Model-Based Testing
Ed Brinksma

University of Twente
Dept. of Computer Science
Formal Methods & Tools group
Enschede
The Netherlands

ARTIST2 Summer School

Ndsslingen

Contents

introduction & background

October 1, 2005 ARTIST2 Summer School

Types of Testing

Accessibility
robustness black box

reliabili{]
functional

behaviour 7

Aspect

October 1, 2005 ARTIST2 Summer School

Contents

introduction & background
testing pre-orders
input/output & quiescence
ioco implementation relation
test generation

TorX

test case study

real-time testing

October 1, 2005 ARTIST2 Summer School

E Pp

ﬁ Practical problems of testing

Testing is: But also:
important ad-hoc, manual, error-prone
much practiced hardly theory / research
30% - 50% of project effort no attention in curricula

expensive not cool:
time critical “if you're a bad programmer

not constructive you might be a fester"

(but sadistic?) \e
x5 poSS\‘o \? Attitude is changing:
\JZ“\GX\ e.‘\(\ods ’ more awareness
-S—m‘)(‘:{' 0(‘“\0\ o more professional
Wit

October 1, 2005 ARTIST2 Summer School

: ll'{, iJ| Test Automatior

Traditional test automation
= fools to execute and manage

(%
specification ===
u 4

!

implementation __)] test
under test Yool

October 1, 2005 ARTIST2 Summer School

Verification and Testing

Verification :
formal manipulation
prove properties
performed on model

) s ‘A& - m1 s

Verification is only as good as
the validity of the model on
which it is based

Testing :
experimentation
show error
concrete system

Testing can only show the
presence of errors, not their
absence

October 1, 2005 ARTIST2 Summer School

] R Challenges of Testing Theory

® Infinity of testing:
B foo many possible input combinations -- infinite breadth
B foo many possible input sequences -- infinite depth
B foo many invalid and unexpected inputs

® Exhaustive testing never possible:
B when to stop testing ?

B how to invent effective and efficient test cases with high
probability of detecting errors ?

® Optimization problem of festing yield and invested
effort
m usually stop when time is over

October 1, 2005 ARTIST2 Summer School

j—| -
l'. il Formal Testing : Conformance

‘ s e SPECS Specification
yy T Implementation under Test

IuT confir‘ms--ro s IUT is concrete, physical object

M
correctness y
criterion

\

implementation

Model the physical world
But IUT is black box !?

Assume that model iy, exists

October 1, 2005 ARTIST2 Summer School

Testing with Formal Methods

Testing with respect to a formal specification
Precise, formal definition of correctness :
good and unambiguous basis for testing
Formal validation of tests

Algorithmic derivation of fests :
tools for automatic test generation

Allows to define measures expressing coverage
and quality of testing

October 1, 2005 ARTIST2 Summer School

Formal Testing

/imps

S

test
generation

'

test suite Ts

correctness
criterion
implementation
relation
imp

/ passes

Bsesnnnannn

implementation ‘
[

test
execution

October 1, 2005 ARTIST2 Summer School

Contents

testing pre-orders

October 1, 2005 ARTIST2 Summer School 12

exhaustive ﬂw sound

Ts

Testing Preorders
on Transition Systems

implementation < specification
implementation specification i —te s
i s
environment environment
environment environment e @
e e

Classical Testing Preorder

For all environments e _
all apsgryations of ggdtplementatign i e Ste
$hould be explaine szy‘ (Lab= ®%)
observations of the S#ecificaﬂo'n sine.
? ? ?

& VeeE. obs(e i) < obs(es)
I

LTS(L) Deadlocks(e||s)

October 1, 2005 ARTIST2 Summer School 13 October 1, 2005 ARTIST2 Summer School 14

[[A
] e Classical Testing Preorder 1 Quirky Coffee Machine
[Langerak]

implementation specification
Ste i Can we distinguish between these machines?

environment environment
G e

& VeelTS(L).Voel*.
€ i deddldeksliofkarafters} edis deadlocks after

{ o | e||s deadlocks after o}
& FP(i) € FP(s)
FP(p) = { (o, A) | pafercrefuses A}

October 1, 2005 ARTIST2 Summer School 15 October 1, 2005 RTISTZ Summer School 16

Quirky Coffee Machine

p
Refusal Preorder Revisited

implementation Sr‘f specification
i -

Deadlocks a(el i) =

environment {oe(Lu{3})* |
e c||i deadlocks after o}

i<fgs © VeeE. obs(e < obs(e,s) ‘ 3 only enabled
$od if coffee is not

eobserveswith® | 5 (5)) Deadlocks selli)
deadlock on all
alternative actions)
October 1, 2005 ARTIST2 Summer School 17 October 1, 2005 ARTIST2 Summer School 18

