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1 Introduction

Explicit timing constraints are naturally present in real-life systems (transmission delays, response time,
etc...). Classical models (finite automata, Petri nets, etc...) can not express such real-time constraints. Since
their introduction by Rajeev Alur and David Dill in [AD90, AD94], timed automata are one of the most
studied models for real-time systems: in those systems, quantitative properties of delays between events can
easily be expressed. Numerous works have been devoted to the“theoretical” comprehension of timed au-
tomata: determinization [AFH94], minimization [ACD+92], power of clocks [ACH94, HKWT95], power
of ε-transitions [BDGP98], extensions of the model [DZ98, HRS98, CG00, BFH+01], logical charac-
terizations [Wil94, HRS98], etc... have in particular beeninvestigated. Practical aspects of the model
have also been considered and several model-checkers are now available (HYTECH [HHWT97], KRO-
NOS [DOTY96], UPPAAL [LPY97]). These model-checkers have been used to verify many industrial case
studies (see the web pages of the tools, given page 23).

One of the major properties of timed automata is probably that reachability properties are decidable [AD94],
though timed automata have an infinite number of configurations. The core of this result is the construc-
tion of the so-called region automaton, which finitely abstract behaviours of timed automata in such a way
that checking reachability in a timed automaton reduces to checking reachability in a (somewhat larger)
finite automaton. This construction has many other applications, as for example the decidability of the
TCTL model-checking [ACD93] (TCTL is the timed extension ofthe logic CTL). However, many prob-
lems remain undecidable, as not everything can be reduced tothe untimed framework. For example, timed
automata are neither determinizable, nor complementable [AD94]. Checking if a timed automaton is de-
terminizable (or complementable) is even an undecidable problem [Tri03]. An other important example is
the undecidability of the universality problem for timed automata [AD94].

The aim of this tutorial is to give some understanding of the timed automata model. We will present the
basic tools which are used in the domain of verification of timed systems. In particular, after having pre-
sented the model, we will present in details the region automata construction. For modeling reasons, it is
important to have expressive models, but it is also important that the models remain decidable. We will then
present several variants or extensions of timed automata, focusing on the decidability of reachability prop-
erties, and on the expressiveness of the models. We will terminate this tutorial with some implementation
and algorithmics issues.

We would like to point out several recent surveys on timed automata which present current works and
results on timed automata with a point of view somewhat different from the one adopted in this tutorial.
A recent survey by Rajeev Alur and Madhusudan P. gives many hints about decidability issues for timed
automata [AM04]. In [Asa04], Eugene Asarin presents the current challenges in timed languages theory.

∗Preliminary draft of September 23, 2005
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2 Timed Automata

If Z is a set, letZ∗ be the set offinite sequences of elements inZ. We consider as time domainT the set
Q+ of non-negative rationals or the setR+ of non-negative reals, andΣ as a finite set ofactions. A time
sequenceoverT is a finite non decreasing sequenceτ = (ti)1≤i≤p ∈ T∗. A timed wordω = (ai, ti)1≤i≤p

is an element of(Σ × T)∗, also written as a pairω = (σ, τ ), whereσ = (ai)1≤i≤p is a word inΣ∗ and
τ = (ti)1≤i≤p a time sequence inT∗ of same length.

Clock Valuations, Operations on Clocks - We consider a finite setX of variables, calledclocks. A
clock valuationoverX is a mappingv : X → T which assigns to each clock a time value. The set of all
clock valuations overX is denotedTX . Let t ∈ T, the valuationv + t is defined by(v + t)(x) = v(x)+ t,
∀x ∈ X. We also use the notation(αi)1≤i≤n for the valuationv such thatv(xi) = αi. For a subsetY
of X, we denote by[Y ← 0]v the valuation such that for eachx ∈ Y , ([Y ← 0]v)(x) = 0 and for each
x ∈ X \ Y , ([Y ← 0]v)(x) = v(x).

Clock Constraints - Given a finite set of clocksX, we introduce two sets ofclock constraints overX.
The most general one, denotedC(X), is defined by the grammar:

g ::= x ./ c | x− y ./ c | g ∧ g | true

wherex, y ∈ X, c ∈ Z and ./∈ {<,≤, =,≥, >}.

We also use the proper subset ofdiagonal-freeconstraints where the comparison between two clocks is not
allowed. This set, denotedCdf (X), is defined by the grammar:

g ::= x ./ c | g ∧ g | true,

wherex ∈ X, c ∈ Z and ./∈ {<,≤, =,≥, >}.

A k-bounded clock constraintis a clock constraint which involves only constantsc between−k and+k.
The set ofk-bounded (resp.k-bounded diagonal-free) clock constraints is denotedCk(X) (resp.Ck

df (X)).
A constraint of the formx− y ./ c is adiagonal constraint.

If v is a clock valuation we writev |= g whenv satisfies the clock constraintg and we say thatv satisfies
x ./ c (resp.x − y ./ c) wheneverv(x) ./ c (resp.v(x) − v(y) ./ c). If g is a clock constraint, we note
JgK the set of clock valuations{v ∈ TX | v |= g}.

Timed Automata - A timed automatonoverT is a tupleA = (Σ, Q, T, I, F, X), whereΣ is a finite
alphabet of actions,Q is a finite set of states,X is a finite set of clocks,T ⊆ Q× [C(X)× Σ× 2X ] ×Q

is a finite set of transitions1, I ⊆ Q is the subset of initial states andF ⊆ Q is the subset of final states. If
all constraints appearing inA are diagonal-free, we say thatA is adiagonal-free timed automaton.

A path in A is a finite sequence of consecutive transitions:

P = q0
g1,a1,Y1

−−−−−−→ q1 . . . qp−1
gp,ap,Yp

−−−−−−→ qp

whereqi−1
gi,ai,Yi−−−−−−→ qi ∈ T for every1 ≤ i ≤ p.

The path is said to beacceptingif it starts in an initial state (q0 ∈ I) and ends in a final state (qp ∈ F ). A
run of the automaton along the pathP is a sequence of the form:

(q0, v0)
g1,a1,Y1

−−−−−−→
t1

(q1, v1) . . .
gp,ap,Yp

−−−−−−→
tp

(qp, vp)

1For more readability, a transition will often be written asq
g,a,Y
−−−−−→ q′ or even asq

g,a,Y :=0
−−−−−−−→ q′ instead of simply the tuple

(q, g, a, Y, q′).
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whereτ = (ti)1≤i≤p is a time sequence and(vi)1≤i≤p are clock valuations such that:






v0(x) = 0, ∀x ∈ X

vi−1 + (ti − ti−1) |= gi

vi = [Ci ← 0] (vi−1 + (ti − ti−1))

The label of the run is the timed wordw = (a1, t1) . . . (ap, tp). If the pathP is accepting then the timed
wordw is said to be accepted byA. The set of all timed words accepted byA is denoted byLt(A).

Remark 1 In these notes, we only consider finite paths and words with finitely many actions, but we could
consider more general acceptance conditions (Büchi, Muller, etc...) as well, see [AD94].

Example 1 An example of timed automaton is given below.

`0 `1 `2

x ≤ 5, a, y := 0 x− y > 3, b

This timed automaton accepts the timed word(a, 4.1)(b, 5.5). An accepting run for this word is

(`0, (0, 0))
x≤5,a,y:=0
−−−−−−−−→

4.1
(`1, (4.1, 0))

x−y>3,b
−−−−−−→

5.5
(`2, (5.5, 1.4))

where(4.1, 0) represents the valuationv such thatv(x) = 4.1 andv(y) = 0.

