important example is
the undecidability of the universality problem for timed@uata [AD94].

The aim of this tutorial is to give some understanding of theetl automata model. We will present the
basic tools which are used in the domain of verification oktihsystems. In particular, after having pre-
sented the model, we will present in details the region aatarnonstruction. For modeling reasons, it is
important to have expressive models, but it is also impotteat the models remain decidable. We will then
present several variants or extensions of timed auton@tasing on the decidability of reachability prop-

erties, and on the expressiveness of the models. We wilinetenthis tutorial with some implementation

and algorithmics issues.

We would like to point out several recent surveys on timedmuatta which present current works and
results on timed automata with a point of view somewhat céffié from the one adopted in this tutorial.
A recent survey by Rajeev Alur and Madhusudan P. gives mamyg hibout decidability issues for timed
automata [AMO04]. In [Asa04], Eugene Asarin presents thessurchallenges in timed languages theory.
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2 Timed Automata

If Zis a set, letZ* be the set ofinite sequences of elementsih We consider as time domaib the set
Q- of non-negative rationals or the dRt, of non-negative reals, arid as a finite set oéctions A time
sequenceverT is a finite non decreasing sequence: (t;)1<,<, € T*. Atimed wordw = (a;,t;)1<i<p

is an element ofX x T)*, also written as a paiv = (o, 7), wheres = (a;)1<i<p iS @ word inX* and
T = (t;)1<i<p @ time sequence ifi* of same length.

Clock Valuations, Operations on Clocks - We consider a finite seX of variables, callea¢tlocks A
clock valuationover X is a mapping : X — T which assigns to each clock a time value. The set of all
clock valuations oveKX is denotedl'™. Lett € T, the valuationv + ¢ is defined by(v +t)(z) = v(z) +t,

Vz € X. We also use the notatidfay; )1 <<, for the valuationv such thatw(z;) = «;. For a subset’

of X, we denote byY — 0]v the valuation such that for eache Y, ([Y < 0Jv)(x) = 0 and for each

x e X\Y, (Y « 0v)(z) = v(x).

Clock Constraints - Given a finite set of clocks(, we introduce two sets aflock constraints oveX .
The most general one, denot@dX ), is defined by the grammar:

g u= zXc|xz—yxec| ghg]| true
wherez, y € X, ce Zand <€ {<,<,=,>,>}.

We also use the proper subsetiidgonal-freeconstraints where the comparison between two clocks is not
allowed. This set, denotet) (X), is defined by the grammar:

g = xzXc | gAg | true
wherez € X, ce Zand e {<,<,=,>,>}.

A k-bounded clock constrairig a clock constraint which involves only constantsetween—k and-+k.
The set ofk-bounded (respk-bounded diagonal-free) clock constraints is dena¥edy ) (resp.ijf(X)).
A constraint of the formz — y < ¢ is adiagonal constraint

If v is a clock valuation we write = ¢ whenv satisfies the clock constraiptand we say that satisfies
x < ¢ (resp.x — y 1 ¢) whenever(z) < ¢ (resp.v(z) — v(y) < ¢). If g is a clock constraint, we note
[g] the set of clock valuationgy € TX | v = g}.

Timed Automata - A timed automatorover T is a tupled = (£,Q,T, I, F, X), whereX is a finite
alphabet of actiongy is a finite set of statesy is a finite set of clocks] C @ x [C(X) x X x 2¥X] x Q

is a finite set of transitiods I C Q is the subset of initial states adtlC Q is the subset of final states. If
all constraints appearing id are diagonal-free, we say thdtis adiagonal-free timed automaton

A pathin A is a finite sequence of consecutive transitions:

P _ g1,a1,Y1 gpvapvyp
=4 ———qQ - Gp—1 — Gp

9i,ai,Y;

wheregq; 1 ———— q; € T foreveryl <i < p.

The path is said to bacceptingf it starts in an initial stateq; € /) and ends in a final state,( € F). A
run of the automaton along the pathis a sequence of the form:

(qo,v0) _gl’zl.'Yl‘) (q,v1) - R

1 tp

(aps vp)

. . . . Y Y:= . .
1For more readability, a transition will often be written@s 2% ¢’ or even asy ~2% =", ¢ instead of simply the tuple

(¢,9,0,Y,q").



wherer = (t;)1<i<p IS a time sequence arfd; )1 <,<, are clock valuations such that:

vo(z) =0, Ve e X
Vic1 + (6 —tiz1) = i
v; = [C; — 0] (vi—1 + (£ — ti—1))

The label of the run is the timed word = (a1,t1) ... (ap, t,). If the pathP is accepting then the timed
word w is said to be accepted b¥. The set of all timed words accepted Hyis denoted by ;(.A).

Remark 1 In these notes, we only consider finite paths and words witkelfirmany actions, but we could
consider more general acceptance conditiongdld, Muller, etc...) as well, see [AD94].

Example 1 An example of timed automaton is given below.

r<5a,y:=0 x—y>3,b

—® ® @

This timed automaton accepts the timed wrgt.1)(b, 5.5). An accepting run for this word is

(fo, (0,0)) (£1,(4.1,0))

where(4.1,0) represents the valuatiomsuch thaw(z) = 4.1 andwv(y) = 0.

z<5,a,y:=0 z—y>3,b

(L2, (5.5,1.4))

3 Reachability Analysis, Why and How?

For verification purposes, the most fundamental propethisone should be able to verify are reachability
properties: safety properties can for example be expressedachability properties. Usually a class of
models is saidlecidablewhenever checking reachability properties in this clasteidable. Otherwise
this class is saidindecidable For timed automata reachability properties we want to klae: “Is state

q of timed automatom4 reachable?.e. is there a run starting in an initial state leading;® There is no
requirement as what are the values of the clocks when rejqckateg. This problem is equivalent to the
emptiness probleifirom a language-theoretical point of view), where the ¢joeds whether the language
accepted by a timed automaton is empty or not.

The class of finite automata is obviously decidable, thelrabitity problem is even NbGSPACE-complete
[HU79], and efficient methods, symbolic techniques, datacttires, etc... have been developed and im-
plemented [CGP99]. The problem with timed automata is thatrtumber of configurations of a timed
automaton is infinite (a configuration is a p&jr v) wheregq is a state and a clock valuation). Techniques
used for verifying finite automata can thus not be used foedirautomata. Specific symbolic techniques
and abstractions have to be developed, which take into attioe specific properties of timed automata,
in particular the fact that clocks evolve synchronoushhwgtobal time.

In the following, we will concentrate on the verification @achability properties in timed automata, and
present the basic technics for solving this problem. Of seuin the literature, more general properties
have been considered. For example, the model-checking . T&CD90, ACD93], a timed extension
of CTL, is decidable in BPACE and symbolic technics have been developed to efficientlgielioheck
TCTL [HNSY94]. Note however that not everything can be restlito the finite untimed case using the
region automaton construction: for example, the modetking of TPTL, a timed extension of LTL is
undecidable and most satisfiability problems for real-tioggcs are undecidable [ACD93, AH93].

