
Ed Brinksma, Holger Hermanns

Advances in Markovian and Non-
Markovian Process Algebra 1

Model-Based Testing

Ed Brinksma

University of Twente
Dept. of Computer Science

Formal Methods & Tools group
Enschede

The Netherlands

ARTIST2 Summer School

Nässlingen October 1, 2005 ARTIST2 Summer School 2

Contents

introduction & background
testing pre-orders
input/output & quiescence
ioco implementation relation
test generation
TorX
test case study
real-time testing

October 1, 2005 ARTIST2 Summer School 3

Contents

introduction & background
testing pre-orders
input/output & quiescence
ioco implementation relation
test generation
TorX
test case study
real-time testing

October 1, 2005 ARTIST2 Summer School 4

Practical problems of testing

Testing is:
important
much practiced
30% - 50% of project effort
expensive
time critical
not constructive
(but sadistic?)

But also:
ad-hoc, manual, error-prone
hardly theory / research
no attention in curricula
not cool :
“if you’re a bad programmer
you might be a tester”

Attitude is changing:
more awareness
more professionalImprovements possible

with formal methods ! ?

October 1, 2005 ARTIST2 Summer School 5

Types of Testing

unit

integration

system

performance
robustness

functional
behaviour

white box black box

Level

Accessibility

Aspect

usability

reliability

October 1, 2005 ARTIST2 Summer School 6

Test Automation

Traditional test automation
= tools to execute and manage test cases

specification

test
tool

implementation
under test

pass

fail

TTCNTTCNtest
cases

Why not generate
test automatically?!

Ed Brinksma, Holger Hermanns

Advances in Markovian and Non-
Markovian Process Algebra 2

October 1, 2005 ARTIST2 Summer School 7

formal
world

concrete
world

Verification is only as good as
the validity of the model on

which it is based

Verification is only as good as
the validity of the model on

which it is based

Verification and Testing

Verification :
formal manipulation
prove properties
performed on model

Testing :
experimentation
show error
concrete system

Testing can only show the
presence of errors, not their

absence

Testing can only show the
presence of errors, not their

absence

October 1, 2005 ARTIST2 Summer School 8

Testing with Formal Methods

Testing with respect to a formal specification

Precise, formal definition of correctness :
good and unambiguous basis for testing

Formal validation of tests

Algorithmic derivation of tests :
tools for automatic test generation

Allows to define measures expressing coverage
and quality of testing

October 1, 2005 ARTIST2 Summer School 9

Challenges of Testing Theory

Infinity of testing:
too many possible input combinations -- infinite breadth
too many possible input sequences -- infinite depth
too many invalid and unexpected inputs

Exhaustive testing never possible:
when to stop testing ?
how to invent effective and efficient test cases with high
probability of detecting errors ?

Optimization problem of testing yield and invested
effort

usually stop when time is over

October 1, 2005 ARTIST2 Summer School 10

test
execution

pass / fail

Formal Testing

test
generation

test suite TS

specification
S

implementation
i

correctness
criterion

implementation
relation
imp

i passes Ts

i imps

⇔⇑ ⇓ soundexhaustive

October 1, 2005 ARTIST2 Summer School 11

Formal Testing : Conformance

s ∈ SPECS Specification
IUT Implementation under Test

IUT is concrete, physical object

Model the physical world

But IUT is black box ! ?

Assume that model iIUT exists

specification
S

implementation
IUT

correctness
criterion

IUT conforms-to s

October 1, 2005 ARTIST2 Summer School 12

Contents

introduction & background
testing pre-orders
input/output & quiescence
ioco implementation relation
test generation
TorX
test case study
real-time testing

Ed Brinksma, Holger Hermanns

Advances in Markovian and Non-
Markovian Process Algebra 3

October 1, 2005 ARTIST2 Summer School 13

Testing Preorders
on Transition Systems

implementation
i

specification
s

environment
e

environment
e

↓ ↓ ↓
? ? ?

≤

i ≤ s ⇔ ∀ e ∈ Env . obs (e, i) ⊆ obs (e, s)
For all environments e

all observations of an implementation i in e
should be explained by

observations of the specification s in e.

