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Abstract

We consider concurrent probabilistic systems, based on probabilistic automata
of Segala & Lynch [55], which allow non-deterministic choice between probability
distributions. These systems can be decomposed into a collection of “computation
trees” which arise by resolving the non-deterministic, but not probabilistic, choices.
The presence of non-determinism means that certain liveness properties cannot be
established unless fairness is assumed. We introduce a probabilistic branching time
logic PBTL, based on the logic TPCTL of Hansson [30] and the logic PCTL of [55],
resp. pCTL of [14]. The formulas of the logic express properties such as “every
request is eventually granted with probability at least p”. We give three interpreta-
tions for PBTL on concurrent probabilistic processes: the first is standard, while in
the remaining two interpretations the branching time quantifiers are taken to range
over a certain kind of fair computation trees. We then present a model checking
algorithm for verifying whether a concurrent probabilistic process satisfies a PBTL
formula assuming fairness constraints. We also propose adaptations of existing
model checking algorithms for pCTL* [14, 4] to obtain procedures for PBTL* under
fairness constraints. The techniques developed in this paper have applications in
automatic verification of randomized distributed systems.

1 Introduction

Probabilistic techniques, and in particular probabilistic logics, have proved successful in
the specification and verification of systems that exhibit uncertainty, for example, fault-
tolerant systems, randomized algorithms, distributed systems, and communication pro-
tocols. However, as already observed in [45, 52, 56|, concurrent probabilistic systems, for
example randomized distributed algorithms, are notoriously difficult to verify: the proofs
of their correctness are complex, and therefore argued informally, and thus appropriate
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formal methods for their specification and verification are called for. This paper presents
an automatic model checking method applicable, amongst others, to the verification of
randomized distributed systems.

The particular difficulty in establishing correctness of randomized distributed algorithms
is due to the fact that they exhibit both probabilistic choice (which comes from random
assignment and is considered internal to the system) as well as non-determinism. This
means that it is possible in a given state to non-deterministically choose between two or
more probability distributions on the successor states; these distributions determine the
probability with which a successor state is taken. Non-determinism may arise e.g. from
the asynchronicity of certain subprocesses, or external intervention such as an action
taken by environment. As an example of the former, consider the randomized dining
philosophers: when two philosophers are simultaneously ready to flip a fair coin in order
to decide which fork to pick up, one can think of this as two probability distributions, each
respectively with probability % of obtaining heads or tails, enabled in the same state. It
is then convenient to think of a run of such a system as being the outcome of a scheduler
(also called an adversary) who decides which of the two distributions to select first. As
another example, consider a communication protocol which attempts to deliver a message
to the recipient if one is received on the input channel from the environment, and loops
back to the initial state otherwise. In a realistic scenario, the outcome of the delivery is
probabilistic, and will result in a message being delivered successfully with some suitably
high probability, say 0.999, or an error state being reached if a fault has occurred in the
transmitting medium.

The models considered in this paper, called concurrent probabilistic systems, are based
on Markov decision processes, see e.g. [58, 50, 20, 62, 51, 55, 14, 21, 39, 4], and exhibit
probabilistic choice and non-determinism in the sense described above. The choices made
by an adversary can use the knowledge of the past history, but are not, and should not, in
general, be resolved probabilistically. An adversary resolves the non-deterministic choices
(but not the probabilistic choices; these are resolved by the system itself) by selecting one
of possibly many probability distributions. This yields a computation tree of the system.
The computation trees are represented by (discrete-time) Markov chains which arise by
ensuring that in every state there is at most one distribution, and so each such tree has a
probability space on paths associated with it. Ranging over all schedulers, a concurrent
probabilistic system can be decomposed into a collection of its computation trees.