Contents I/0 Transition Systems

testing actions are usually directed, i.e. there are inputs and

2 o outputs
input/output & quiescence Lo, ULy With LynL =@

systems can always accept all inputs (input enabledness)
a
for all states s, for all acl,, s =

testers are I/0 systems
output (stimulus) is input for the SUT
input (response) is output of the SUT

October 1, 2005 ARTIST2 Summer School October 1, 2005 ARTIST2 Summer School 20

) [
Quiescence I H Input-Output QCM

states must
Because of input enabledness S||T deadlocks iff T be saturated i

produces no stimuli and S no responses. This is known as with input D). i states
. 2 : !
quiescence IOOpS for Silies’ gea?
Observing quiescence leads to two implementation relations input
bledness feds
for I/0 systems I and S: ena
I<;. Siff forall I/0 testers T: teal
Deadlocks(I||T) < Deadlocks(S||T) Coffee?[
(quiescence)
I <6 S iff for all I/0 testers T:
Deadlocksg(I||T) ¢ Deadlocksg(S||T)

(repetitive quiescence)

October 1, 2005 ARTIST2 Summer School 21 October 1, 2005 ARTIST2 Summer School

| [
Contents 1 iJ| Implementation Relation
ioco

By adding a transition p 6> p to every quiescent state of a system
we freat quiescence as an observable (synchronizable) action:

ioco implementation relation : s < V 1/0 tests T: Deadlocksg(il|T) < Deadlocks(s||T)

< Vo e (Lu{d})*: out(iafter5) C out(s after 6)
To allow we restrict the set of traces:

s <|Vo € Tracesg(s):| out(iafter 6) < out (s after G)

October 1, 2005 ARTIST2 Summer School 23 October 1, 2005 ARTIST2 Summer School 24

| ;FI'T il Implementation Relation
ioco
Correctness expressed by implementation relation ioco:
S =g Vo € Tracesg(s): out(i after) c out(s after o)
Intuition:

i -conforms to s, iff

~if i produces output x after trace o,
then 's can produce x after o

rif i cannot produce any output after trace o,
then s cannot produce any output after o (guiescence §)

October 1, 2005 ARTIST2 Summer School 25

]“’T 0 Implementation Relation ioco

iiocos =4 Vo e Straces(s): out(i after) c out (s after c)

2dub

Icoffee
lcoffee

out (i after 2dub) = {lcoffee} out (s after 2dub) = {lcoffee, ltea}

October 1, 2005 ARTIST2 Summer School 27

[y
LT Implementation Relation ioco

iiocos =y Vo e Straces(s): out(i after) < out (s after o)

lcoffee

out (/after 2dub) = {Icoffee}
out (/ after ?kwart) = {!tea}
But ?kwart & Tracesy s)
October 1, 2005 ARTIST2 Summer School 29

out (s after 2dub) = {lcoffee}
out (s after 2kwart) =

L
Mni]i Implementation Relation ioco

iiocos =y Vo e Straces(s): out(i after) < out (s after o)

out(/after ¢) = {35}
out (/after ?dub) = { lcoffee}
out (/after ?2dub.?dub) = {lcoffee}

2dub out (/after ?dub.lcoffee)= {5}
?kwart’

Icoffee out (/after ?kwart) {5}

out (/after Icoffee)

2
?k%?f out (/after ?dub.ltea)

out (/after &)

October 1, 2005 ARTIST2 Summer School 26

e -{) —
"IN Implementation Relation ioco

iiocos =4 Vo e Straces(s): out(i after) c out (s after c)

lcoffee

out (/ after 2dub) = { lcoffee, Itea} Z out (s after ?2dub) = { lcoffee}

October 1, 2005 ARTIST2 Summer School 28

Contents

test generation

October 1, 2005 ARTIST2 Summer School 30

j

|t

Formal Testing

test .
generation /passes T,

!

test suite Ts

correctness
criterion
implementation
relation
ioco

A

/

_’ test

execution

implementation ‘

October 1, 2005 ARTIST2 Summer School 31

] ._”T F Test Cases

test case t

lcoin
lcoin ; Start timerl
?tea
?timerl
?coffee
lcoin ; Start timer2 fail fail
?tea

?timer2

?coffee

pass pass fail

October 1, 2005 ARTIST2 Summer School 33

T

Test Generation Example

Equation solver for y?=x

specification

tests are not linear traces, but trees

October 1, 2005 ARTIST2 Summer School 35

. .
Naii Test Cases
Testcase t € TTS
TTS - Test Transition System :
labels in Lu {8}

tree-structured
finite, deterministic

final states pass and fail

from each state # pass, fail . fail fail
either one input i?

or all outputs ol and &

®
pass pass fail

October 1, 2005 ARTIST2 Summer School 32

) e
70 Test Generation Algorithm
Algorithm

To generate a test case (S) from a transition system
specification with S set of states (initially S = {sy})

Apply the following steps recursively, non-deterministically

1 end test case 3 observe output

PASS
ol /‘ “x—__ allowed outputs ol

o | O ~
FAIL FaTL
forbidden outputs ‘AA

, supply i? (S after ol)

A 1(S after i?)