4 Decidability — The Region Abstraction

The construction we will describe below is due to Alur and fixigt in [AD90]. The aim of this construction
is to finitely abstract behaviours of timed automata, so thaicking a reachability property in a timed
automaton reduces to checking a reachability property inii fautomaton.



4.1 The Region Automaton Construction

Region Partitioning. Let us fix a finite set of clockX'. Let R be a finite partitioning ol X. LetC be a
finite set of constraints oveY. We define three compatibility conditions as follows:

O We say thafR is compatible with constraints if for every constrainy in C, for everyR in R, either
lg] € Rorg] N R = 0.

O We say thatR is compatible with elapsing of timié for all R and R’ in R, if there exists some
v € Randt € T such thaw + ¢t € R’, then for every’ € R, there exists somg& € T such that
v+t € R.

O We say thaRR is compatible with resetwhenever for allR and R’ in R, for every subsel” C X, if
[Y —« 0)JRN R #0,then]lY — 0JRC R'.

If R satisfies these three conditions, we will say tRais aset of regiongor the set of constraintS or
simply a set of regions (if is clear from the context)R defines in a natural way an equivalence relation
=5 over valuations«{ =x o’ iff for each regionkR of R, v € R <= v’ € R). An equivalence class
of =% (or equivalently an element ®) is called aregion If v is a valuation we not]z the region to
which v belongs.

The intuition behind these conditions is the following: want/to finitely abstract behaviours of timed
automata. To this aim, we finitely abstract the (infinite) dfetaluations: a valuation will be abstracted

by the regionv]z. In order for the abstraction to preserve (at least) realityaproperties, it must be
the case that if two valuations are equivalent, then theiréubehaviours are also equivalent. The three
conditions above precisely express this property: coolifi says that two equivalent valuations satisfy
the same clock constraints, conditibhsays that elapsing of time does not distinguish two equniale
valuations whereas conditidn says that resetting clocks does not distinguish two egemtalaluations.

Region Graph. From a set of region® one can define the so-calleegion graph which represents the
possible timing evolutions of the system: the region graph finite automaton whose set of state®Ris
and whose transitions are:

R =5 R'if R is atime successor dt
R RIif[Yy —0JRCR

Intuitively, the region graph records possible timed etiohs of the system: there is a transitiffn— R’
if, from every valuation ofR, it is possible to let some time elapse and re&th There is a transition

R R if, from R, R’ can be reached by resetting clocksin

Example 2 Let us consider the partitioning di{f’y} R = {Ri1, Ra, R3, R4} defined as follows:

R Ry Ry Rs Ry
$>00 0<z<1 x>0 z>1 x>0
<_0> 0<y<l 0<y<l1 y>1 y>1
y= <y >y z>y r<y

Itis easy to verify thaR is a set of regions for the constraintg = 1,z = y}. The region graph associated
with R is represented on Figure 1.

Region Automaton. Let A = (3,Q,T,1I, F, X) be a timed automaton with set of constraiitd_et R
be a finite set of regions fat (i.e. a partitioning of TX satisfying conditions], 0 andJ). The region
automatori'z (A) is the finite automaton whose set of stateQis R, whose initial states arex {Ry}
(whereRy is the region containing the valuation assignintp each clock), whose final states dfex R
and whose transitions are defined as follows:



—— time elapsing

- " resetr :=0

>~ resety:=0

Fig. 1: A simple example of region graph

e there is a transitiori¢, R) —— (¢', R") whenever there exists a transition- 2“2 ¢ in A with

R C [g] andR - R’ transition of the region graph
e there is a transitiofl, R) — (¢, R') wheneverR — R’ transition of the region graph

This automaton somehow simulates the original timed automahe first type of transitions simulates
discrete actions (or transitions) whereas the second tifparwsitions simulates elapsing of time.

The fundamental property of this construction is the folluyv
Proposition 1 Let. A be a timed automaton with set of constrai@itdVe assume we can construct a set of

regionsR for C. Then,
Untime(L:(A)) = L(T'z(A))

whereL(I'r (A)) is the (untimed) language acceptediby(.A) andUntime((a1,t1) ... (ap,tp)) = a1 ... ap.

More precisely, whenever id we can wait some delay and do anthen inI'z (A), we can take several
e-transitions and then do ay andvice-versa We will see in section 4.3 that this property naturally
expresses in terms of time-abstract bisimulation. Checkérachability properties itd thus reduces to
checking reachability properties Iz (A). AsT'r(A) is a finite automaton, we get that for every timed
automatonA for which we can construct a set of regions (satisfying coois 0, O and(1), we can decide
reachability properties using the region automaton canstm

4.2 Region Automaton for Classical Timed Automata

We fix for this subsection a finite set of clock&s

Sets of regions for diagonal-free constraints. Let M be an integer. We define the following partitioning
of TX. Letv andv’ be two valuations o™X, we say thav EQJ/{ v’ if all three following conditions hold:

o v(z) > M iff v'(x) > M for eachw € X,



o if u(x) < M, then|v(z)] = [v/(2)] and({v(x)} = 0iff {v'(2)} = o) for eachz € X, and
o if v(z) < M andu(y) < M, then{v(z)} < {v(y)}iff {v/(x)} <{v'(y)}forallz, y € X.

The relationzf}f is an equivalence relation of finite index. The partitionmgff(X) is then defined as the
set of equivalence cIasses”Df(/E%. Figure 2 explains the region construction for two clocks.

Y : : )

o Lo I Y S R A | region defined by:

! M l<a<?2
1z~~~ 1 p--r—F-------- l<y<?2
MR {2} < {y}

(a) Partition.compatible with®onstraints, not 0 (b} PartRion compatible with constraints, time elapsiagd resets)

with time elapsing (the two pointe and x
can not be equivalent)

Fig. 2: Diagonal-free region partitioning for two clocks and maxheconstant2

It is easy to prove (and left as an exercise) the followingrean

Lemma 1 The partitioningR { (X) is a set of regions for the constraintg/ (X).

Roughly counting all possible combinations above, we camdahe number of regions mgf(X) by
21X X |1.(2M + 2)IX! where| X | is the cardinal ofX .

Sets of regions for general constraints. Recall that the difference between diagonal-free clock con
straints and general clock constraints stands in the fattdiagonal constraintgi.e. constraints of the
form z — y 1 ¢) can be used. An easy extension of the previous construcéinorbe done. We do not
define it formally here, but only give a simple example witloteocks, see Figure 3.

Y 1 R ’ ’
7’ e 4
: /1 /’ /,
1 /, 1 /’ /, .
1,7 i it .
A e L’ e
e : ',: e it . e : .
o Wl el | region defined by:
A
,/, 1,00 2 <z
7
1 oo - 1<y<?2
P | 7z 1 7’
S L/, L/' 1<$—y<2
0 1 2 T

Fig. 3: Set of regions fo2-bounded general constraints with two clocks

This set of regions is denotd™ (X ), and its cardinal can roughly be boundedby/ +2)(1X1+D* Note
that this set of regions is also correct faf-bounded diagonal-free constraints.