Several probabilistic logics have been proposed which allow to specify properties of the
form “the system satisfies property ¢ with probability at least p” where p is a real number
in the interval [0,1], see e.g. [40, 26, 41, 42, 15, 30, 31, 55, 6, 14, 4]. Their models are
variants of Markov chains which may or may not exhibit non-determinism as well as
probabilistic choice. Typically, the verification aims to establish qualitative properties,
i.e. properties that are fulfilled by almost all executions, which amounts to showing that
the property is satisfied with probability 1, see e.g. [43, 33, 49, 32, 58, 59, 50, 19, 2, 3,
51, 21]. Although the above requirement of probability 1 is important in many cases, for
some properties it is simply not the case that they are satisfied with probability 1, but
instead with probability 1 —e for some suitable € (an error). These quantitative properties,
which are the focus of this paper, also play an important role in e.g. the analysis of the
average-case behaviour of probabilistic systems, where one aims to show that a given
property is satisfied with probability e.g. %



Since in our models there are possibly several probability distributions to choose from
in a state, similarly to the non-probabilistic case certain (qualitative or quantitative)
liveness properties cannot be established unless fairness of choice is imposed. Consider,
for instance, the protocol referred to above; then the property “the message is eventually
delivered with probability 0.9” can only be established on condition that the protocol does
not loop back to initial state forever. In the randomized dining philosophers example, if
the scheduler never selects a given philosopher for execution even though he is ready to
proceed (e.g. to flip the coin) the run thus produced would be unfair, and as a result
one could not guarantee lack of starvation. In summary, fairness assumptions allow us
to prove more properties, but at a cost of qualifying the correctness statement in the
following sense: the system has been shown to satisfy a property on condition that the
scheduler or user complies with the given fairness assumptions. We should point out that
fairness can also be considered w.r.t. the probabilistic choices as in [49, 50, 51|, but our
approach is different as we impose fairness of schedulers.

Fairness for schedulers of concurrent probabilistic systems was first introduced by Hart,
Sharir & Pnueli [33] and later considered by Vardi [58]. While [33] deals with concurrent
probabilistic systems which arise by the interleaving of sequential probabilistic processes
and defines an execution sequence 7 to be fair iff each sequential process is activated in-
finitely often in 7, [58] deals with “concurrent Markov chains”, which distinguish between
non-deterministic and probabilistic states, and defines an execution sequence 7 of a con-
current Markov chain to be fair if all possible successor states of a non-deterministic state,
in which fairness is required and which occur infinitely often in 7, also occur infinitely
often. We adapt Vardi’s notion of fairness to our model for concurrent probabilistic pro-
cesses — which does not distinguish between non-deterministic and probabilistic states —
and define an execution sequence 7 to be fair if none of the non-deterministic alternatives
in a state occurring infinitely often in 7 is refused continuously. Following [33] we define
two types of fairness for schedulers: a scheduler is strictly fair iff each of its execution
sequences is fair, and it is fair if almost all execution sequences are fair, i.e. if the measure
of its fair execution sequences is 1.

We introduce a probabilistic branching time logic PBTL, based on the logics considered
in [30, 31, 55, 14, 6, 4], which we interpret over concurrent probabilistic systems. PBTL
contains atomic propositions, the usual boolean connectives, a next-step, a bounded and
an unbounded until operator, and the usual branching time quantifiers 3 (“there is a
scheduler”) and V (“for all schedulers”). The next-step and the until operators are lifted to
the probabilistic case, thus yielding formulas which express properties such as “the system
terminates within k£ steps with probability > p”. Depending on the interpretation, the
branching time quantifiers 4 and V range over a certain type of schedulers. In contrast to
the non-probabilistic case, where the schedulers that resolve the non-deterministic choices
yield execution sequences of the system, the schedulers of a concurrent probabilistic system
yield computation trees referred to above. We give three interpretations which differ in
the range of schedulers. For each interpretation we fix a certain kind of a scheduler,
and consider the computation trees which arise by schedulers of the given kind. The
first interpretation does not make any restrictions on the schedulers, i.e. all schedulers
are allowed. In the second and third interpretation we restrict our attention to the fair,
resp. strictly fair, schedulers. It turns out that the interpretations based on fair or strictly
fair schedulers allows to establish more (quantative or qualitative) liveness properties



than the standard interpretation. The difference between the interpretations obtained
by considering either the fair or the strictly fair schedulers is only marginal. This result
is not surprising as it is already shown in [33] that each strictly fair scheduler can be
“approximated” by fair schedulers.