3 Reachability Analysis, Why and How?

For verification purposes, the most fundamental propertiesthat one should be able to verify are reachability
properties: safety properties can for example be expressedas reachability properties. Usually a class of
models is saiddecidablewhenever checking reachability properties in this class isdecidable. Otherwise
this class is saidundecidable. For timed automata reachability properties we want to check are: “Is state
q of timed automatonA reachable?i.e. is there a run starting in an initial state leading toq?” There is no
requirement as what are the values of the clocks when reaching stateq. This problem is equivalent to the
emptiness problem(from a language-theoretical point of view), where the question is whether the language
accepted by a timed automaton is empty or not.

The class of finite automata is obviously decidable, the reachability problem is even NLOGSPACE-complete
[HU79], and efficient methods, symbolic techniques, data structures, etc... have been developed and im-
plemented [CGP99]. The problem with timed automata is that the number of configurations of a timed
automaton is infinite (a configuration is a pair(q, v) whereq is a state andv a clock valuation). Techniques
used for verifying finite automata can thus not be used for timed automata. Specific symbolic techniques
and abstractions have to be developed, which take into account the specific properties of timed automata,
in particular the fact that clocks evolve synchronously with global time.

In the following, we will concentrate on the verification of reachability properties in timed automata, and
present the basic technics for solving this problem. Of course, in the literature, more general properties
have been considered. For example, the model-checking of TCTL [ACD90, ACD93], a timed extension
of CTL, is decidable in PSPACE, and symbolic technics have been developed to efficiently model-check
TCTL [HNSY94]. Note however that not everything can be reduced to the finite untimed case using the
region automaton construction: for example, the model-checking of TPTL, a timed extension of LTL is
undecidable and most satisfiability problems for real-timelogics are undecidable [ACD93, AH93].

4 Decidability – The Region Abstraction

The construction we will describe below is due to Alur and Dill first in [AD90]. The aim of this construction
is to finitely abstract behaviours of timed automata, so thatchecking a reachability property in a timed
automaton reduces to checking a reachability property in a finite automaton.
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4.1 The Region Automaton Construction

Region Partitioning. Let us fix a finite set of clocksX. LetR be a finite partitioning ofTX . Let C be a
finite set of constraints overX. We define three compatibility conditions as follows:

➀ We say thatR is compatible with constraintsC if for every constraintg in C, for everyR inR, either
JgK ⊆ R or JgK ∩R = ∅.

➁ We say thatR is compatible with elapsing of timeif for all R andR′ in R, if there exists some
v ∈ R andt ∈ T such thatv + t ∈ R′, then for everyv′ ∈ R, there exists somet′ ∈ T such that
v′ + t′ ∈ R′.

➂ We say thatR is compatible with resetswhenever for allR andR′ inR, for every subsetY ⊆ X, if
[Y ← 0]R ∩R′ 6= ∅, then[Y ← 0]R ⊆ R′.

If R satisfies these three conditions, we will say thatR is a set of regionsfor the set of constraintsC or
simply a set of regions (ifC is clear from the context).R defines in a natural way an equivalence relation
≡R over valuations (v ≡R v′ iff for each regionR of R, v ∈ R ⇐⇒ v′ ∈ R). An equivalence class
of ≡R (or equivalently an element ofR) is called aregion. If v is a valuation we note[v]R the region to
whichv belongs.

The intuition behind these conditions is the following: we want to finitely abstract behaviours of timed
automata. To this aim, we finitely abstract the (infinite) setof valuations: a valuationv will be abstracted
by the region[v]R. In order for the abstraction to preserve (at least) reachability properties, it must be
the case that if two valuations are equivalent, then their future behaviours are also equivalent. The three
conditions above precisely express this property: condition ➀ says that two equivalent valuations satisfy
the same clock constraints, condition➁ says that elapsing of time does not distinguish two equivalent
valuations whereas condition➂ says that resetting clocks does not distinguish two equivalent valuations.

Region Graph. From a set of regionsR one can define the so-calledregion graph, which represents the
possible timing evolutions of the system: the region graph is a finite automaton whose set of states isR
and whose transitions are:

{

R
ε
−→ R′ if R′ is a time successor ofR

R
Y
−−→ R′ if [Y ← 0]R ⊆ R′

Intuitively, the region graph records possible timed evolutions of the system: there is a transitionR
ε
−→ R′

if, from every valuation ofR, it is possible to let some time elapse and reachR′. There is a transition

R
Y
−−→ R′ if, from R, R′ can be reached by resetting clocks inY .

Example 2 Let us consider the partitioning ofR{x,y}
+ R = {R1, R2, R3, R4} defined as follows:

R0
(

x ≥ 0
y = 0

)

R1




0 ≤ x < 1
0 ≤ y ≤ 1

x < y





R2




x > 0
0 ≤ y ≤ 1

x ≥ y





R3




x > 1
y > 1
x ≥ y





R4




x ≥ 0
y > 1
x < y





0 1

1

x

y

R1 R2

R3

R4

R0

It is easy to verify thatR is a set of regions for the constraints{y = 1, x = y}. The region graph associated
withR is represented on Figure 1.

Region Automaton. LetA = (Σ, Q, T, I, F, X) be a timed automaton with set of constraintsC. LetR
be a finite set of regions forC (i.e. a partitioning ofTX satisfying conditions➀, ➁ and➂). The region
automatonΓR(A) is the finite automaton whose set of states isQ×R, whose initial states areI × {R0}
(whereR0 is the region containing the valuation assigning0 to each clock), whose final states areF ×R
and whose transitions are defined as follows:
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R0

x ≥ 0
y = 0

R1

0 ≤ x < 1
0 ≤ y ≤ 1

x < y

R2

x > 0
0 ≤ y ≤ 1

x ≥ y

R3

x > 1
y > 1
x ≥ y

R4

x ≥ 0
y > 1
x < y

time elapsing

resetx := 0

resety := 0

Fig. 1: A simple example of region graph

• there is a transition(`, R)
a
−−→ (`′, R′) whenever there exists a transition`

g,a,Y
−−−−→ `′ in A with

R ⊆ JgK andR
Y
−−→ R′ transition of the region graph

• there is a transition(`, R)
ε
−→ (`, R′) wheneverR

ε
−→ R′ transition of the region graph

This automaton somehow simulates the original timed automaton: the first type of transitions simulates
discrete actions (or transitions) whereas the second type of transitions simulates elapsing of time.

The fundamental property of this construction is the following:

Proposition 1 LetA be a timed automaton with set of constraintsC. We assume we can construct a set of
regionsR for C. Then,

Untime(Lt(A)) = L(ΓR(A))

whereL(ΓR(A)) is the (untimed) language accepted byΓR(A) andUntime((a1, t1) . . . (ap, tp)) = a1 . . . ap.

More precisely, whenever inA we can wait some delay and do ana, then inΓR(A), we can take several
ε-transitions and then do ana, andvice-versa. We will see in section 4.3 that this property naturally
expresses in terms of time-abstract bisimulation. Checking reachability properties inA thus reduces to
checking reachability properties inΓR(A). As ΓR(A) is a finite automaton, we get that for every timed
automatonA for which we can construct a set of regions (satisfying conditions➀, ➁ and➂), we can decide
reachability properties using the region automaton construction

4.2 Region Automaton for Classical Timed Automata

We fix for this subsection a finite set of clocksX.

Sets of regions for diagonal-free constraints. Let M be an integer. We define the following partitioning
of TX . Let v andv′ be two valuations ofTX , we say thatv ≡M

df v′ if all three following conditions hold:

• v(x) > M iff v′(x) > M for eachx ∈ X,
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• if v(x) ≤M , thenbv(x)c = bv′(x)c and
(

{v(x)} = 0 iff {v′(x)} = 0
)

for eachx ∈ X, and

• if v(x) ≤M andv(y) ≤M , then{v(x)} ≤ {v(y)} iff {v′(x)} ≤ {v′(y)} for all x, y ∈ X.

The relation≡M
df is an equivalence relation of finite index. The partitioningRM

df (X) is then defined as the
set of equivalence classes ofTX

/≡M
df

. Figure 2 explains the region construction for two clocks.