October 1, 2005 ARTIST2 Summer School 14

Classical Testing Preorder

↓ ↓
LTS(L) Deadlocks(e||s)

i ≤te s ⇔ ∀ e ∈ E . obs (e, i) ⊆ obs (e, s)

implementation
i

specification
s

environment
e

environment
e

≤te

October 1, 2005 ARTIST2 Summer School 15

Classical Testing Preorder

implementation
i

specification
s

environment
e

environment
e

≤te

i ≤te s ⇔ ∀ e ∈ LTS(L) . ∀ σ ∈ L* .
e||i deadlocks after σ ⇒ e||s deadlocks after σ

⇔ FP (i) ⊆ FP (s)
FP (p) = { 〈 σ, A 〉 | p afer σ refuses A }

i ≤te s ⇔ ∀ e ∈ LTS(L) . ∀ σ ∈ L* .
{ σ | e||i deadlocks after σ} ⊆
{ σ | e||s deadlocks after σ}

October 1, 2005 ARTIST2 Summer School 16

Quirky Coffee Machine
[Langerak]

Can we distinguish between these machines?

coin coin

tea coffee
bang bang

coffee tea

coin coin

tea coffee
bang bang

coffeetea

≈te

They are
testing equivalent!

October 1, 2005 ARTIST2 Summer School 17

Refusal Preorder

i ≤rf s ⇔ ∀ e ∈ E . obs (e, i) ⊆ obs (e, s)

implementation
i

specification
s

environment
e

environment
e

≤rf

↓ ↓

LTS(L∪{δ}) Deadlocks δ(e||i)e observes with δ
deadlock on all

alternative actions

Deadlocks δ(e||i) =
{σ∈(L∪{δ})* |
e||i deadlocks after σ}

October 1, 2005 ARTIST2 Summer School 18

Quirky Coffee Machine
Revisited

coin coin

tea coffee
bang bang

coffee tea

coin coin

tea coffee
bang bang

coffeetea

≈te

≈rf

δ

coin

coffee

coffee

bang

tester

δ only enabled
if coffee is not

Ed Brinksma, Holger Hermanns

Advances in Markovian and Non-
Markovian Process Algebra 4

October 1, 2005 ARTIST2 Summer School 19

Contents

introduction & background
testing pre-orders
input/output & quiescence
ioco implementation relation
test generation
TorX
test case study
real-time testing

October 1, 2005 ARTIST2 Summer School 20

I/O Transition Systems

testing actions are usually directed, i.e. there are inputs and
outputs

L=Lin∪Lout with Lin∩Lout=∅

systems can always accept all inputs (input enabledness)

for all states s, for all a∈Lin s ⇒

testers are I/O systems
output (stimulus) is input for the SUT
input (response) is output of the SUT

a

October 1, 2005 ARTIST2 Summer School 21

Quiescence

Because of input enabledness S||T deadlocks iff T
produces no stimuli and S no responses. This is known as
quiescence

Observing quiescence leads to two implementation relations
for I/O systems I and S:

1. I ≤iote S iff for all I/O testers T:

Deadlocks(I||T) ⊆ Deadlocks(S||T)

(quiescence)

2. I ≤iorf S iff for all I/O testers T:

Deadlocksδ(I||T) ⊆ Deadlocksδ(S||T)

(repetitive quiescence)

October 1, 2005 ARTIST2 Summer School 22

Input-Output QCM

coin? coin?

tea? coffee?bang? bang?

coffee!

tea?

coffee?

tea !

coffee?

tea?

tea !

states must
be saturated

with input
loops for

input
enabledness

≈iote

≈iorf

coin!

coffee!

coffee?
δ

bang!

coffee !

coffee?

coffee!

quiescent
states

October 1, 2005 ARTIST2 Summer School 23

Contents

introduction & background
testing pre-orders
input/output & quiescence
ioco implementation relation
test generation
TorX
test case study
real-time testing

October 1, 2005 ARTIST2 Summer School 24

Implementation Relation
ioco

i ≤iorf s ⇔ ∀ I/O tests T: Deadlocksδ(i||T) ⊆ Deadlocksδ(s||T)

⇔ ∀σ ∈ (L ∪ { δ })*: out (i after σ) ⊆ out (s after σ)

To allow under-specification we restrict the set of traces:

i ioco s ⇔ ∀σ ∈ Tracesδ(s) : out (i after σ) ⊆ out (s after σ)

By adding a transition p → p to every quiescent state of a system
we treat quiescence as an observable (synchronizable) action:

δ

Ed Brinksma, Holger Hermanns

Advances in Markovian and Non-
Markovian Process Algebra 5

October 1, 2005 ARTIST2 Summer School 25

i ioco s =def ∀σ ∈ Tracesδ(s) : out (i after σ) ⊆ out (s after σ)

Implementation Relation
ioco

Correctness expressed by implementation relation ioco:

Intuition:
i ioco-conforms to s, iff

if i produces output x after trace σ,
then s can produce x after σ
if i cannot produce any output after trace σ,
then s cannot produce any output after σ (quiescence δ)

October 1, 2005 ARTIST2 Summer School 26

δ

δ

Implementation Relation ioco

out (i after ε) =

out (i after ?dub) =

out (i after ?dub.?dub) =

out (i after ?dub.!coffee) =

out (i after ?kwart) =

out (i after !coffee) =

out (i after ?dub.!tea) =

out (i after δ) =

!coffee

?dub

?dub
?kwart

?dub
?kwart

i ?kwart

{ δ }

{ !coffee }

{ !coffee }

{ δ }

{ δ }

∅

∅

{ δ }

i ioco s =def ∀σ ∈ Straces (s) : out (i after σ) ⊆ out (s after σ)

October 1, 2005 ARTIST2 Summer School 27

!coffee

?dub

?dub

?dub

i

!coffee

?dub

s

!tea

out (i after ?dub) = { !coffee } out (s after ?dub) = { !coffee, !tea }

ioco

Implementation Relation ioco

i ioco s =def ∀σ ∈ Straces (s) : out (i after σ) ⊆ out (s after σ)

October 1, 2005 ARTIST2 Summer School 28

!coffee

?dub

s

?dub

?dub

!coffee

?dub

i

!tea

?dub

out (i after ?dub) = { !coffee, !tea } out (s after ?dub) = { !coffee}⊄

ioco

Implementation Relation ioco

i ioco s =def ∀σ ∈ Straces (s) : out (i after σ) ⊆ out (s after σ)

October 1, 2005 ARTIST2 Summer School 29

ioco

?dub

?dub
?kwart

!coffee

?kwart
i

!tea !coffee

?dub

s

out (i after ?dub) = { !coffee }
out (i after ?kwart) = { !tea }

out (s after ?dub) = { !coffee }
out (s after ?kwart) = ∅

But ?kwart ∉ Tracesδ(s)

Implementation Relation ioco

i ioco s =def ∀σ ∈ Straces (s) : out (i after σ) ⊆ out (s after σ)

October 1, 2005 ARTIST2 Summer School 30

Contents

introduction & background
testing pre-orders
input/output & quiescence
ioco implementation relation
test generation
TorX
test case study
real-time testing

Ed Brinksma, Holger Hermanns

Advances in Markovian and Non-
Markovian Process Algebra 6

October 1, 2005 ARTIST2 Summer School 31

test
execution

pass / fail

Formal Testing

test
generation

test suite TS

specification
S

implementation
i

correctness
criterion

implementation
relation
ioco

i passes Ts

i iocos

⇔ ?

October 1, 2005 ARTIST2 Summer School 32

Test Cases

labels in L ∪ { δ }
tree-structured
finite, deterministic
final states pass and fail

from each state ≠ pass, fail
either one input i?
or all outputs o! and δ

coffee!

coin?

coin ?

tea!

coffee!tea!

δ

coin?

δ

pass

failfail

failpass

Test case t ∈ TTS
TTS - Test Transition System :

October 1, 2005 ARTIST2 Summer School 33

Test Cases

test case t

!coin

!coin ; Start timer1

?tea fail

?timer1 fail

?coffee

!coin ; Start timer2

?tea pass

?timer2 pass

?coffee fail

coffee!

coin?

coin ?

tea!

coffee!tea!

δ

coin?

δ

pass

failfail

failpass

October 1, 2005 ARTIST2 Summer School 34

Algorithm

To generate a test case t(S) from a transition system
specification with S set of states (initially S = {s0})

1 end test case
PASS

Apply the following steps recursively, non-deterministically

2 supply input

supply i?

t(S after i?)

Test Generation Algorithm

3 observe output

FAIL

t(S after o!)