Region automata for classical timed automata. Let.4 be a timed automaton with set of clocks Let
M be the maximal constant involved in one of the constraintglofthe setR* (X) is a set of regions
for A. From the results of the previous subsections, we get thexfivlg theorem, due to Alur and Dill
[AD90, AD94], which is the core of the verification of timedstgms.

Theorem 1 (Alur & Dill 90’s) Reachability (or equivalently emptiness) is decidabletifoed automata.
It is a Pspacecomplete problem (for both diagonal-free as well as gehémeed automata).



Although this theorem has been first proved in [AD94], theopme choose to sketch is taken from [AL02],
where it is written in details.

Proof. [Sketch] BSPACE membership is easy: the size of th region automaton is expiahén the size

of the original automaton. Using the MIGSPACE complexity of the reachability problem in classical
untimed graphs, we get that reachability in timed automatabe done in BPACE

PspacEhardness can be proved by reducing the termination of arfipbounded Turing machine (LBTM
for short) on some input to reachability in timed automatae €ncoding is done as follows: assuming the
alphabet is{a, b}, the content of celC; of the track of the LBTM is encoded by two clocks andy;.
Cell C; contains an &” when the constraint; = y; holds, and celC; contains a 8" when the constraint
x; < y; holds. Note that these two conditions are invariant by tifapsng.

wo |CJ‘|
¥
{xjvyj}

If ¢ -“*%, ¢/ is a transition of the LBTM, then for each positionf the tape, there will be a transition
(¢,1) == (¢, ) where:

o gisx; =y, (resp.z; < y;) if @ = a (resp.a = b)
o YV ={x;,y} (resp.Y = {z;}) if « = a (resp.a = b)
e i/ =i+ 1 (resp.i’ =i — 1)if §isright andi < n (resp. left)

We need to enforce time elapsing; this can be done by additoglicwhich is checked td and reset t®
on all transitions. Initially the track contains the enaaglof the wordw,. This can be done by a transition
from a state “init” to(qo, 1) wheregy is the initial state of the LBTM, which checks whethes 1, and
resets clocks iYy whereYy = {t} U {z; | wo[i] = b}. The computation over, of the LBTM terminates
iff there is a run from state “init” to some statey, ¢) whereg; is the final state of the LBTM. O

Note that the above encoding uses diagonal constraintgshbutll be seen later (see section 5.1), there is
no need of these diagonals. A direct but more involved canstm without diagonals can be found in the
appendix of [ALOZ2].

Example 3 This example is taken from [AD94]. Consider the timed automaepicted on Figure 4. Its

Fig. 4: An example of timed automaton

region automaton (wheretransitions have been erased) is depicted on Figure 5.

Remark 2 Note that sets of regions we have described could be refihete ts no need to have the same
maximal constant for all clocks, one maximal constant fazheelock could be used. However, for our
purpose here, there is no need for such a refinement.



Fig. 5: A region automaton

4.3 Interpretation in Terms of Finite Bisimulation

With what has been presented before, conditiondl and O (compatibility of the set of regions with
constraints, time elapsing and resets) have a naturapnetation in terms ofime-abstract bisimulation.

Timed transition system associated with a timed automaton. We have defined the semantics of a timed
automaton as runs or timed words. We could have defined itarstizn as a timed transition system as
well. Transition systems (thus in particular timed trainsitsystems) are more suitable for behavioural
comparisons of systems.

Let A = (3,Q,T,1,F, X) be atimed automaton. The timed transition system assdcveita A has

Q x T for set of states and its transition relation is defined bytwefollowing rules:

(6,v) % (6,0 +d) foreveryd € T
(6,0) % (¢',0')  ifthere existe 22 ¢/ in T's.t.w = g andv’ = [Y — O

Time-abstract bisimulation. Time-abstract bisimulation could be defined for two timetbawata, but
for our purpose, we follow the lines of [BBR04] and define tiatgstract bisimulation on a single timed
automaton. Letd = (2,Q,T, 1, F, X) be a timed automaton (over alphab&t We say that a relation
=C (QxTX) x (Q xTX) is atime-abstract bisimulatiowhenever it is an equivalence relation satisfying
the following conditions:

o if ({1,v1) = (b2,v2) and(4y,v1) G, (¢1,v1 + dy) for somed; € T, then there existd, € T such
that(fg,vg) d—2> (fg, Vg + d2) and(fl, V1 + dl) = (£27U2 + d2)

a

o if ({1,v1) = (fo,v2) and (£1,v1) 2 (¢7,v}), then there existély, vh) such that(ly, vy) ——
(£, v5) and(fy, vy) = (¢, v5)

e andvice-versa



By definition, such a relation is an equivalence relationy as such= is said to have dinite index
whenever there are finitely many equivalence classes.ndly, from two equivalent configurations, it is
possible to do the same discrete actions and/or to wait somerst of time (possibly different in the two
configurations) and stay equivalent.

Relation with the region automaton construction.

Proposition 2 Let.4 be a timed automaton arid a set of regions for the constraints i#. The relation
{((¢,0), (£,0") | [v]r = [v']r} is a time-abstract bisimulation with a finite index.

Time-abstract bisimulation appears indeed as the rigliwmabrresponding to the region automaton con-
struction and formally justifies everything which has berpl@ned previously. It proves more precisely

that the region automaton construction can be used to \atifyoperties that are invariant by time-abstract
bisimulation,e.g. reachability properties, safety properties, all untimegpprties (expressed for example

in untimed logics like LTL [Pnu77], CTL [CE81]...). Howevemotice that we can not use directly this

construction to verify properties expressed in a timedddige TCTL because a property like “reaching a
state in exactlys units of time” is not invariant by time-abstract bisimutati For these properties a more

involved construction is needed which adds a clock for tlenfda, and then construct a region automa-
ton taking into account this additional clock. We do not depehis construction here but better refer to
original articles on the subject [ACD90, ACD93].

The converse of Proposition 2 also holds and it can be userbt@ plecidability of timed systems: if for
a timed system we can compute a time-abstract bisimulagilation with a finite index, then reachability
(and other time-abstract invariant properties) can bedaecusing a region automaton-like construction.
Examples of such constructions can for example be foundém@3, BBR04].