0 1 2 x

1

2

y

•
×

(a) Partition compatible with constraints, not
with time elapsing (the two points• and×
can not be equivalent)

0 1 2 x

1

2

y

region defined by:






1 < x < 2
1 < y < 2
{x} < {y}

(b) Partition compatible with constraints, time elapsing (and resets)

Fig. 2: Diagonal-free region partitioning for two clocks and maximal constant2

It is easy to prove (and left as an exercise) the following lemma:

Lemma 1 The partitioningRM
df (X) is a set of regions for the constraintsCM

df (X).

Roughly counting all possible combinations above, we can bound the number of regions inRM
df (X) by

2|X|.|X|!.(2M + 2)|X| where|X| is the cardinal ofX.

Sets of regions for general constraints. Recall that the difference between diagonal-free clock con-
straints and general clock constraints stands in the fact that diagonal constraints(i.e. constraints of the
form x − y ./ c) can be used. An easy extension of the previous constructioncan be done. We do not
define it formally here, but only give a simple example with two clocks, see Figure 3.

0 1 2 x

1

2

y

region defined by:






2 < x

1 < y < 2
1 < x− y < 2

Fig. 3: Set of regions for2-bounded general constraints with two clocks

This set of regions is denotedRM (X), and its cardinal can roughly be bounded by(2M +2)(|X|+1)2 . Note
that this set of regions is also correct forM -bounded diagonal-free constraints.

Region automata for classical timed automata. LetA be a timed automaton with set of clocksX. Let
M be the maximal constant involved in one of the constraints ofA, the setRM (X) is a set of regions
for A. From the results of the previous subsections, we get the following theorem, due to Alur and Dill
[AD90, AD94], which is the core of the verification of timed systems.

Theorem 1 (Alur & Dill 90’s) Reachability (or equivalently emptiness) is decidable fortimed automata.
It is a PSPACE-complete problem (for both diagonal-free as well as general timed automata).

6



Although this theorem has been first proved in [AD94], the proof we choose to sketch is taken from [AL02],
where it is written in details.
Proof. [Sketch] PSPACE membership is easy: the size of th region automaton is exponential in the size
of the original automaton. Using the NLOGSPACE complexity of the reachability problem in classical
untimed graphs, we get that reachability in timed automata can be done in PSPACE.
PSPACE-hardness can be proved by reducing the termination of a linearly bounded Turing machine (LBTM
for short) on some input to reachability in timed automata. The encoding is done as follows: assuming the
alphabet is{a, b}, the content of cellCj of the track of the LBTM is encoded by two clocksxj andyj .
Cell Cj contains an “a” when the constraintxj = yj holds, and cellCj contains a “b” when the constraint
xj < yj holds. Note that these two conditions are invariant by time elapsing.

Cjw0

{xj , yj}

If q
α,α′,δ
−−−−−→ q′ is a transition of the LBTM, then for each positioni of the tape, there will be a transition

(q, i)
g,Y :=0
−−−−−→ (q′, i′) where:

• g is xi = yi (resp.xi < yi) if α = a (resp.α = b)

• Y = {xi, yi} (resp.Y = {xi}) if α = a (resp.α = b)

• i′ = i + 1 (resp.i′ = i− 1) if δ is right andi < n (resp. left)

We need to enforce time elapsing; this can be done by adding a clock t which is checked to1 and reset to0
on all transitions. Initially the track contains the encoding of the wordw0. This can be done by a transition
from a state “init” to(q0, 1) whereq0 is the initial state of the LBTM, which checks whethert = 1, and
resets clocks inY0 whereY0 = {t} ∪ {xi | w0[i] = b}. The computation overw0 of the LBTM terminates
iff there is a run from state “init” to some state(qf , i) whereqf is the final state of the LBTM. �

Note that the above encoding uses diagonal constraints, butas will be seen later (see section 5.1), there is
no need of these diagonals. A direct but more involved construction without diagonals can be found in the
appendix of [AL02].

Example 3 This example is taken from [AD94]. Consider the timed automaton depicted on Figure 4. Its

`0 `1

`2

`3
a, y := 0

y = 1, b x < 1, c
x > 1, d

x < 1, c

y < 1, a, y := 0

Fig. 4: An example of timed automaton

region automaton (whereε-transitions have been erased) is depicted on Figure 5.

Remark 2 Note that sets of regions we have described could be refined: there is no need to have the same
maximal constant for all clocks, one maximal constant for each clock could be used. However, for our
purpose here, there is no need for such a refinement.
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`0
x = y = 0

`1
0 = y < x < 1

`1
y = 0, x = 1

`1
y = 0, x > 1

`2
1 = y < x

`3
0 < y < x < 1

`3
0 < y < 1 < x

`3
1 = y < x

`3
x > 1, y > 1

a a a

b

b b

ca a a

d

d

d

d

d

d

d

d

a

Fig. 5: A region automaton

4.3 Interpretation in Terms of Finite Bisimulation

With what has been presented before, conditions➀, ➁ and➂ (compatibility of the set of regions with
constraints, time elapsing and resets) have a natural interpretation in terms oftime-abstract bisimulation.

Timed transition system associated with a timed automaton. We have defined the semantics of a timed
automaton as runs or timed words. We could have defined its semantics as a timed transition system as
well. Transition systems (thus in particular timed transition systems) are more suitable for behavioural
comparisons of systems.
Let A = (Σ, Q, T, I, F, X) be a timed automaton. The timed transition system associated with A has
Q×TX for set of states and its transition relation is defined by thetwo following rules:

{

(`, v)
d
−→ (`, v + d) for everyd ∈ T

(`, v)
a
−−→ (`′, v′) if there exists̀

g,a,Y
−−−−→ `′ in T s.t.v |= g andv′ = [Y ← 0]v

Time-abstract bisimulation. Time-abstract bisimulation could be defined for two timed automata, but
for our purpose, we follow the lines of [BBR04] and define time-abstract bisimulation on a single timed
automaton. LetA = (Σ, Q, T, I, F, X) be a timed automaton (over alphabetΣ). We say that a relation
≡⊆ (Q×TX)×(Q×TX) is atime-abstract bisimulationwhenever it is an equivalence relation satisfying
the following conditions:

• if (`1, v1) ≡ (`2, v2) and(`1, v1)
d1−−→ (`1, v1 + d1) for somed1 ∈ T, then there existsd2 ∈ T such

that(`2, v2)
d2−−→ (`2, v2 + d2) and(`1, v1 + d1) ≡ (`2, v2 + d2)

• if (`1, v1) ≡ (`2, v2) and (`1, v1)
a
−−→ (`′1, v

′
1), then there exists(`′2, v

′
2) such that(`2, v2)

a
−−→

(`′2, v
′
2) and(`′1, v

′
1) ≡ (`′2, v

′
2)

• andvice-versa.
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By definition, such a relation is an equivalence relation, and as such,≡ is said to have afinite index
whenever there are finitely many equivalence classes. Informally, from two equivalent configurations, it is
possible to do the same discrete actions and/or to wait some amount of time (possibly different in the two
configurations) and stay equivalent.

Relation with the region automaton construction.

Proposition 2 LetA be a timed automaton andR a set of regions for the constraints inA. The relation
{((`, v), (`, v′)) | [v]R = [v′]R} is a time-abstract bisimulation with a finite index.

Time-abstract bisimulation appears indeed as the right notion corresponding to the region automaton con-
struction and formally justifies everything which has been explained previously. It proves more precisely
that the region automaton construction can be used to verifyall properties that are invariant by time-abstract
bisimulation,e.g. reachability properties, safety properties, all untimed properties (expressed for example
in untimed logics like LTL [Pnu77], CTL [CE81]...). However, notice that we can not use directly this
construction to verify properties expressed in a timed logic like TCTL because a property like “reaching a
state in exactly5 units of time” is not invariant by time-abstract bisimulation. For these properties a more
involved construction is needed which adds a clock for the formula, and then construct a region automa-
ton taking into account this additional clock. We do not develop this construction here but better refer to
original articles on the subject [ACD90, ACD93].