A method for model checking w.r.t. the satisfaction relation induced by the first interpre-
tation (the interpretation which does not make any fairness assumptions) is given in [14];
the same method also applies in our setting. For the fair and the strictly fair interpreta-
tion, we show why the standard procedure cannot be applied and give a model checking
algorithm for PBTL: it takes a formula ® and a concurrent probabilistic process as its in-
put, and returns the set of states satisfying ®. The algorithm works similarly to the model
checking algorithm of [16] for CTL. Given a formula ® we first construct the parse tree
of ® whose nodes represent the subformulas of ®. Then, we successively compute the sets
consisting of the states satisfying the subformula which the node v represents. It turns
out that simple adaptations of existing techniques can be used for all operators except
those containing unbounded until as their outermost operator. The latter is non-trivial,
and we base the proposed solution on a series of technical results. In the non-probabilistic
case the states satisfying a formula with an until operator can be obtained by an analysis
of the strongly connected components of the underlying directed graph (cf. [16]). In the
probabilistic case, this is not sufficient since for every computation tree the probability
of the set of paths fulfilling the until condition is needed (instead of only the existence
or non-existence of certain paths as in the non-probabilistic case). Until formulas assert
something about the set of (strictly) fair computation trees, which in general is, as the
(strictly) fair computation trees themselves, infinite. We show that — instead of ranging
over all fair, resp. all strictly fair, schedulers — an investigation of the simple schedulers,
a certain finite subclass of (in general unfair) schedulers whose computation trees can be
represented by finite-state Markov chains suffices. While the system behaviour under such
a simple scheduler can be described by a finite-state Markov chain where the probability
of the set of paths fulfilling an until-property can be computed by solving a linear equation
system (cf. [19, 31]), the minimal and maximal probabilities under all simple schedulers
can be obtained by solving a linear optimization problem (cf. [20, 14]). We show that
the problem of computing the minimal and maximal probabilities under all fair sched-
ulers can be reduced to the computation of the minimal or maximal probabilities under
all schedulers. Hence, as in the case of [14], our model checker uses standard methods
of linear programming for the handling of formulas containing unbounded until as the
outermost operator.

A short version of this paper appeared as [11].

Organization of the paper: Section 2 recalls the definition of (sequential) Markov
chains (which we use to describe the computation trees of a concurrent probabilistic
system) and the probability measure on their paths. Section 3 explains our model for
concurrent probabilistic systems, defines adversaries for them and shows how concurrent
probabilistic systems can be split into computation trees. Fairness and strict fairness of
adversaries of concurrent probabilistic systems is introduced in Section 3.3. The syntax
and the three semantics of our logic PBTL are explained in Section 4. Our main results are
contained in Section 5, where a method for testing whether a PBTL formula is satisfied by
a given concurrent probabilistic process under fairness assumptions is given. For readers’
convenience, we omit the technical development of the results from this section; this



is included in the Appendix (Section 12). In Section 6 we show an application of our
algorithm to distributed systems: we discuss a simple protocol and demonstrate the need
for fairness assumptions. The time complexity of our method is discussed in Section 7.
Section 8 shows how to deal with fairness in the sense of [58] in our setting. In Section
9 we briefly explain how the model checking for the logic pCTL* presented in [4] can
be modified to handle fairness. Section 10 discusses related work. Finally, Section 11
concludes the paper.

The reader is supposed to be familiar with basic notion of measure and probability theory
(see e.g. [29]).