4.4 Partial Conclusion

Timed automata are an interesting model for representistgss with real-time constraints. Despite the
infinite number of possible configurations of a timed autanamodel-checking of reachability properties
has been proved decidable. This is probably the most fund@ingroperty of timed automata, which has
been proved at the beginning of the 90’s by Alur and Dill, arfdol is the starting point of numerous
works on timed models. We have presented in this sectionabiedof the decidability of timed automata,
which relies on a reduction to finite automata: this is fundatal for most of the works on timed systems.
It is however worth to notice that not everything can be reduto the finite automata case. For example
(see [AD94] and also [Tri03]),

e universality (the dual of reachability) is an undecidabielpem;

¢ the class of timed languages accepted by timed automata @ased under complementation, see
Figure 6 (for the second automaton, the proof is very simjaidd(4]:
Untime (L N {(a*b*,7) | all a’s happen beforé and no twaa’s simultaneously) is not regular);

e not all timed automata can be determinized, and, in additiom problem of deciding whether a
timed automaton can be determinized is an undecidablegmgbl

a a a a,b x#1, ab
Q a, x:=0 Q r=1,a @ Q a, r:=0 @
O
(@) (b) Languagel, [AMO04]

Fig. 6: Two non-complementable timed automata



These problems will not be tackled in this tutorial, but wieréo [AMO04] for a survey of (un)decidability
results about timed automata.

In the rest of this tutorial, we will mostly consider extemss (or variants) of timed automata and study
decidability of these models, and we will also concentratalgorithmics and implementation aspects. We
hope this should help better understanding timed behaviunl timed models.

5 Some Extensions of Timed Automata

For representing real-life systems, itis much conven@htive expressive and easy-to-use models. We will
present in this section several extensions (or variantsined automata, and will focus on the decidability
of their reachability problem. We will also give some exgiesness results.

A class of systems§ is saidstrictly more expressivihan a class of systend® whenever there exists in
S such that na5” in S’ accepts the same languageSasnd for every systerfi’ in §’, there existsS in S
which recognizes the same languageSasA class of systems is as expressive aS’ whenever for every
S'in S, there existsS’ in S’ which accepts the same languagebas

5.1 Role of Diagonal Clock Constraints

Diagonal constraints.g. clock constraints of the forma — y < c wherez, y € X, c € Z and< e {<, <

,=, >, >1}) have been first mentioned in the seminal paper of Alur & BADP4], and are often considered
as part of the model of timed automata. We have seen in pregection that diagonal constraints do not
add any decidability and complexity problems to the model.

It was known as a folklore result that diagonal constraiatstee eliminated from timed automata, and thus
that they do not add expressive power to timed automata. ®dbproof of this result has been done in
[BDGP98].

Proposition 3 For every timed automaton, possibly with diagonal constraints, there exists a timed
automatonss, with only diagonal-free constraints, which recognizes #ame language. Note thBtis
strongly bisimilar? to A.

The construction of this equivalent automaton is illugtdadn Figure 7. Each diagonal is eliminated one
by one. For example, for eliminating a diagonal y < ¢, two copies of the automaton are constructed,
one copy in which the constrainis— y < ¢ holds and the other one in which the constraint y > ¢
holds. Note that a constraint— y < ¢ is invariant by letting time elapse. It is thus sufficient teeck the
truth of such a constraint when one of the clock involved & diagonal constraint is reset, which can be
done with simple (non-diagonal) constraints: the constrai— y < ¢ is equivalent tar <t ¢ wheny is
reset td) (because we have then that the constraiat 0 holds).

This construction leads to an exponential (in the numbeiagfa@hal constraints) blowup of the number of
states of the automaton, and this blowup is unavoidablenzeditiautomata with diagonal constraints are
exponentially more succinct than diagonal-free timed ratia [BCO5].

5.2 Adding Silent Actions

For finite automata, it is well-known thatlent actiongalso known as-transitionsor internal action$ do
not add expressive power to finite automata and that they eatilminated with no blowup in the number
of states of the automaton. Silent actions in timed autoimaya been studied in details in [BDGP98], and
the situation is far from the one in the untimed framework.

A first (easy) fact is that the region automaton constructian be done in a similar way when there are
silent actions, we thus get:

2Which means they are bisimilar (in a classical way) for atitaken inx U T: if a system can do action, then so can also the
other system, and if a system can waitnits of time, then so can also the other system.

10



copy wherer —y < ¢

copy wherer —y > ¢

Fig. 7: Erasing diagonal constraint — y < ¢

Proposition 4 The reachability problem is decidable for timed automatdowilent actions. The complex-
ity is alsoPspPACEcomplete.

However, and this is at first surprising, silent actions cainbe removed, as it is the case for classical finite
automata.

Theorem 2 Timed automata with silent actions are strictly more expigsthan classical timed automata.
Several examples are given in [BDGP98]. Among them, we dartloése two examples:

e L={(a,ty)...(a,t;)---| Vi, i mod 2= 0}. This timed language is recognized by the following
automaton but is recognized by no timed automaton withdéemtsactions.

o L ={(a1,t1)... (v, )+ |y = aif t; =ianday = bif i — 1 < ¢; < i}. This timed language
is recognized by the following timed automaton with sileati@ns but is recognized by no timed
automaton without silent actions.

r=1

a
0
. 0<xz<l1,b

T =
r=1.¢2x:=0

Proofs of non-expressivity by a classical timed automatenadwaysad-hocas there is no real criterion
for a timed language to be recognized by a classical timeshsaton. However a sufficient criterium is
given in [BDGP98]: let4 be a timed automaton possibly with silent actions; if Anthere is no loop in
which a clock is reset on astransition, there-transitions can be removed frodh, and we can construct
a timed automatos without e-transitions which recognizes the same languagé.as

11



5.3 Adding Additive Clock Constraints

We have seen that diagonal constraints can be used safetyad aiutomata. A natural idea is then to
consider clock constraints of the form+ y < ¢. Such a constraint will be called additive clock
constraint The model of timed automata which uses classical constraimd additive clock constraints
has been studied in [BD0O].

5.3.1 Two clocks.

For timed automata wittwo clocks, a region construction can be done. We will not defipescisely here
but the region partitioning when the maximal constartis illustrated on Figure 8. The general case can
be easily deduced from this representation.

Fig. 8: Region partitioning for additive clock constraints (tw@cks)

Proposition 5 The reachability problem for timed automata with at most tlarks and possibly additive
clock constraints is decidable.

The languagd.* represented on Figure 9 is accepted by a timed automatortwatblocks and additive
clock constraints but is accepted by no timed automaton elétksical clock constraints.

r+y=1a,z:=0

Lt ={(a",t;...t,) |n>1andt; =1 — L} _8

Fig. 9: A language which needs additive clock constraints

5.3.2 Four clocks or more.

The following result holds for timed automata with four dtseor more, and additive clock constraints:

Theorem 3 The reachability problem is undecidable for timed automattn four clocks or more, and
additive clock constraints.