The converse of Proposition 2 also holds and it can be used to prove decidability of timed systems: if for
a timed system we can compute a time-abstract bisimulation relation with a finite index, then reachability
(and other time-abstract invariant properties) can be decided using a region automaton-like construction.
Examples of such constructions can for example be found in [Hen95, BBR04].

4.4 Partial Conclusion

Timed automata are an interesting model for representing systems with real-time constraints. Despite the
infinite number of possible configurations of a timed automaton, model-checking of reachability properties
has been proved decidable. This is probably the most fundamental property of timed automata, which has
been proved at the beginning of the 90’s by Alur and Dill, and which is the starting point of numerous
works on timed models. We have presented in this section the basics of the decidability of timed automata,
which relies on a reduction to finite automata: this is fundamental for most of the works on timed systems.
It is however worth to notice that not everything can be reduced to the finite automata case. For example
(see [AD94] and also [Tri03]),

• universality (the dual of reachability) is an undecidable problem;

• the class of timed languages accepted by timed automata is not closed under complementation, see
Figure 6 (for the second automaton, the proof is very simple [AM04]:

Untime
(

L ∩ {(a∗b∗, τ ) | all a′s happen before1 and no twoa′s simultaneously}
)

is not regular);

• not all timed automata can be determinized, and, in addition, the problem of deciding whether a
timed automaton can be determinized is an undecidable problem;

• . . .

a

a, x := 0

a

x = 1, a

a

(a)

a, b

a, x := 0

x 6= 1, a, b

(b) LanguageL [AM04]

Fig. 6: Two non-complementable timed automata
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These problems will not be tackled in this tutorial, but we refer to [AM04] for a survey of (un)decidability
results about timed automata.

In the rest of this tutorial, we will mostly consider extensions (or variants) of timed automata and study
decidability of these models, and we will also concentrate on algorithmics and implementation aspects. We
hope this should help better understanding timed behaviours and timed models.

5 Some Extensions of Timed Automata

For representing real-life systems, it is much convenient to have expressive and easy-to-use models. We will
present in this section several extensions (or variants) oftimed automata, and will focus on the decidability
of their reachability problem. We will also give some expressiveness results.

A class of systemsS is saidstrictly more expressivethan a class of systemsS ′ whenever there existsS in
S such that noS′ in S ′ accepts the same language asS, and for every systemS′ in S ′, there existsS in S
which recognizes the same language asS′. A class of systemsS is as expressive asS ′ whenever for every
S in S, there existsS′ in S ′ which accepts the same language asS.

5.1 Role of Diagonal Clock Constraints

Diagonal constraints (i.e. clock constraints of the formx− y ./ c wherex, y ∈ X, c ∈ Z and./∈ {≤, <

, =, >,≥}) have been first mentioned in the seminal paper of Alur & Dill [AD94], and are often considered
as part of the model of timed automata. We have seen in previous section that diagonal constraints do not
add any decidability and complexity problems to the model.

It was known as a folklore result that diagonal constraints can be eliminated from timed automata, and thus
that they do not add expressive power to timed automata. A formal proof of this result has been done in
[BDGP98].

Proposition 3 For every timed automatonA, possibly with diagonal constraints, there exists a timed
automatonB, with only diagonal-free constraints, which recognizes the same language. Note thatB is
strongly bisimilar2 toA.

The construction of this equivalent automaton is illustrated on Figure 7. Each diagonal is eliminated one
by one. For example, for eliminating a diagonalx − y ≤ c, two copies of the automaton are constructed,
one copy in which the constraintsx − y ≤ c holds and the other one in which the constraintx − y > c

holds. Note that a constraintx− y ./ c is invariant by letting time elapse. It is thus sufficient to check the
truth of such a constraint when one of the clock involved in the diagonal constraint is reset, which can be
done with simple (non-diagonal) constraints: the constraint x − y ./ c is equivalent tox ./ c wheny is
reset to0 (because we have then that the constrainty = 0 holds).
This construction leads to an exponential (in the number of diagonal constraints) blowup of the number of
states of the automaton, and this blowup is unavoidable as timed automata with diagonal constraints are
exponentially more succinct than diagonal-free timed automata [BC05].

5.2 Adding Silent Actions

For finite automata, it is well-known thatsilent actions(also known asε-transitionsor internal actions) do
not add expressive power to finite automata and that they can be eliminated with no blowup in the number
of states of the automaton. Silent actions in timed automatahave been studied in details in [BDGP98], and
the situation is far from the one in the untimed framework.

A first (easy) fact is that the region automaton constructioncan be done in a similar way when there are
silent actions, we thus get:

2Which means they are bisimilar (in a classical way) for actions taken inΣ ∪ T: if a system can do action, then so can also the
other system, and if a system can waitd units of time, then so can also the other system.
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x − y ≤ c

x := 0

y := 0

copy wherex− y ≤ c
x := 0

y := 0

x ≤ c

x > c

y := 0

x := 0

y ≥ −c

y := 0

copy wherex− y > c

Fig. 7: Erasing diagonal constraintx− y ≤ c

Proposition 4 The reachability problem is decidable for timed automata with silent actions. The complex-
ity is alsoPSPACE-complete.

However, and this is at first surprising, silent actions can not be removed, as it is the case for classical finite
automata.

Theorem 2 Timed automata with silent actions are strictly more expressive than classical timed automata.

Several examples are given in [BDGP98]. Among them, we can cite these two examples:

• L = {(a, t1) . . . (a, ti) · · · | ∀i, i mod 2 = 0}. This timed language is recognized by the following
automaton but is recognized by no timed automaton without silent actions.

x = 2
a

x := 0

x = 2
ε

x := 0

• L = {(α1, t1) . . . (αi, ti) · · · | αi = a if ti = i andαi = b if i− 1 < ti < i}. This timed language
is recognized by the following timed automaton with silent actions but is recognized by no timed
automaton without silent actions.

x = 1
a

x := 0
0 < x < 1, b

x = 1, ε, x := 0

Proofs of non-expressivity by a classical timed automaton are alwaysad-hocas there is no real criterion
for a timed language to be recognized by a classical timed automaton. However a sufficient criterium is
given in [BDGP98]: letA be a timed automaton possibly with silent actions; if, inA, there is no loop in
which a clock is reset on anε-transition, thenε-transitions can be removed fromA, and we can construct
a timed automatonB withoutε-transitions which recognizes the same language asA.
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5.3 Adding Additive Clock Constraints

We have seen that diagonal constraints can be used safely in timed automata. A natural idea is then to
consider clock constraints of the formx + y ./ c. Such a constraint will be called anadditive clock
constraint. The model of timed automata which uses classical constraints and additive clock constraints
has been studied in [BD00].

5.3.1 Two clocks.

For timed automata withtwo clocks, a region construction can be done. We will not define it precisely here
but the region partitioning when the maximal constant is2 is illustrated on Figure 8. The general case can
be easily deduced from this representation.

0 1 2 x

1

2

y

Fig. 8: Region partitioning for additive clock constraints (two clocks)

Proposition 5 The reachability problem for timed automata with at most twoclocks and possibly additive
clock constraints is decidable.

The languageL+ represented on Figure 9 is accepted by a timed automaton withtwo clocks and additive
clock constraints but is accepted by no timed automaton withclassical clock constraints.

L+ = {(an, t1 . . . tn) | n ≥ 1 andti = 1− 1
2i }

x + y = 1, a, x := 0

Fig. 9: A language which needs additive clock constraints

5.3.2 Four clocks or more.

The following result holds for timed automata with four clocks or more, and additive clock constraints:

Theorem 3 The reachability problem is undecidable for timed automatawith four clocks or more, and
additive clock constraints.