2 (Sequential) Markov chains

In this section we briefly recall the definition of Markov chains and the probability measure
on their paths. We use Markov chains to describe the computation trees of a concurrent
probabilistic system.

A (sequential) Markov chain is a tuple MC = (S,P) where S is a countable set of states
and P : S xS — [0,1] is a function with Y} ,cg P(s,t) = 1 for all s € S. A path in
MC is a nonempty and finite or infinite sequence x = sys; ... consisting of states s; € S
sit. P(si,8i41) > 0. A fulpath is an infinite path in MC. Pathp(MC) denotes the
set of fulpaths in MC, Pathp,(s, MC) the set of fulpaths starting in s. Pathg,(MC)
denotes the set of finite paths in MC, Pathg,(s, MC) the set of finite paths starting
in s. Given a Markov chain (S,P) and a state s, P induces a probabilistic space on
Pathpy, (s, MC) as follows. We define the probability P(z, MC), abbrev. P(z), for finite
paths z in MC by putting P(z) = 1if z = s, and P(z) = P(sg,s1) - P(s1,82) - ... "
P(sn-1,5,) otherwise, where z = s¢$1...5,. Let (s, MC) be the smallest o-algebra
on Pathp,(s, MC) which contains the sets {y € Pathp,(s, MC) : z is a prefix of y}, x €
Pathgn (s, MC). The probability measure Prob on X(s, MC) is the unique measure with
Prob {y € Pathp(s, MC) : z is a prefix of y} = P(z).

3 Concurrent probabilistic systems

As pointed out in [58], certain states of a concurrent system whose components work
asynchronously are inherently non-deterministic. The non-deterministic choices are be-
yond control of the process and can be supposed to be resolved by a scheduler, whereas
the probabilistic choices are made by the system itself. In this section we introduce a
model for concurrent probabilistic systems which is based on Markov decision processes
(see e.g. [22, 53]). It generalizes the “concurrent Markov chains” considered e.g. in [58, 21]
and essentially agrees with the “simple deterministic automata” of [55].

Notation 3.1 For a finite set S, a distribution on S is a function p : S — [0,1] such
that Y cs u(t) = 1. If s € S then pl denotes the unique distribution on S with pl(s) = 1.
Supp(p) denotes the support of p, i.e. the set of states s € S with pu(s) > 0.



State space: S = {s,t,u,v}
Steps(s) = {1, i1, },
Steps(t) = {4},

Steps(z) = {ul}, v € {u,v}

Figure 1: A concurrent probabilistic system

Definition 3.2 A concurrent probabilistic system is a pair S = (S, Steps) where S is
a finite set of states and Steps a function which assigns to each state s € S a finite,
non-empty set Steps(s) of distributions on S.

Intuitively, Steps represents the non-deterministic alternatives in each state: given a
state s € S, a scheduler chooses some p € Steps(s). The process itself resolves the
probabilistic choice, i.e. selects some state ¢t with positive probability (u(t) > 0). We refer
to the elements of Steps(s) as the transitions of s. We model terminating behaviour by
repeating the final state infinitely often, i.e. if s is a terminating state then we suppose
that Steps(s) = {ul}.

We depict concurrent probabilistic systems as follows. We use circles for the states. Thick
lines stand for the outgoing transitions from a state. The thick line corresponding to a
distribution p € Steps(s) \ {p; : t € S} is directed and ends in a small filled circle that
represents the probabilistic choice. We use directed thin lines leading from the circle of
a probabilistic choice to the possible successor states (i.e. all states ¢ where u(t) > 0).
A distribution u; € Steps(s) is represented by a thick arrow leading from s to ¢. For
the “terminal” states (i.e. all states s € S where Steps(s) = {ul}) we omit the outgoing
transition. For instance, for the system in Figure 1, non-deterministic choice is present
only in state s. The other states are “deterministic” since there is only one distribution
in Steps(-).