This undecidability result can be obtained by reductiomftbe halting problem of a two counter machine,
also known as Minsky machine [Min67]. We will briefly recalhat is a two counter machine and give a
taste of the reduction done and described with details irQBD

A two counter machiné a finite set of instructions over two counter &ndy). Instructions are of the
following forms:

e Incrementation: (p): = := x + 1; goto (q)
e Decrementation: (p): if x > 0 then x := x — 1; goto (q) else goto (r)

o Halt

12



The halting problem consists in deciding whether instarctiHalt” can be reached or not. This is a
well-known (and maybe one of the simplest) undecidablelprob

As said before the undecidability proof is done by reductiérihe halting problem for a two counter
machine. LetM be a two counter machine. A configuration.bf is a pair of integergc, d). We will
encode such a configuration on two units of time. The first afnitme will be used to encode the counter
¢ whereas the second unit of time will be used to encode theteodn An automaton similar to that of
Figure 9 will be used to encode the value of a countet.i$fthe value of counter, then during the first unit
of time, an actior will be done at date, at date3, etc... and at date — 5. The encoding of countet
during the second unit of time is done similarly. Part of acexi®on in the two counter machine is depicted
on Figure 10.

cis unchanged cis incremented
R R ACA I LR L RIS T T RE P, ~
c cc d ddd c cc d dd c céc d dd
ol P
20 21 i22 23 i24 25 26 time
SRR .

d is decremented
Fig. 10: Encoding of a two counter machine

Now that we have described the encoding we will use, we neelksoribe how we can decrement and
increment a counter using timed automata with additivelctmmstraints.

We use four clocks: — u: “tic” clock (each time unit)

— x9, 11, 2. reference clocks for the two counters
and “z;" is a reference clock for counterwhenever the last time; has been reset is the last time an action
c has been done (in the timed automaton simulating the twoteoumachine).

We now describe the construction for the two kinds of indtoms we have inM, incrementation of a
counter and decrementation of a counter.

e Incrementation of counter ¢: the automaton simulating an incrementation of counter repre-
sented bellow.

zo < 2,u+x2 =1,c,z2 :=0

O x9 : =0 Q xg > 2,c,x2 :=0 O

u=1*xu:=0 N u+x2 =1

ref. clock ref. clock
for cis zg for cis zo

The behaviour of this automaton is depicted on Figure 11.urtieof time whenc was last updated
is the 56th (and the value oé was?2). During the57th unit of time, countewl is updated. The
incrementation of counterhas to be done during tH8th unit of time. Last: has occurred at date
553. In order to represent an incrementatiorcpfve need to do an actionat datess73, 573 and
57%. The loop of the automaton is used to do so (recall autométbigare 9). We continue taking
the loop as long asy < 2 and as soon as we hawg > 2 the right-most transition is taken, adding
a last actionz and resetting clock, which is now the reference for counterThus one more action
c has been done during th&th unit of time than during th&6th unit of time @ in our example).

e Decrementation of counterc: the automaton simulating a decrementation of couatierrepre-
sented bellow.

13



55 c c 56 counterd is updated 57 c c ¢ 98

To = 0 u:=0 U ; %) (%) (*) (%)
xo < 2

Fig. 11: Incrementation of counter

zo <2,u+x2=1,¢c,22:=0

x2 :=0 Q xog = 2,%,x2 :=0 O

U u+xe =1

u=1,20 =2,%,u:=0,z2 :=0

The behaviour of this automaton is very similar to the ons@néed for the incrementation (the only
difference is that we only deactions as long ag, < 2 and we don’t do any additiona).

Some more constructions are needed to initialize the cosritelet a counter unchanged, and to allow all
possible permutations for reference clocks. But thesetngei®ns are not difficult (with the constructions
already presented) and we will not describe all details batédetter refer to [BD0O].

5.3.3 What about timed automata with three clocks?

The region graph construction done for two clocks and piteseim section 5.3.1 does not extend to
three clocks. Using the characterization of regions usimg-abstract bisimulation, it has been proven
in [Rob04] that there is no finite partitioning satisfyingetbonditionsd, O and as soon as there are

three clocks ¢, y andz) and constraint§z + y = 1,z = 0,z = 1} are used. However the reduction

presented above (for proving undecidability of reachgbéhecking in timed automata with four clocks

and additive clock constraints) can not be adapted if wenvadioly three clocks. It is still an open problem

to know if the reachability problem for timed automata witinge clocks and additive clock constraints is
decidable or not.

5.4 Adding New Operations on Clocks

Up to now, we can only reset clocks to zero. In [BDFP04], medeling more generalpdateshave

been studied. In the model apdatable timed automata transition is of the fornd 22, ¢ where
g is a clock constraintg is an action andip is anupdate i.e. for each clockz, an operatiorup,, of
the formz @< c orz < y + ¢ wherec € Z, y is a clock, andxe {<,<,=,>,>}. Let us take
two valuationsv andv’. We have that’ € up(v) whenever for each clock, v'(x) € up,(v), where
up, (v) = {a]axc} if up,(v)isx xc

x {a|axov(y)+c} ifup,(v)iszxy+c
For example, it is possible to decrement the value of a clgck, lor to set a clock non-determiniscally at
a value less tha®.

14



This model is very general and it is easy to prove that thehaaitity problem is not decidable for the whole
class of updatable timed automata, by reducing the compntat a two counter machine to the compu-
tation of an updatable timed automaton (decrementati@p(rincrementation) of counters are simulated
by decrementation (resp. incrementation) of clocks). IRIR04], tighter undecidable classes and several
decidable classes are described. We will not enter intalslétare, but will present two undecidability
proofs and describe one decidable class.

Decrementing clocks leads to undecidability. We now sketch the reduction from a two counter machine
to updatable timed automata with resets to zero and dectatiten Let us consider a two counter machine
M with the two counters andd. We will construct a timed automato# (with decrementations and resets
to zero) such that the computation.bf terminates if and only if a given state dfis reachable. The value

of counterc (resp. counterl) is encoded by the value of clock(resp. clocky). An additional clockz

is used to rhythm the computation of automaténincrementation (and decrementation) of counters are
simulated as follows.

e Incrementation of counter c.

For incrementing counter, we let time elapse during one unit of time. The two clogkandy thus
increase byl. It is then sufficient to decrease cloglby 1: the value ofr in ¢’ is equal to the value
of z in £ plus 1 whereas the value afin ¢’ is equal to the value af in £. This correctly encodes an
incrementation of by 1.

e Decrementation of countere.

An explanation similar to the one for decrementation candresd

Incrementing clocks also leads to undecidability as soon adiagonal constraints are used... From
the previous reduction, it is sufficient to be able to simaithe part of the automaton which is framed with
dashed lines, thus to decrease the value of a clocki«(shy 1.

w:i=w+1 rz:=x+1
ZZO,’LUZZO Qx—w:LZE::OQ r=wANz=0
@ (D ) ()
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We can describe the behaviour of this automaton as follows:

) () |

This precisely simulates what we want.

g e 8

oA OowR
~_

... but remains decidable when no diagonal constraints aresed. We will see that the usual (diagonal-
free) region partitioning is correct when also using inceamation of clocks. However this requires a more
involved explanation. Indeed, the three conditibh$] andJ are no more sufficient because more general
operations on clocks are used. More precisely, we need taceponditior] by the following condition
(whereR is a finite partitioning of the set of valuations, aids a finite set of updates):

00’ We say thatR is compatible with updates i1 whenever for allR, R’ € R, for eachup € U, if for
some valuation € R, up(v) N R’ # (), then for every valuation’ € R, up(v’') N R’ # 0.