This undecidability result can be obtained by reduction from the halting problem of a two counter machine,
also known as Minsky machine [Min67]. We will briefly recall what is a two counter machine and give a
taste of the reduction done and described with details in [BD00].

A two counter machineis a finite set of instructions over two counter (x andy). Instructions are of the
following forms:

• Incrementation: (p): x := x + 1; goto (q)

• Decrementation: (p): if x > 0 then x := x− 1; goto (q) else goto (r)

• Halt

12



The halting problem consists in deciding whether instruction “Halt ” can be reached or not. This is a
well-known (and maybe one of the simplest) undecidable problem.

As said before the undecidability proof is done by reductionof the halting problem for a two counter
machine. LetM be a two counter machine. A configuration ofM is a pair of integers(c, d). We will
encode such a configuration on two units of time. The first unitof time will be used to encode the counter
c whereas the second unit of time will be used to encode the counter d. An automaton similar to that of
Figure 9 will be used to encode the value of a counter. Ifn is the value of counterc, then during the first unit
of time, an actionc will be done at date12 , at date3

4 , etc... and at date1 − 1
2n . The encoding of counterd

during the second unit of time is done similarly. Part of a execution in the two counter machine is depicted
on Figure 10.

20 21 22 23 24 25 26 time

c c c c c c c c ccd d dd d d d d d d

c is unchanged c is incremented

d is decremented

Fig. 10: Encoding of a two counter machine

Now that we have described the encoding we will use, we need todescribe how we can decrement and
increment a counter using timed automata with additive clock constraints.

We use four clocks:− u: “tic” clock (each time unit)
− x0, x1, x2: reference clocks for the two counters

and “xi” is a reference clock for counterc whenever the last timexi has been reset is the last time an action
c has been done (in the timed automaton simulating the two counter machine).

We now describe the construction for the two kinds of instructions we have inM, incrementation of a
counter and decrementation of a counter.

• Incrementation of counter c: the automaton simulating an incrementation of counterc is repre-
sented bellow.

u = 1, ∗, u := 0

x2 := 0

x0 ≤ 2, u + x2 = 1, c, x2 := 0

u + x2 = 1

x0 > 2, c, x2 := 0

ref. clock
for c is x0

ref. clock
for c is x2

The behaviour of this automaton is depicted on Figure 11. Theunit of time whenc was last updated
is the56th (and the value ofc was2). During the57th unit of time, counterd is updated. The
incrementation of counterc has to be done during the58th unit of time. Lastc has occurred at date
55 3

4 . In order to represent an incrementation ofc, we need to do an actionc at dates57 1
2 , 57 3

4 and
57 7

8 . The loop of the automaton is used to do so (recall automaton of Figure 9). We continue taking
the loop as long asx0 ≤ 2 and as soon as we havex0 > 2 the right-most transition is taken, adding
a last actionc and resetting clockx2 which is now the reference for counterc. Thus one more action
c has been done during the58th unit of time than during the56th unit of time (3 in our example).

• Decrementation of counterc: the automaton simulating a decrementation of counterc is repre-
sented bellow.
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55 56 57 58c c

x0 := 0

counterd is updated

u := 0 u = 1
u := 0
x2 := 0

c

(?)

(?) u + x2 = 1
x2 := 0

(?) (?)

c c

x0 ≤ 2

Fig. 11: Incrementation of counterc

u = 1, ∗, u := 0

x2 := 0

x0 < 2, u + x2 = 1, c, x2 := 0

u + x2 = 1

x0 = 2, ∗, x2 := 0

u = 1, x0 = 2, ∗, u := 0, x2 := 0

The behaviour of this automaton is very similar to the one presented for the incrementation (the only
difference is that we only doc actions as long asx0 < 2 and we don’t do any additionalc).

Some more constructions are needed to initialize the counters, to let a counter unchanged, and to allow all
possible permutations for reference clocks. But these constructions are not difficult (with the constructions
already presented) and we will not describe all details herebut better refer to [BD00].

5.3.3 What about timed automata with three clocks?

The region graph construction done for two clocks and presented in section 5.3.1 does not extend to
three clocks. Using the characterization of regions using time-abstract bisimulation, it has been proven
in [Rob04] that there is no finite partitioning satisfying the conditions➀, ➁ and➂ as soon as there are
three clocks (x, y andz) and constraints{x + y = 1, x = 0, z = 1} are used. However the reduction
presented above (for proving undecidability of reachability checking in timed automata with four clocks
and additive clock constraints) can not be adapted if we allow only three clocks. It is still an open problem
to know if the reachability problem for timed automata with three clocks and additive clock constraints is
decidable or not.

5.4 Adding New Operations on Clocks

Up to now, we can only reset clocks to zero. In [BDFP04], models using more generalupdateshave

been studied. In the model ofupdatable timed automata, a transition is of the form̀
g,a,up
−−−−−→ `′ where

g is a clock constraint,a is an action andup is anupdate, i.e. for each clockx, an operationupx of
the form x :./ c or x :./ y + c wherec ∈ Z, y is a clock, and./∈ {<,≤, =,≥, >}. Let us take
two valuationsv andv′. We have thatv′ ∈ up(v) whenever for each clockx, v′(x) ∈ upx(v), where

upx(v) =

{

{α | α ./ c} if upx(v) is x :./ c

{α | α ./ v(y) + c} if upx(v) is x :./ y + c
For example, it is possible to decrement the value of a clock by 1, or to set a clock non-determiniscally at
a value less than2.
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This model is very general and it is easy to prove that the reachability problem is not decidable for the whole
class of updatable timed automata, by reducing the computation of a two counter machine to the compu-
tation of an updatable timed automaton (decrementation (resp. incrementation) of counters are simulated
by decrementation (resp. incrementation) of clocks). In [BDFP04], tighter undecidable classes and several
decidable classes are described. We will not enter into details here, but will present two undecidability
proofs and describe one decidable class.

Decrementing clocks leads to undecidability. We now sketch the reduction from a two counter machine
to updatable timed automata with resets to zero and decrementation. Let us consider a two counter machine
M with the two countersc andd. We will construct a timed automatonA (with decrementations and resets
to zero) such that the computation ofM terminates if and only if a given state ofA is reachable. The value
of counterc (resp. counterd) is encoded by the value of clockx (resp. clocky). An additional clockz
is used to rhythm the computation of automatonA. Incrementation (and decrementation) of counters are
simulated as follows.

• Incrementation of counter c.

` `′
z = 1, z := 0 z = 0, y := y − 1z = 0

0

@

α
β
0

1

A

0

@

α + 1
β + 1

0

1

A

0

@

α + 1
β
0

1

A

x
y
z

For incrementing counterc, we let time elapse during one unit of time. The two clocksx andy thus
increase by1. It is then sufficient to decrease clocky by 1: the value ofx in `′ is equal to the value
of x in ` plus1 whereas the value ofy in `′ is equal to the value ofy in `. This correctly encodes an
incrementation ofc by 1.

• Decrementation of counterc.

x ≥ 1 z = 0, x := x− 1z := 0

x = 0

x
y
z

0

@

α
β
0

1

A

0

@

α
β
0

1

A

0

@

α − 1
β
0

1

A

0

@

0
β
0

1

A

0

@

α
β
0

1

A

x
y
z

An explanation similar to the one for decrementation can be done.