FAIL

allowed outputs o!

forbidden outputs

o!
δ

October 1, 2005 ARTIST2 Summer School 35

test

?-2
?2

PASS PASS

otherwise

FAIL

?-3

PASS

otherwise
?3

FAIL

To cope with non-deterministic behaviour,
tests are not linear traces, but trees
To cope with non-deterministic behaviour,
tests are not linear traces, but trees

Test Generation Example

Equation solver for y2=x

specification

? x (x >= 0)

! √x

? x (x < 0)

! -√x !4

!9

October 1, 2005 ARTIST2 Summer School 36

Validity of Test Generation

For every test t generated with algorithm :

Soundness :
t will never fail with correct implementation

i ioco s implies i passes t

Exhaustiveness :
each incorrect implementation can be detected
with a generated test t

i ioco s implies ∃ t : i fails t

Ed Brinksma, Holger Hermanns

Advances in Markovian and Non-
Markovian Process Algebra 7

October 1, 2005 ARTIST2 Summer School 37

Contents

introduction & background
testing pre-orders
input/output & quiescence
ioco implementation relation
test generation
TorX
test case study
real-time testing

October 1, 2005 ARTIST2 Summer School 38

Formal Testing with Transition Systems

νt:
℘(traces)→
{fail,pass}

traces

der : LTS →
℘(TTS)

Ts ⊆ TTS

s ∈ LTS

ioco

iIUT ∈IOTS pass

fail

obs : TTS
× IOTS →
℘(traces)

October 1, 2005 ARTIST2 Summer School 39

Test Generation Tools for ioco
TVEDA (CNET - France Telecom)

derives TTCN tests from single process SDL specification
developed from practical experiences
implementation relation R1 ≈ ioco

TGV (IRISA - Rennes)
derives tests in TTCN from LOTOS or SDL
uses test purposes to guide test derivation
implementation relation: unfair extension of ioco

TestComposer
Combination of TVEDA and TGV in ObjectGeode

TestGen (Stirling)
Test generation for hardware validation

TorX (Côte de Resyste)

October 1, 2005 ARTIST2 Summer School 40

A Test Tool : TorX

On-the-fly test generation and test execution

Implementation relation: ioco

Specification languages: LOTOS, Promela, FSP, Automata

TorX IUT
observe
output

offer
input

next
input

specification
check
output

pass
fail
inconclusive

user:
manual
automatic

October 1, 2005 ARTIST2 Summer School 41

TorX Tool Architecture

explorer primer driver adapter IUTspec.

states
transitions

abstract
actions

abstract
actions

concrete
actions

specification
text

TorX IUTspecification

October 1, 2005 ARTIST2 Summer School 42

TTCNTTCNTTCNTTCNTTCNTTCNTTCNtest
taal batch test executionbatch test generation

TTCNTTCNTTCNTTCNTTCNTTCNTTCNtest
taal

on the fly

On-the-Fly ↔ Batch Testing

explorer primer driver adapter IUTspec.

Ed Brinksma, Holger Hermanns

Advances in Markovian and Non-
Markovian Process Algebra 8

October 1, 2005 ARTIST2 Summer School 43

explorer primer driver adapter IUTIUTIUT
bits

bytes

states

transitions

abstract

actionstransition

? x (x >= 0)

! √x

? x (x < 0)

! -√x

specification implementation

? x (x >= 0)

! √x

? x (x < 0)

? x

On-the-Fly Testing
Concrete action
! 00001001

New menu
! x (x < 0)
! x (x >= 0)

Abstract action
! 9
Abstract action
? 3

Choice
! 9

Concrete action
? 00000011

Action
? 3
Choice
! -1

New menu
! x (x < 0)
! x (x >= 0)

Check
? 3

Abstract action
! -1

Concrete action
! 11111111
Concrete action
? (timeout)

Abstract action
? (quiescence)

Action
? (quiescence)

Check
? (quiescence)

New menu
! x (x < 0)
! x (x >= 0)

spec

October 1, 2005 ARTIST2 Summer School 44

TorX

October 1, 2005 ARTIST2 Summer School 45

Contents

introduction & background
testing pre-orders
input/output & quiescence
ioco implementation relation
test generation
TorX
test case study
real-time testing