It is just an extension of Proposition 1 to prove that if, fdiirate set of constraint€ and a finite set of
updateg/, we can construct a set of regions satisfying conditidng! and[l’, then the region automaton
construction can be used to verify reachability (or moreegalty time-abstract invariant) properties.

Let us fix a finite se€ of diagonal-free constraints, and a finite set of update$the formx := y +cand
possibly some resets of clocks. If the system of inequations

{az >c|(zc)isinC}U{a, <ay+c|(z:=y+c)isinlf}

has a solutior{m;).cx, then the diagonal-free set of regions where the maximasteoi forz is m.,
satisfies the three above-mentioned conditions. Note traily updates of the form: := x + 1 are
authorized then, as claimed before, the usual region joaitig is correct (because constraints< «, +1
are trivially true).

However the usual region partitioning needs sometimes tefieed a little bit. Consider the following
example: the maximal constant to which the two clogkandy are compared i8, both resets of and

y are allowed, and the more elaborated update- = — 1. The system of inequations {gv, > 2, a,, >

2, a < a; —1}. Ithas a solutionega, = 2 ande, = 3. We explain the intuition behind these conditions
on Figure 12.

y P y P
1 1 1 1
1 1 1 1
1 1 1 1
Ll x I
P R j ) NSRRI R
2 Pl .. 2 A
R e S at I
,,/ : ,,/ : o T updatE'y = — 1 ,,, : ,,/ : .
(a)OCIassidaI patitioning not compatible wigh.= = — 1 (b) Qet of régiong satislying condifions, 0 and’.

Fig. 12: Partitioning for updates of the form:= =z — 1

Updatable timed automata have been studied in details irfFfEI2], where the precise frontier between
decidable and undecidable subclasses has been depictedy arther results, when only diagonal-free
constraints are used, decrementation of clocks leads teciohability whereas incrementation leads to
decidability, which may appear as a surprising result. & aso been proved that for every updatable
timed automaton belonging to some decidable subclass, wearsstruct a timed automaton with silent
actions (but with an exponential complexity blowup) whielcognizes the same timed language.
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5.5 Partial Conclusion

We have shortly presented in this section several extessiod variants of timed automata, having in
mind the decidability of reachability checking. Many otrettensions or subclasses could have been
presented as well, for example timed automata with modutstraints [CGO00], or timed automata with
event-predicting or event-recording timed automata [AEHIRS98].

Historically, (linear) hybrid automata [Hen96, HKPV98Meanot been defined and studied as an extension
of timed automata, but they can be viewed as such. A hybridnaaiton is roughly a timed automaton
where variables (instead of clocks) grow in every statefaihg some differential equation. Linear hybrid
automata are particular hybrid automata where variables/evfollowing linear differential equations.
As soon as a variable has two different slopes, the hybridnaata model is undecidable [HKPV98]. In
particular, stopwatch automata.e. timed automata in which clocks can be stopped, are unddeidab
However, a decidable subclass has been exhibited, thelled-gdtialized rectangular automata. Hybrid
automata are a very interesting model which would requirehalevtutorial in itself. We better refer to
[Ras05] for an introduction to this model.

6 Algorithmics & Implementation

In practice the region automaton construction is not usédats. Algorithms for “minimizing” the region
automaton have been proposed for example in [A@D, ACHT92, TY01]. However in practicen-the-fly
technics are preferred.

6.1 Reachability Analysis: Two General Methods

There are two main families of (semi-)algorithms for anaigaeachability properties of systems (not only
timed systems, but all kinds of systems).

Forward analysis. The generalidea of forward analysis is to compute configanatvhich are reachable
from initial configurations withinl stepsp steps, etc... until final states are reached or until the coatipn
terminates. The forward analysis process can be represasten Figure 13.

Y 2l W

Fig. 13: Forward analysis: step by step, successors of initial caméijons are computed

Backward analysis. The general idea of backward analysis is to compute confignsafrom which we
can reach final configurations withinstep,2 steps, etc... until initial configurations are reached dil un
the computation terminates. The backward analysis pra@esbe represented as on Figure 14.

These two generic approaches are used for many models,dorpde counter machines, hybrid systems,
etc... Of course, given a class of systems, specific tecli@igsabstractions, widening operations, etc...)
can be used for improving the computation. We will study hbase approaches can be used for verifying
timed automata.

6.2 Reachability Analysis in Timed Automata: Zones

We need now to look carefully at how the above-mentioned ig¢meethods can be used for verifying
timed automata. In particular, as timed automata have amtmfiumber of configurations, we need to use
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Fig. 14: Backward analysis: step by step, predecessors of final agafigns are computed

symbolic representations for doing the computation. Gavemansitiore of a timed automatoh LN Z,

we need to be able to compute, given al$eof valuations, both sets
W' [weWIHeTst =Y —0)(v+t)}and{v|F e WIHeTst]Y «0](v+t)=0"}

It is worth to notice that if the forward computation startsn initial state with all clocks initialized tdor
if the backward computation starts from the final states wliticks set to any value (which is sufficient as
we are only interested in reachability of discrete statssls of valuations which are computed aomes
i.e. sets of valuations defined by a general clock constraintalRiéaat general clock constraints are defined
by the grammar:

g u=aXce | z—yxc| gAg

wherec € Z, <€ {<,<,=,>,>} andz, y are clocks. A clock constraigtdefines a zongg] = {v €

TX | v | ¢}. For analyzing timed automata, zones arediabolic representatiowhich is commonly
used. For implementing forward and backward analysis, veel b@ be able to perform several operations
on zones. From what has been said before, these operatmtiseaiollowing ¢ and Z’ are supposed to
be zones):

- Future of Z: 7:{v+t\veZandteT}

Past ofZ: 7:{v7t\v€Zandt€’ﬂ‘}

IntersectionoZ andZ’: ZNZ' = {v|ve Zandv e Z'}

Reset to zero of w.r.t. setof clocky™: [Y — 0]Z ={[Y « OJv |v € Z}

Inverse reset to zero ¢f w.r.t. set of clocky™: [Y « 0]71Z = {v | [Y « O]v € Z}

Test for emptiness ¢f: decide whethef = ()

Using these operations, the basic steps of the forward anldatbkward computations can be rewritten as:

Post.(Z) = [Y « 0](Z N[g]) and Pre.(Z)=1[Y — 0]"'(ZN[Y = 0]) N [4]

The computation of both operators are illustrated on Figdfeand 16.