Incrementing clocks also leads to undecidability as soon asdiagonal constraints are used... From
the previous reduction, it is sufficient to be able to simulate the part of the automaton which is framed with
dashed lines, thus to decrease the value of a clock (sayx) by 1.

p q r s
z = 0, w := 0 x− w = 1, x := 0 x = w ∧ z = 0

w := w + 1 x := x + 1
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We can describe the behaviour of this automaton as follows:

p q q r r s· · · · · ·

x
y
z
w

0

B

@

α
β
0
δ

1

C

A

0

B

@

α
β
0
0

1

C

A

0

B

@

α
β
0
ε

1

C

A

0

B

@

0
β
0

α − 1

1

C

A

0

B

@

κ
β
0

α − 1

1

C

A

0

B

@

α − 1
β
0

α − 1

1

C

A

This precisely simulates what we want.

... but remains decidable when no diagonal constraints are used. We will see that the usual (diagonal-
free) region partitioning is correct when also using incrementation of clocks. However this requires a more
involved explanation. Indeed, the three conditions➀, ➁ and➂ are no more sufficient because more general
operations on clocks are used. More precisely, we need to replace condition➂ by the following condition
(whereR is a finite partitioning of the set of valuations, andU is a finite set of updates):

➂’ We say thatR is compatible with updates inU whenever for allR, R′ ∈ R, for eachup ∈ U ,if for
some valuationv ∈ R, up(v) ∩R′ 6= ∅, then for every valuationv′ ∈ R, up(v′) ∩R′ 6= ∅.

It is just an extension of Proposition 1 to prove that if, for afinite set of constraintsC and a finite set of
updatesU , we can construct a set of regions satisfying conditions➀, ➁ and➂’, then the region automaton
construction can be used to verify reachability (or more generally time-abstract invariant) properties.

Let us fix a finite setC of diagonal-free constraints, and a finite set of updatesU of the formx := y + c and
possibly some resets of clocks. If the system of inequations

{αx ≥ c | (x ./ c) is in C} ∪ {αx ≤ αy + c | (x := y + c) is in U}

has a solution(mx)x∈X , then the diagonal-free set of regions where the maximal constant forx is mx

satisfies the three above-mentioned conditions. Note that if only updates of the formx := x + 1 are
authorized then, as claimed before, the usual region partitioning is correct (because constraintsαx ≤ αx+1
are trivially true).
However the usual region partitioning needs sometimes to berefined a little bit. Consider the following
example: the maximal constant to which the two clocksx andy are compared is2, both resets ofx and
y are allowed, and the more elaborated updatey := x − 1. The system of inequations is{αx ≥ 2, αy ≥
2, αy ≤ αx−1}. It has a solution,egαx = 2 andαy = 3. We explain the intuition behind these conditions
on Figure 12.

0 1 2 x

1

2

y

•

•
×

×

updatey := x− 1

(a) Classical partitioning not compatible withy := x− 1 0 1 2 3 x

1

2

y

(b) Set of regions satisfying conditions➀, ➁ and➂’.

Fig. 12: Partitioning for updates of the formy := x− 1

Updatable timed automata have been studied in details in [BDFP04], where the precise frontier between
decidable and undecidable subclasses has been depicted: among other results, when only diagonal-free
constraints are used, decrementation of clocks leads to undecidability whereas incrementation leads to
decidability, which may appear as a surprising result. It has also been proved that for every updatable
timed automaton belonging to some decidable subclass, we can construct a timed automaton with silent
actions (but with an exponential complexity blowup) which recognizes the same timed language.
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5.5 Partial Conclusion

We have shortly presented in this section several extensions and variants of timed automata, having in
mind the decidability of reachability checking. Many otherextensions or subclasses could have been
presented as well, for example timed automata with modulo constraints [CG00], or timed automata with
event-predicting or event-recording timed automata [AFH94, HRS98].

Historically, (linear) hybrid automata [Hen96, HKPV98] have not been defined and studied as an extension
of timed automata, but they can be viewed as such. A hybrid automaton is roughly a timed automaton
where variables (instead of clocks) grow in every state following some differential equation. Linear hybrid
automata are particular hybrid automata where variables evolve following linear differential equations.
As soon as a variable has two different slopes, the hybrid automata model is undecidable [HKPV98]. In
particular,stopwatch automata, i.e. timed automata in which clocks can be stopped, are undecidable.
However, a decidable subclass has been exhibited, the so-called initialized rectangular automata. Hybrid
automata are a very interesting model which would require a whole tutorial in itself. We better refer to
[Ras05] for an introduction to this model.

6 Algorithmics & Implementation

In practice the region automaton construction is not used intools. Algorithms for “minimizing” the region
automaton have been proposed for example in [ACD+92, ACH+92, TY01]. However in practiceon-the-fly
technics are preferred.

6.1 Reachability Analysis: Two General Methods

There are two main families of (semi-)algorithms for analyzing reachability properties of systems (not only
timed systems, but all kinds of systems).

Forward analysis. The general idea of forward analysis is to compute configurations which are reachable
from initial configurations within1 steps,2 steps, etc... until final states are reached or until the computation
terminates. The forward analysis process can be represented as on Figure 13.

F

I

①

F

I

②

F

I

③

F

I

④

Fig. 13: Forward analysis: step by step, successors of initial configurations are computed

Backward analysis. The general idea of backward analysis is to compute configurations from which we
can reach final configurations within1 step,2 steps, etc... until initial configurations are reached or until
the computation terminates. The backward analysis processcan be represented as on Figure 14.
These two generic approaches are used for many models, for example counter machines, hybrid systems,
etc... Of course, given a class of systems, specific technics(e.g. abstractions, widening operations, etc...)
can be used for improving the computation. We will study how these approaches can be used for verifying
timed automata.

6.2 Reachability Analysis in Timed Automata: Zones

We need now to look carefully at how the above-mentioned general methods can be used for verifying
timed automata. In particular, as timed automata have an infinite number of configurations, we need to use
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I

F

①

I

F

②

I

F

③

I

F

④

Fig. 14: Backward analysis: step by step, predecessors of final configurations are computed

symbolic representations for doing the computation. Givena transitione of a timed automatoǹ
g,a,Y
−−−−→ `′,

we need to be able to compute, given a setW of valuations, both sets

{v′ | ∃v ∈W ∃t ∈ T s.t.v′ = [Y ← 0](v + t)} and{v | ∃v′ ∈W ∃t ∈ T s.t.[Y ← 0](v + t) = v′}

It is worth to notice that if the forward computation starts in an initial state with all clocks initialized to0 or
if the backward computation starts from the final states withclocks set to any value (which is sufficient as
we are only interested in reachability of discrete states),sets of valuations which are computed arezones,
i.e. sets of valuations defined by a general clock constraint. Recall that general clock constraints are defined
by the grammar:

g ::= x ./ c | x− y ./ c | g ∧ g

wherec ∈ Z, ./∈ {≤, <, =, >,≥} andx, y are clocks. A clock constraintg defines a zoneJgK = {v ∈
TX | v |= ϕ}. For analyzing timed automata, zones are thesymbolic representationwhich is commonly
used. For implementing forward and backward analysis, we need to be able to perform several operations
on zones. From what has been said before, these operations are the following (Z andZ ′ are supposed to
be zones):

- Future ofZ:
−→
Z = {v + t | v ∈ Z andt ∈ T}

- Past ofZ:
←−
Z = {v − t | v ∈ Z andt ∈ T}

- Intersection ofZ andZ ′: Z ∩ Z ′ = {v | v ∈ Z andv ∈ Z ′}

- Reset to zero ofZ w.r.t. set of clocksY : [Y ← 0]Z = {[Y ← 0]v | v ∈ Z}

- Inverse reset to zero ofZ w.r.t. set of clocksY : [Y ← 0]−1Z = {v | [Y ← 0]v ∈ Z}

- Test for emptiness ofZ: decide whetherZ = ∅

Using these operations, the basic steps of the forward and the backward computations can be rewritten as:

Poste(Z) = [Y ← 0](
−→
Z ∩ JgK) and Pree(Z) =

←−−−−−−−−−−−−−−−−−−−−−−
[Y ← 0]−1(Z ∩ JY = 0K) ∩ JgK

The computation of both operators are illustrated on Figures 15 and 16.