October 1, 2005 ARTIST2 Summer School 34

supply input

Validity of Test Generation

For every test t generated with algorithm :

Soundness :
t will never fail with correct implementation

i ioco s implies i passes t
Exhaustiveness :

each incorrect implementation can be detected
with a generated test t

i iofo s implies 31 ifailst

October 1, 2005 ARTIST2 Summer School 36

Contents

October 1, 2005 ARTIST2 Summer School 37

Test Generation Tools for i0CO

TVEDA (CNET - France Telecom)
derives TTCN tfests from single process SDL specification
developed from practical experiences
implementation relation R1~ ioco

TGV (IRISA - Rennes)
derives tests in TTCN from LOTOS or SDL
uses test purposes to guide test derivation
implementation relation: unfair extension of ioco

TestComposer
Combination of TVEDA and TGV in ObjectGeode

TestGen (Stirling)

Test generation for hardware validation
TorX (Cdte de Resyste)

October 1, 2005 ARTIST2 Summer School 39

TorX Tool Architecture

specification pei TorX <+ adg|

specification states abstract abstract concrete
text transitions actions actions actions

October 1, 2005 ARTIST2 Summer School

izyreIOTs

October 1, 2005

A Test Tool : TorX

On-the-fly test generation and test execution
Implementation relation: ioco

Specification languages: LOTOS, Promela, FSP, Automata

user:
manual
automatic

specification TorX
observe

output
pass
fail

inconclusive

October 1, 2005 ARTIST2 Summer School

On-the-Fly <> Batch Testing

on the fly

explorer <=—> primer <> driver <> adapter «—> TIUT

batch test generation

October 1, 2005 ARTIST2 Summer School 42

batch test execution

On-the-Fly Testing
INRswmsaou
| SKEkER) AdBikiine Ainattacto

[t PO
scence)

iimm)‘ce) ? WBlescence) 3 %ﬁi

abs

states. tract bits
explorer <@ primer <= driver guufp adapter 9 T
ctions Zes

fransitions transition a

specification implementation

/\?x(x<0)

? x (x>=0)

(O

ber 1, 200! ARTIST2 hool By ol
October 1, 5] ST2 Summer School =

Contents

test case study

October 1, 2005 ARTIST2 Summer School

Interpay
Highway Tolling System

October 1, 2005 ARTIST2 Summer School 47

October 1, 2005

TorX Case Studies

Conference Protocol

EasyLink TV-VCR protocol

Cell Broadcast Centre component

Road Toll Payment Box protocol

V5.1 Access Network protocol

Easy Mail Melder

FTP Client

"Oosterschelde” storm surge barrier-control
TANGRAM: testing VLSI lithography machine

October 1, 2005 ARTIST2 Summer School 46

Highway Tolling Protocol

Characteristics :
Simple protocol

Parallellism :

many cars at the same time
Encryption

System passed traditional testing
phase

October 1, 2005 ARTIST2 Summer School

o : :
Highway Tolling System Highway Tolling:
Test Architecture

TorX Test Context Payment

n Box
Payment ObuSim

Box PB < E[[[[F— Pammnnz
e @ TCP/IP UDP/IP @
ObuSim S CEEENESS S _EEENECC
+
TCP/IP
+
UDP/IP

(PB)

—

Wireless UDP/IP

October 1, 2005 ARTIST2 Summer School 49 October 1, 2005 ARTIST2 Summer School 50

Highway Tolling: Results K Contents

Test results :
1 error during validation (desigh error)
1 error during testing (coding error)
Automated festing :
beneficial: high volume and reliability
many and long tests executed (> 50,000 test events)

very flexible: adaptation and many configurations
Real-time : real-time festing

interference computation time on-the-fly testing
interference quiescence and time-outs

October 1, 2005 ARTIST2 Summer School 51 October 1, 2005 ARTIST2 Summer School 52