% , ,

— — —
Z Z ZnNg [y —0](Z Ny)
Fig. 15: Example of forward computation for timed automa®adgt operator)
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Fig. 16: Example of backward computation for timed automdtee (Operator)

6.3 The DBM Data Structure

For representing zones, the most common data structurévghicsed is the so-called DBM data structure
(where DBM stands for “Difference Bounded Matrice”). Thigta structure has been first introduced in
[BM83] and then proposed in the framework of timed automatfDil90]. Several presentations of this
data structure can be found in the literature, for examp]€®P99, Ben02, Bou04].

A difference bounded matriggayDBM for short) for a seiX = {z1,...,z,} of n clocks is an(n + 1)-
square matrice of pairs
(m; <) € V.= (Z x {<,<}) U{(c0; <)}

ADBM M = (m,;, =i )ij=1..n defines the following subset di™ (the clockz, is supposed to be
always equal to zera.e. for each valuatiow, v(zo) = 0):
{v: X —TI|V0<1i,j<n, viw)—v(x;) <i; mi,;}

wherey < oo simply means that is some real without bound. This subsetTof is a zone and will
be denoted, in what follows, bfM]. In what follows, to simplify notations, we will assume thedt
constraints are non-strict, so that coefficient of DBMs Wwélelements o U {co}.

Example 4 Consider the zone defined by the constrajnts > 3) A (z2 < 5) A (1 — z2 < 4). This
zone, depicted below on the right, can be represented by Bi Below (on the left).

5
o X1 X2
To oo -3 ™
T oo oo 4 9
X9 5 00 o0

3 4 9

A zone can have several representations using DBMs. Formgathe zone of the previous example can
equivalently be represented by the DBM

rg T1 X2
o 0 -3 0
T 9 0 4
T2 5 2 0

A normal form can be defined on DBMs, which tightens all pdss@mnstraints. This can be done using
a Floyd algorithm on the matrice (viewed as a weighted graplgone has a unique representation as a
DBM in normal form. Tests like emptiness checking, or congmar of zones can then be done syntactically
on the DBMs in normal form. For example, a za#es included in a zon¢’ if the DBM in normal form
representingZ is smaller than the DBM in normal form representifi Finally all operations on zones
described in section 6.2 can easily be done on the DBMs,Islegi be found in all mentioned papers on
DBMs.
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Let us just mention that the DBM data structure is the mostlueta structure which is used for analyzing
timed systems, some more involved BDD-like data structaagsalso be used, for example CDDs (which
stands for “Clock Difference Diagrams”) [LPWY99].

6.4 Backward Analysis

Let A = (X,Q,T,1,F, X) be a timed automaton. Backward analysis then consists impeting itera-
tively the following sets of symbolic configurations:

So = {(f,TY)|feF}
S o= {(6,2Z)|3e= (225 030, 2") € Syst.Z = Pre.(Z')}
Spr1 = {(6,2)|3e= (0225030, 2"y € S, st.Z = Pre.(Z)}

The nicest result about backward analysis is the following.

Theorem 4 The backward computation terminates and is correct waachability, i.e. if a state is found
reachable by the computation, then it is really reachable.

Correctness is immediate as the computatioexact(as opposed to over-(or under-)approximate). Ter-
mination needs some additional argument, related to ptiepesf the region partitioning associated with

timed automata. The termination proof then relies on thiviehg lemma, which can be proved as an

exercise.

Lemma 2 Let.4 be a timed automaton and I& be a set of regions satisfying conditions 0 and [ (for
A). Consider a finite union of regions?_; R, (with R; € R for 1 < i < p). Then the following holds:

R . . . . .
- | UY_, R; is afinite union of regions
- [Y < 0]7*(UY_, R:) is afinite union of regions (for any set of clock$
- gN (UL, R;) is a finite union of regions i§ is a constraint of4 (thus compatible wittR)

Backward analysis thus appears as a very interesting métihathalyzing timed systems. However, in
practice, most commonly used tools (for examplerdAL) prefer using a forward analysis procedure. A
natural question then arises: what'’s the problem with bacwanalysis? It comes from the fact that the use
of bounded integer variables really improves and eases titeling of real systems. Backward analysis
is then not suitable for arithmetical operations: for exémpwe know in which interval lies the variable

1 and if we know that is assigned the valugk + ¢.m, it is not easy to compute the possible values of
variablesj, k, £, m (apart from listing all possible tuples of values). For tkisd of operations, forward
analysis is much more suitable.

6.5 Forward Analysis

LetA = (%,Q,T,I,F, X) be atimed automaton. Forward analysis then consists in atingpiteratively
the following sets of symbolic configurations:

So = {(,0)|ieI} (whereOdenotes the valuation assignifigo each clock)
S o= {(U,Z) ] 3e= (225 0)3(0,Z) € Sy st.Z' = Post.(Z)}
Spr1 = {(0,2)]3e=(220)3(0,2) € S, s.1.2' = Post.(Z)}
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The forward analysis gives a correct answer (if it gives aswaam), but may not terminate. An example of
automaton where the forward computation does not termieaien on Figure 17. The zones which are
computed are represented on the right part of the figure,taaeasy to check that the computation will
never terminate.

Y
y:=0,
z:=0 2
r>1ANy=1, 1
y:=0

0
Fig. 17: Forward computation does not always terminate...

To overcome this problem, it is necessary to use some abetracseveral are proposed in [DT98]. For
example, ifZ andZ’ are computed for the locatiah) zones are replaced by the smallest zone containing
both Z and Z’: this approximation is called thectnvex-hull®, it does not ensure termination and is
only semi-correct w.r.t. reachability in the sense thatatestvhich is announced as reachable may not
be reachable. The most interesting abstraction studietisnpiaper is theextrapolationoperator. We
will present it now, but we first need to formalize a little redorward analysis. We follow the lines of
[BBFLO3, BBLP04] and define (abstract) symbolic transitgystems.

Symbolic Transition Systems. Let A = (X,Q,T, I, F, X) be a timed automaton. Treymbolic transi-
tion systenassociated wittd is denoted by—- and is defined inductively as follows:

e= (e LeY=0, 4/) €T W' =Post, (W)
(6, W) = (¢, W’)

With this formalization, forward analysis reduces to cotimyithe reflexive and transitive closure of the
relation—.

We now formalize how we use abstractions. béte an abstraction operator (possibly partially) defined on
the sets of valuationsi (partially associates to sets of valuations sets of valngjio/NVe define thabstract
transition systera=>, in the following way:

(W)= (W) W =aW)
(W) =a (¢, a(W))

Soundness criteria. Given an initial locatior?,, the abstraction operataris saidcorrectw.r.t. reacha-
bility from ¢, whenever the following holds:

if (£p,a({0})) =% (¢, W) then there exists a ruff,0) —* ({,v) withv € W

Given an initial locatior?, the abstraction operataiis saidcompletew.r.t. reachability fron?, whenever
the following holds:

if (€o,0) —* (£,v) then({y, a({0})) =% (¢, W) for somelWV with v € W

Note that these two notions could be generalized to morergem®perties than reachability, but we follow
our lines and concentrate on reachability properties.