Z
−→
Z

−→
Z ∩ g [y ← 0](

−→
Z ∩ g)

Fig. 15: Example of forward computation for timed automata (Post operator)
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Z [C ← 0]−1(Z ∩ (C = 0))
←−−−−−−−−−−−−−−−−−−−−−
[C ← 0]−1(Z ∩ (C = 0)) ∩ g

Fig. 16: Example of backward computation for timed automata (Pre operator)

6.3 The DBM Data Structure

For representing zones, the most common data structure which is used is the so-called DBM data structure
(where DBM stands for “Difference Bounded Matrice”). This data structure has been first introduced in
[BM83] and then proposed in the framework of timed automata in [Dil90]. Several presentations of this
data structure can be found in the literature, for example in[CGP99, Ben02, Bou04].

A difference bounded matrice(sayDBM for short) for a setX = {x1, . . . , xn} of n clocks is an(n + 1)-
square matrice of pairs

(m;≺) ∈ V = (Z× {<,≤}) ∪ {(∞; <)}.

A DBM M = (mi,j ,≺i,j)i,j=1...n defines the following subset ofTn (the clockx0 is supposed to be
always equal to zero,i.e. for each valuationv, v(x0) = 0):

{v : X −→ T | ∀ 0 ≤ i, j ≤ n, v(xi)− v(xj) ≺i,j mi,j}

whereγ < ∞ simply means thatγ is some real without bound. This subset ofTn is a zone and will
be denoted, in what follows, byJMK. In what follows, to simplify notations, we will assume thatall
constraints are non-strict, so that coefficient of DBMs willbe elements ofZ ∪ {∞}.

Example 4 Consider the zone defined by the constraints(x1 ≥ 3) ∧ (x2 ≤ 5) ∧ (x1 − x2 ≤ 4). This
zone, depicted below on the right, can be represented by the DBM below (on the left).

x0 x1 x2

x0

x1

x2





∞ −3 ∞
∞ ∞ 4
5 ∞ ∞





3 4 9

5

2

A zone can have several representations using DBMs. For example, the zone of the previous example can
equivalently be represented by the DBM

x0 x1 x2

x0

x1

x2





0 −3 0
9 0 4
5 2 0





A normal form can be defined on DBMs, which tightens all possible constraints. This can be done using
a Floyd algorithm on the matrice (viewed as a weighted graph). A zone has a unique representation as a
DBM in normal form. Tests like emptiness checking, or comparison of zones can then be done syntactically
on the DBMs in normal form. For example, a zoneZ is included in a zoneZ ′ if the DBM in normal form
representingZ is smaller than the DBM in normal form representingZ ′. Finally all operations on zones
described in section 6.2 can easily be done on the DBMs, details can be found in all mentioned papers on
DBMs.
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Let us just mention that the DBM data structure is the most basic data structure which is used for analyzing
timed systems, some more involved BDD-like data structurescan also be used, for example CDDs (which
stands for “Clock Difference Diagrams”) [LPWY99].

6.4 Backward Analysis

Let A = (Σ, Q, T, I, F, X) be a timed automaton. Backward analysis then consists in computing itera-
tively the following sets of symbolic configurations:

S0 = {(f,TX) | f ∈ F}

S1 = {(`, Z) | ∃e = (`
g,a,Y
−−−→ `′) ∃(`′, Z ′) ∈ S0 s.t.Z = Pree(Z

′)}

...

Sp+1 = {(`, Z) | ∃e = (`
g,a,Y
−−−→ `′) ∃(`′, Z ′) ∈ Sp s.t.Z = Pree(Z

′)}

...

The nicest result about backward analysis is the following.

Theorem 4 The backward computation terminates and is correct w.r.t. reachability, i.e. if a state is found
reachable by the computation, then it is really reachable.

Correctness is immediate as the computation isexact(as opposed to over-(or under-)approximate). Ter-
mination needs some additional argument, related to properties of the region partitioning associated with
timed automata. The termination proof then relies on the following lemma, which can be proved as an
exercise.

Lemma 2 LetA be a timed automaton and letR be a set of regions satisfying conditions➀, ➁ and➂ (for
A). Consider a finite union of regions

⋃p
i=1 Ri (with Ri ∈ R for 1 ≤ i ≤ p). Then the following holds:

-
←−−−−−
⋃p

i=1 Ri is a finite union of regions

- [Y ← 0]−1(
⋃p

i=1 Ri) is a finite union of regions (for any set of clocksY )

- g ∩ (
⋃p

i=1 Ri) is a finite union of regions ifg is a constraint ofA (thus compatible withR)

Backward analysis thus appears as a very interesting methodfor analyzing timed systems. However, in
practice, most commonly used tools (for example UPPAAL) prefer using a forward analysis procedure. A
natural question then arises: what’s the problem with backward analysis? It comes from the fact that the use
of bounded integer variables really improves and eases the modeling of real systems. Backward analysis
is then not suitable for arithmetical operations: for example if we know in which interval lies the variable
i and if we know thati is assigned the valuej.k + `.m, it is not easy to compute the possible values of
variablesj, k, `, m (apart from listing all possible tuples of values). For thiskind of operations, forward
analysis is much more suitable.

6.5 Forward Analysis

LetA = (Σ, Q, T, I, F, X) be a timed automaton. Forward analysis then consists in computing iteratively
the following sets of symbolic configurations:

S0 = {(i,0) | i ∈ I} (where0 denotes the valuation assigning0 to each clock)

S1 = {(`′, Z ′) | ∃e = (`
g,a,Y
−−−→ `′) ∃(`, Z) ∈ S0 s.t.Z ′ = Poste(Z)}

...

Sp+1 = {(`′, Z ′) | ∃e = (`
g,a,Y
−−−→ `′) ∃(`, Z) ∈ Sp s.t.Z ′ = Poste(Z)}

...
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The forward analysis gives a correct answer (if it gives an answer), but may not terminate. An example of
automaton where the forward computation does not terminateis given on Figure 17. The zones which are
computed are represented on the right part of the figure, and it is easy to check that the computation will
never terminate.

y := 0,
x := 0

x ≥ 1 ∧ y = 1,
y := 0

0 1 2 3 4 5 x

1

2

y

Fig. 17: Forward computation does not always terminate...

To overcome this problem, it is necessary to use some abstractions, several are proposed in [DT98]. For
example, ifZ andZ ′ are computed for the locatioǹ, zones are replaced by the smallest zone containing
both Z and Z ′: this approximation is called the “convex-hull”3, it does not ensure termination and is
only semi-correct w.r.t. reachability in the sense that a state which is announced as reachable may not
be reachable. The most interesting abstraction studied in this paper is theextrapolationoperator. We
will present it now, but we first need to formalize a little more forward analysis. We follow the lines of
[BBFL03, BBLP04] and define (abstract) symbolic transitionsystems.

Symbolic Transition Systems. LetA = (Σ, Q, T, I, F, X) be a timed automaton. Thesymbolic transi-
tion systemassociated withA is denoted by=⇒ and is defined inductively as follows:

e =
(

`
g,a,Y :=0
−−−−−−−→ `′

)

∈ T W ′ = Poste(W )

(`, W ) =⇒ (`′, W ′)

With this formalization, forward analysis reduces to computing the reflexive and transitive closure of the
relation=⇒.
We now formalize how we use abstractions. Leta be an abstraction operator (possibly partially) defined on
the sets of valuations (a partially associates to sets of valuations sets of valuations). We define theabstract
transition system=⇒a in the following way:

(`, W ) =⇒ (`′, W ′) W = a(W )
(`, W ) =⇒a (`′, a(W ′))

Soundness criteria. Given an initial locatioǹ 0, the abstraction operatora is saidcorrectw.r.t. reacha-
bility from `0 whenever the following holds:

if (`0, a({0})) =⇒∗
a

(`, W ) then there exists a run(`,0) −→∗ (`, v) with v ∈W

Given an initial locatioǹ 0, the abstraction operatora is saidcompletew.r.t. reachability from̀ 0 whenever
the following holds:

if (`0,0) −→∗ (`, v) then(`0, a({0})) =⇒∗
a

(`, W ) for someW with v ∈W

Note that these two notions could be generalized to more general properties than reachability, but we follow
our lines and concentrate on reachability properties.