October 1, 2005 ARTIST2 Summer School 46

TorX Case Studies
Conference Protocol

EasyLink TV-VCR protocol

Cell Broadcast Centre component

Road Toll Payment Box protocol

V5.1 Access Network protocol

Easy Mail Melder

FTP Client

“Oosterschelde” storm surge barrier-control

TANGRAM: testing VLSI lithography machine

academic

Philips

CMG

Interpay

Lucent

CMG

academic

CMG

ASML

October 1, 2005 ARTIST2 Summer School 47

Interpay
Highway Tolling System

October 1, 2005 ARTIST2 Summer School 48

Highway Tolling Protocol

Characteristics :

Simple protocol

Parallellism :
many cars at the same time

Encryption

System passed traditional testing
phase

Ed Brinksma, Holger Hermanns

Advances in Markovian and Non-
Markovian Process Algebra 9

October 1, 2005 ARTIST2 Summer School 49

Payment
Box

(PB)Road Side
Equipment

Onboard
Unit

UDP/IPWireless

Highway Tolling System

October 1, 2005 ARTIST2 Summer School 50

Test Context

ObuSim
spec

PB
+

ObuSim
+

TCP/IP
+

UDP/IP

Payment
Box

TCP/IP

TorX

Highway Tolling:
Test Architecture

PCO

SUT

UDP/IP IAP

October 1, 2005 ARTIST2 Summer School 51

Highway Tolling: Results

Test results :

1 error during validation (design error)

1 error during testing (coding error)

Automated testing :

beneficial: high volume and reliability

many and long tests executed (> 50,000 test events)

very flexible: adaptation and many configurations

Real-time :
interference computation time on-the-fly testing
interference quiescence and time-outs

Step ahead in formal testing of realistic systems
October 1, 2005 ARTIST2 Summer School 52

Contents

introduction & background
testing pre-orders
input/output & quiescence
ioco implementation relation
test generation
TorX
test case study
real-time testing

October 1, 2005 ARTIST2 Summer School 53

RT TorX Hacking Approaches

1. Ignore RT functionality:
test pure functional behaviour
analyse timing requirements using TorX log files & assumed timing constraints

2. Add timestamps to observations
adapter adds timestamps to observations when they are made and passed on
to the driver
timestamps are used to analyse TorX log files

3. Add timestamps to stimuli & observations
adapter add timestamps to observations when they are made and passed on to
the driver
adapter adds timestamps to stimuli when they are applied and returned to the
driver
analysis:

a. timing error logging: observed errors are written to TorX log file
b. timing error failure: observed errors cause fail verdict of test case

October 1, 2005 ARTIST2 Summer School 54

Real-time Testing
and I/O Systems

can the notion of repetitive quiescence be combined
with real-time testing?
is there a well-defined and useful conformance
relation that allows sound and (relative) complete
test derivation?
can the TorX test tool be adapted to support Real-
timed conformance testing?

Ed Brinksma, Holger Hermanns

Advances in Markovian and Non-
Markovian Process Algebra 10

October 1, 2005 ARTIST2 Summer School 55

Do We Still
Need Quiescence?

coin? coin?

tea? coffee?bang? bang?

coffee!

tea?

coffee?

tea !

coffee?

tea?

tea !

Yes!

the example
processes

should also
be distinct

in a real-time
context

coffee!

October 1, 2005 ARTIST2 Summer School 56

Real-Time and Quiescence

s is quiescent iff:
for no output action a and delay d: s ⇒

special transitions:
s → s for every quiescent system state s

testers observing quiescence take time:
TestM: set of test processes having only δ(M)-actions
to observe quiescence

assume that implementations are M-quiescent:
for all reachable states s and s’:

if s ⇒ s’ then s’ is quiescent

a(d)

δ

ε(M)

October 1, 2005 ARTIST2 Summer School 57

Real-Time and Quiescence

i tiocoM s ⇔ ∀σ ∈ Tracesδ(M)(s) :

outM (i after σ) ⊆ outM (s after σ)

i ≤tiorf s ⇔ ∀T ∈ TestM:

Deadlocksδ(i||T) ⊆ Deadlocksδ(s||T)

⇔ ∀σ ∈ (L ∪ {δ(M) })*:

outM (i after σ) ⊆ outM (s after σ)