Our aim is to build abstractionssuch that:

e {a(W) | a defined oriV} is finite [Finiteness]
(this ensures termination of the “abstract” forward corafion)

3lt is a language abuse, because it is not reaaly the convéhtiie two zones, but it is the smallest zone containing the
convex-hull of the two zones.
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e ais correct w.r.t. reachability [Correctness]
e ais complete w.r.t. reachability [Completeness]
e ais “effective” [Effectiveness]

The three first properties are properly defined, the lastisradre obscure and informal. The effectiveness
criterium expresses that the abstraction has to be easitypuatable. In timed automata literature this is
most of the time interpreted as has to be defined for all zones aa@?) has to be a zone whefi is a
zone”. Note that an other effectiveness criterium couldiopased...

The extrapolation operator. The abstraction operator which is commonly used is cadbdtapolation
and sometimesormalization[Ben02]. We will note it heréApprox,,, it is defined up to a constaktas
follows: if Z is a zoneApprox,,(Z) is the smallest-bounded zorfewhich containsZ. This operation is
well-defined on DBMs: ifM is a DBM in normal form representing, a DBM representind\pprox;, (Z)
is M’ where each coefficient less thait is replaced by-k and all coefficients greater tharis replaced
by +o0, all other coefficients remain unchanged.
Example 5 Consider the zone defined by the constraints
B (M

(w12 3) A (22 <5) A (21— 22 < 4) B [Approx,(M)]

It can be represented by the DBM in normal form on the left and
its extrapolation w.r.t2 is the DBM on the right

0 -3 0 0o -2 0 5
M={|9 0 4 and Approx,(M) = 9 0 +oo

5 2 0 400 2 0
Obviously, 2

e Approx,, is a finite abstraction operator because there are finitetyrd®Ms whose coefficients are
either+-oco or some integer betweenk and+k

e the computation oApprox,, is effective and can be done easily on DBMs
e Approx, is a complete abstraction w.r.t. reachability becausevieryezoneZ, Z C Approx, (Z)

The only problem stands in the correctnes®\pprox; w.r.t. reachability: we have to find a constant
such that this abstraction operator will be correct w.eaiahability. We will discuss in details this aspect
in the next paragraph.

Correctness of the extrapolation.

Theorem 5 Let .4 be adiagonal-free timed automaton. Takk the maximal constant appearing in the
constraints of4. ThenApprox, is correct w.r.t. reachability inA.

Two different proofs of this theorem can be found in [BouOAdi §BBFLO3].

Note that this theorem does not extend to timed automatageitieral clock constraints. Indeed, consider
the timed automatod depicted on Figure 18. For eveltythe extrapolation operatéipprox,, is not correct
w.r.t. reachability for4. One can even also prove that, for automatrthere is no abstraction operator
Abs satisfying the four above-mentioned criteria (finitenessrectness, completeness and effectiveness).

4A k-bounded zone is a zone defined by-Aounded clock constraint.
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1’1:2, .’E11:0

1’2:2, .’EQZZO

T = 2,
x;:=0 Theloop

To > a1+ 2 r1 =3 ~ xr9 =2
@ O

Error Ty < T3+ 2 x1:=0 To =0

Fig. 18: Timed automatotd which makes the forward analysis fail

Let us explain the problem with automateh) depicted on Figure 18. The zoug, which is computed
by a forward analysis when reaching the black state aftengaakenca times the loop is defined by the
constraints below. Fixing an integertakinga large enough the extrapolated zone is also described below.

1<z —21 <3 1<z9—21 <3
Z. . 1<zy—23<3 Approx, (Z,) : 1<z —23<3
T3 —x1 =20+ 5 T3 — X9 >k
Ty —To =2+ 5
= X3 —T1 = T4 — T3 F= Ty — X1 =Ty — T3

The zoneZ,, does not intersect the constraint— z; > 2 A x4 — z3 < 2, which implies that state “Error”
is not reachable. On the contraApprox, (Z, ) intersects the constraint — 1 > 2 A x4 — x5 < 2 (for

« large enough), which implies that state “Error” is compusasdreachable by the forward analysis with
abstraction operatdkpprox;, (for anyk).

The problem with automatod comes from the presence of diagonal constraints leadingate ‘Error”.
Note however that for timed automata with three clocks (lmssibly diagonal constraints), it is possible to
find a constank such thatApprox,, is correct w.r.t. reachability (however, the constamtay be larger than
the maximal constant appearing in a constraint of the autmm¢Bou04]. The problem with diagonals is
difficult to understand, see for several counter-intuigxamples and discussion on this problem [Rey04].

6.6 Tools for Timed Systems

Several tools implement timed (and hybrid) automata.

e HYTECH [HHWT97] is a model-checker for linear hybrid automata. &xaackward and forward
computations can be done, reachability properties cantirushecked (but there is of course no
guarantee the computation will terminate). Many other apens on polyhedra can be performed,
for example hiding of variables (corresponding to projas), ‘whi | e” loops, emptiness checks,
etc... Hr TECH, which has been developed in Berkeley (USA), can be doweldad

http: //ww cad. eecs. ber kel ey. edu: 80/ ~t ah/ HyTech/

where a user manual can be found [HHWT95].

e KRONOS[DOTY96, Yov97, BDM™98] is a model-checker for timed automata. Exact as well as
abstract backward and forward computations can be done. chwaad procedure for the logic
TCTL [ACD90, ACD93] is also implemented [HNSY94, Yov98]. &hool KRoNOS which has
been developed in Grenoble (France), can be downloaded on

http://wwe+ verimag. i mag. fr/ TEMPORI SE/ kr onos/
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e UPPAAL[LPY97, ABBT01]is a model-checker for timed automata which performaéod analysis
with extrapolation. It can verify reachability propertielstimed systems with some extra features as
bounded integer variables and broadcast channels. Th&tmiAL, which is jointly developed in
Aalborg University (Denmark) and Uppsala University (Ser)] can be downloaded on

http://ww. uppaal . com

7 Conclusion

In this tutorial we have presented the basic model of timddraata, introduced at the beginning of the
90’s by Rajeev Alur and David Dill [AD94]. One of the most impant and most fundamental construction
which is used in this domain is the region automaton constnucit finitely abstracts behaviours of timed
automata into behaviours of finite automata, which allowstwel-check many properties: although we
only presented how reachability properties could be cheickeoperties in TCTL can also be verified
using a region-like construction [ACD93]. We have also prded several extensions of timed automata,
concentrating on the decidability of the model-checkingeafchability properties.

There are so many works which have been devoted to timednsystegeneral, and timed automata in
particular, that it is hopeless to present the whole thebtiymed automata in a single tutorial. The current
tutorial presents some results on timed automata, focusirige decidability of reachability properties and
on implementation issues for verifying such propertiesegent survey by Rajeev Alur and Madhusudan
P. summarizes (un)decidable problems for timed automa#0Og.

Thank you to send me any comment or suggestion you may hateatsiocan upgrade the current draft.
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