Our aim is to build abstractionsa such that:

• {a(W ) | a defined onW} is finite [Finiteness]

(this ensures termination of the “abstract” forward computation)

3It is a language abuse, because it is not reaaly the convex hull of the two zones, but it is the smallest zone containing the
convex-hull of the two zones.
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• a is correct w.r.t. reachability [Correctness]

• a is complete w.r.t. reachability [Completeness]

• a is “effective” [Effectiveness]

The three first properties are properly defined, the last is a bit more obscure and informal. The effectiveness
criterium expresses that the abstraction has to be easily computable. In timed automata literature this is
most of the time interpreted as “a has to be defined for all zones anda(Z) has to be a zone whenZ is a
zone”. Note that an other effectiveness criterium could be proposed...

The extrapolation operator. The abstraction operator which is commonly used is calledextrapolation,
and sometimesnormalization[Ben02]. We will note it hereApproxk, it is defined up to a constantk as
follows: if Z is a zone,Approxk(Z) is the smallestk-bounded zone4 which containsZ. This operation is
well-defined on DBMs: ifM is a DBM in normal form representingZ, a DBM representingApproxk(Z)
is M ′ where each coefficient less than−k is replaced by−k and all coefficients greater thank is replaced
by +∞, all other coefficients remain unchanged.

Example 5 Consider the zone defined by the constraints

(x1 ≥ 3) ∧ (x2 ≤ 5) ∧ (x1 − x2 ≤ 4)

It can be represented by the DBM in normal form on the left and
its extrapolation w.r.t.2 is the DBM on the right

M =





0 −3 0
9 0 4
5 2 0



 and Approx2(M) =





0 −2 0
9 0 +∞

+∞ 2 0





2

2

JApprox2(M)K
JMK

Obviously,

• Approxk is a finite abstraction operator because there are finitely many DBMs whose coefficients are
either+∞ or some integer between−k and+k

• the computation ofApproxk is effective and can be done easily on DBMs

• Approxk is a complete abstraction w.r.t. reachability because for every zoneZ, Z ⊆ Approxk(Z)

The only problem stands in the correctness ofApproxk w.r.t. reachability: we have to find a constantk

such that this abstraction operator will be correct w.r.t. reachability. We will discuss in details this aspect
in the next paragraph.

Correctness of the extrapolation.

Theorem 5 LetA be adiagonal-free timed automaton. Takek the maximal constant appearing in the
constraints ofA. ThenApproxk is correct w.r.t. reachability inA.

Two different proofs of this theorem can be found in [Bou04] and [BBFL03].

Note that this theorem does not extend to timed automata withgeneral clock constraints. Indeed, consider
the timed automatonA depicted on Figure 18. For everyk, the extrapolation operatorApproxk is not correct
w.r.t. reachability forA. One can even also prove that, for automatonA, there is no abstraction operator
Abs satisfying the four above-mentioned criteria (finiteness,correctness, completeness and effectiveness).

4A k-bounded zone is a zone defined by ak-bounded clock constraint.

22



x3 ≤ 3

{x3, x1} := 0

x2 = 3

x2 := 0

x1 = 2, x1 := 0

x2 = 2, x2 := 0

x1 = 2,

x1 := 0

x2 = 2

x2 := 0

x1 = 3

x1 := 0

x2 > x1 + 2

x4 < x3 + 2Error

The loop

Fig. 18: Timed automatonA which makes the forward analysis fail

Let us explain the problem with automatonA, depicted on Figure 18. The zoneZα which is computed
by a forward analysis when reaching the black state after having takenα times the loop is defined by the
constraints below. Fixing an integerk, takingα large enough the extrapolated zone is also described below.

Zα :















1 ≤ x2 − x1 ≤ 3
1 ≤ x4 − x3 ≤ 3
x3 − x1 = 2α + 5
x4 − x2 = 2α + 5

=⇒ x2 − x1 = x4 − x3

Approxk(Zα) :







1 ≤ x2 − x1 ≤ 3
1 ≤ x4 − x3 ≤ 3
x3 − x2 > k

6=⇒ x2 − x1 = x4 − x3

The zoneZα does not intersect the constraintx2− x1 > 2∧ x4− x3 < 2, which implies that state “Error”
is not reachable. On the contrary,Approxk(Zα) intersects the constraintx2 − x1 > 2 ∧ x4 − x3 < 2 (for
α large enough), which implies that state “Error” is computedas reachable by the forward analysis with
abstraction operatorApproxk (for anyk).

The problem with automatonA comes from the presence of diagonal constraints leading to state “Error”.
Note however that for timed automata with three clocks (but possibly diagonal constraints), it is possible to
find a constantk such thatApproxk is correct w.r.t. reachability (however, the constantk may be larger than
the maximal constant appearing in a constraint of the automaton) [Bou04]. The problem with diagonals is
difficult to understand, see for several counter-intuitiveexamples and discussion on this problem [Rey04].

6.6 Tools for Timed Systems

Several tools implement timed (and hybrid) automata.

• HYTECH [HHWT97] is a model-checker for linear hybrid automata. Exact backward and forward
computations can be done, reachability properties can thusbe checked (but there is of course no
guarantee the computation will terminate). Many other operations on polyhedra can be performed,
for example hiding of variables (corresponding to projections), “while” loops, emptiness checks,
etc... HYTECH, which has been developed in Berkeley (USA), can be downloaded on

http://www-cad.eecs.berkeley.edu:80/∼tah/HyTech/

where a user manual can be found [HHWT95].

• KRONOS [DOTY96, Yov97, BDM+98] is a model-checker for timed automata. Exact as well as
abstract backward and forward computations can be done. A backward procedure for the logic
TCTL [ACD90, ACD93] is also implemented [HNSY94, Yov98]. The tool KRONOS, which has
been developed in Grenoble (France), can be downloaded on

http://www-verimag.imag.fr/TEMPORISE/kronos/
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• UPPAAL [LPY97, ABB+01] is a model-checker for timed automata which performs forward analysis
with extrapolation. It can verify reachability propertiesof timed systems with some extra features as
bounded integer variables and broadcast channels. The toolUPPAAL, which is jointly developed in
Aalborg University (Denmark) and Uppsala University (Sweden), can be downloaded on

http://www.uppaal.com/

7 Conclusion

In this tutorial we have presented the basic model of timed automata, introduced at the beginning of the
90’s by Rajeev Alur and David Dill [AD94]. One of the most important and most fundamental construction
which is used in this domain is the region automaton construction: it finitely abstracts behaviours of timed
automata into behaviours of finite automata, which allows tomodel-check many properties: although we
only presented how reachability properties could be checked, properties in TCTL can also be verified
using a region-like construction [ACD93]. We have also presented several extensions of timed automata,
concentrating on the decidability of the model-checking ofreachability properties.

There are so many works which have been devoted to timed systems in general, and timed automata in
particular, that it is hopeless to present the whole theory of timed automata in a single tutorial. The current
tutorial presents some results on timed automata, focusingon the decidability of reachability properties and
on implementation issues for verifying such properties. A recent survey by Rajeev Alur and Madhusudan
P. summarizes (un)decidable problems for timed automata [AM04].

Thank you to send me any comment or suggestion you may have, sothat I can upgrade the current draft.
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