M

October 1, 2005 ARTIST2 Summer School 58

Properties

1. for all M1 ≤ M2:

i ≤tiorf s implies i ≤tiorf s

2. for all time-independent i,s and M1,M2≥0

i ≤tiorf s iff i ≤tiorf s iff i ≤iorf s

M1 M2

M1 M2

October 1, 2005 ARTIST2 Summer School 59

A limitation

states are
saturated
with input
loops that
reset the

clocks

x xx=k
tea !

x=k
coffee!

x≤k

coin? coin?

tea? coffee?
tea?coffee?

x≤k

x=k
coffee!

x=k
tea !

x<M
bang?

x<M
bang?

x≥M
bang?

x≥M
bang?

x≤k x≤k

x x

this process cannot
be distinguished
from the next

this process cannot
be distinguished

from the previous

October 1, 2005 ARTIST2 Summer School 60

Test Cases

labels in L ∪ { δ }, G(d)
tree-structured
finite, deterministic
final states pass and fail

from each state ≠ pass, fail
choose an input i? and a time k and
wait for the time k accepting all
outputs o! and after k time unit
provide input i?
or wait for time M accepting all
outputs o! and δ

off!
x=5

x:=0

on?
x:=0

off!
x<5

off!

δ
x=M

failfail

failpass

Test case t ∈ TTA
TTA – Test Timed Automata :

x≤M

δ
x≤M

x≤k

x:= 0

off!

fail

Ed Brinksma, Holger Hermanns

Advances in Markovian and Non-
Markovian Process Algebra 11

October 1, 2005 ARTIST2 Summer School 61

To generate a test case t(S) from a timed transition system
specification with S set of states (initially S = {s0})

1. end test case PASS

apply the following steps recursively, non-deterministically

Timed test Generation Algorithm

allowed outputs oj!
after d time-units

2. choose k ∈ (0, M) and input µ

FAIL FAIL

forbidden outputs oi!
after d’ time-units

o1!
x=dn

x=d1
x=d’n’

x=k

x ≤ k

tµ t1 tn

x:=0

x=d’1

on’!
µ? o1!

on!

allowed outputs oj!
after d time-units

3. wait for observing possible output

FAIL FAIL

forbidden outputs oi!
after d’ time-units

δ
x=d’1 x=dn

x=d1
x=d’n’

x=M

x ≤ M

tδ t1 tn

x:=0

o1! on’! o1!
on!

can be calculated
effectively only for
subclasses of timed
transition systems!

October 1, 2005 ARTIST2 Summer School 62

Example
fail

m?

x≤1

x=1
x:=0

x=M
x:=0

c?
x=1
x:=0

c?
x=1
x:=0

b?
x=1
x:=0

fail

fail

fail

pass

fail

fail

fail

failfail

x≤1

x≤M

x≤1

x≤1

x≤M

m? m?

t? c?
b? b?

c!
t?

c?
t!

c?

t?

t!

c!

spec:

impl:
M=k

:test

m? m?

t? c?
b? b?

t!
c?

c?
t!

t?

t?

c!

c!

x<k

x<k

x<k

x<k

δ

c!

c!

c!

c!

c!

c!

fail

fail
t!

t!

t!δ
pass

t!

t!

t!x=M
δ

October 1, 2005 ARTIST2 Summer School 63

Soundness & Completeness

the non-timed generation algorithm can be shown to generate only
sound real-time test cases
test generation is complete

for every erroneous trace it can generate a
test that exposes it

test generation is not limit complete
because of continuous time there are uncountably many timed error
traces and only countably many test are generated by repeated runs

test generation is almost limit complete
repeated test geration runs will eventually generate a test case that will
expose one of the non-spurious errors of a non-conforming
implementation

non-spurious
errors

=
errors with a

positive
probability of

occurring

October 1, 2005 ARTIST2 Summer School 64

Current Work

Extension of the framework
M as a function of the specification state/output channel
integration with symbolic data generation
test action refinement
robustness & tolerance in real-time testing

Extending TorX environment using CORBA IDL
generate abstract TorX actions
generate TTCN-3 signatures
generate adapter code

Practical application
TANGRAM project: testing control software for VLSI lithography
machines (ASML)
smooth transition between timed & untimed testing

October 1, 2005 ARTIST2 Summer School 65

Future Work

stochastic systems
quality of service
hybrid systems
coverage measures
integration white/black box spectrum
...

October 1, 2005 ARTIST2 Summer School 66

For more information

fmt.cs.utwente.nl/research/testing