Jj_‘ ~ = . .
[0l RT TorX Hacking Approaches IR Real-time Testing
and I/0 Systems

Ignore RT functionality:
test pure functional behaviour

analyse timing requirements using TorX log files & assumed timing constraints can the notion of r‘ePeTiTive qUieSCenCC be combined
Add timestamps to observations with real-time Tesﬂng?

adapter adds timestamps to observations when they are made and passed on 5 q

to the driver is there a well-defined and useful conformance

IS 78 e U o el e g s relation that allows sound and (relative) complete
Add timestamps to stimuli & observations test derivation?

adapter add timestamps to observations when they are made and passed on to :

the driver can the TorX test tool be adapted to support Real-
adapter adds timestamps to stimuli when they are applied and returned to the Timed conformance TesTing7

driver

analysis:
timing error logging: observed errors are written to TorX log file
timing error failure: observed errors cause fail verdict of test case

October 1, 2005 ARTIST2 Summer School 53 October 1, 2005 ARTIST2 Summer School 54

Do We Still

Need Quiescence? Real-Time and Quiescence

s is quiescent iff: a(d)
for no output action a and delay d: s =

Yesl . e
special fransitions:

s 5 s for every quiescent system state s
testers observing quiescence take time:

Test),: set of test processes having only 3(M)-actions
to observe quiescence

assume that implementations are M-quiescent:
for all reachable states s and s

the example
processes
should also
be distinct
in a real-time coffeel
confext
if s Wy thens is quiescent

October 1, 2005 ARTIST2 Summer School 55 October 1, 2005 ARTIST2 Summer School 56

Real-Time and Quiescence Properties

& VT € Testy:
< Testm for all My < M,:
Deadlocksg(i||T) < Deadlocksg(s||T)

o Vo e (Lu{dM)})*:

- M
! Sfm/’

- simpliesi <}z . s

outy (i after) < outy, (s after o)
for all time-independent i,s and M;,M,>0
i tiocoy, s < Vo e Traceszp(s . s R s
M 3(M) i<t siff i<l siff i<,s

outy, (i after 6) < outy (s after o)

October 1, 2005 ARTIST2 Summer School October 1, 2005 ARTIST2 Summer School 58

A limitation Test Cases

e T this process cannot Test case t € TTA

saturated » be distinguished TTA - Test Timed Automata :
with input coin? from the previous labels in LU {8}, 6(d)
loops that tree-structured
rejillz‘e coffeed finite, deterministic
? te? final states pass and fail

from each state # pass, fail
q choose an input i? and a time k and
© bapg? |bang? bang?, b wait for the time k accepting all
. outputs ol and after k time unit
provide input i? pass fail

> eel

or wait for time M accepting all
outputs ol and &

coffee!

October 1, 2005 ARTIST2 Summer School October 1, 2005 ARTIST2 Summer School

| LA
T Timed test Gene

To generate a test case 1(S) fron can b? calculated

specificationwith S set of states effectively only for

apply the following steps recursive subclasses of timed
PPl g step transition systems!

1. end test case PASS

2. choose k e (0, M) and input 3. wait for observing possible output
\\:<.:0 \: =0

forbidden outputs o) &SR allowed outputs o) forbidden outputs of SIS allowed outputs of!

after d' time-units after d fime-units after d' time-units P after d time-units
//
ol ! L 8 Nl NG
-d ‘o x| T " = =d,
= X=dy 1 x=d) - > ed,] - &
FAIL FAIL ‘ ‘ ‘

October 1, 2005 ARTIST2 Summer School

._—_, =
] 1L soundness & Completeness

the non-timed generation algorithm can be showng

real-time test cases non-spurious
errors

test generation is -
for every erroneous frace it can generate a errors with a
positive
- probability of
test generation is occurring
because of continuous time there are uncountt “iy mat,
traces and only countably many test are ger "ated by repeated runs

test that exposes it

test generation is
repeated test geration runs will eventually generate a test case that will
expose of a non-conforming

implementation

October 1, 2005 ARTIST2 Summer School 63

Future Work

stochastic systems

quality of service

hybrid systems

coverage measures

integration white/black box spectrum

October 1, 2005 ARTIST2 Summer School 65

October 1, 2005

1 -{
ST Current Work

Extension of the framework
M as a function of the specification state/output channel
integration with symbolic data generation
test action refinement
robustness & tolerance in real-time testing
Extending TorX environment using CORBA IDL
generate abstract TorX actions
generate TTCN-3 signatures
generate adapter code
Practical application
TANGRAM project: testing control software for VLST lithography
machines (ASML)
smooth transition between timed & untimed festing

October 1, 2005 ARTIST2 Summer School 64

For more information

fmt.cs.utwente.nl/research/testing

October 1, 2005 ARTIST2 Summer School 66