3.1 Paths in concurrent probabilistic systems

Execution sequences (which we call paths) arise by resolving both the non-deterministic
and probabilistic choices. Formally, a path in a concurrent probabilistic system & =
(S, Steps) is a nonempty (finite or infinite) “sequence”

7T:80il)g5’1£82...

where s; are states and p; € Steps(s; 1) and p;(s;)) > 0,4 =1,2,.... (The case 7 = s
is allowed.) A path 7 is called a fulpath iff it is infinite. We use the following notation
for paths. The first state of a path 7 is denoted by first(n). If 7 is finite then the last
state of 7 is denoted by last(w). The length |7| of a path is defined in the usual way as
follows: if 7 = 5o € S then |r| = 0; otherwise, 7 = 5o & s B ... % 5, in which
case |w| = n. For infinite 7 we put |7| = co. If 7 is a fulpath then inf(7) denotes the set
of states s € S with s = 7 (4) for infinitely many i. Let 7 be a finite or infinite path as
above. If k < |n| then 7(k) denotes the k-th state of 7 (i.e. m(k) = s;). 7 is the k-th



prefix of 7 (i.e. if k& < |7| then 7®) = 50 B 5y B . B 5, if k > |7| then 7F) = 7))
If i < |r| then we put step(w,i) = p;1. If wis a finite path, = a path in S such that
last(w) = first(m) then wm denotes the path with

N w(@) cif i < |wl ~ | step(w,i) 2l < |w|
(wm)(3) = {W(z’—|w\) it > o] TP = G- wl) it > [wl.

In particular, st = 7 if first(w) = s. If w is a finite path, u € Steps(last(w)), s € S such
that p(s) > 0 and 7 a path with first(7) = s then w 5 7 denotes the unique path v with
v = w, step(7y,4) = p, y(i+1) = sand y(j+i+1) = 7(4§), step(y,j+i+1) = step(m, 7),
j=0,1,...,|n| where i = |w|.

1 1 1
Example 3.3 For the system in Figure 1, w = s 5t 5 s B v & ¢ is a finite path
with first(w) = w(0) = s, last(w) = w(4) =w(3) = v, w(l) =t, w(2) = s, step(w,0) = u,
step(w, 1) = ul, step(w,?2) = step(w,3) = ! and |w| = 4. We have:

1

w? = sBth s L@ (sﬂnf) = sB 1858 WK <v“#v) = w.
Moreover, wv = w (where v stands for a finite path of length 0). m

Path s, (S) denotes the set of all fulpaths in S, Pathg,(S) the set of all finite paths in S,
and Pathp,(s,S) the set of fulpaths = with first(m) = s. A state t is called reachable from
s if there exists a finite path = with first(r) = s and last(w) = t. Reach(s,S) denotes
the set of states which are reachable from s. When it is clear from the context what &
is we abbreviate Path,(S) by Pathpy,, and similarly Pathg,(S) by Pathg,, Pathp(s,S)
by Paths,(s), and Reach(s,S) by Reach(s). If I is a set of fulpaths in S and s € S then
I'(s) = I'N Pathp,(s). Similarly, if © is a set of finite paths then (s) = QN Pathg,(s).

3.2 Adversaries of concurrent probabilistic systems

We split a concurrent probabilistic system S = (.S, Steps) into its computation trees
(called “execution trees” in [33] and “maximal resolutions” in [38]), with each compo-
nent described as a Markov chain. The computation trees arise by resolving the non-
deterministic choices (but not the probabilistic choices). It is convenient to suppose that
an adversary (called “policy” in the theory of Markov decision processes) decides — based
on the past history of the system — which of the possible steps (probability distributions)
to perform next. We only consider deterministic adversaries, i.e. those that schedule a
unique next step. The notion of randomization of adversaries or probabilistic adversaries
has been investigated in [33] and [55], where it is shown that the probability of a mea-
surable set I' w.r.t. a randomized adversary is a convex combination of the measure of I'
w.r.t. non-randomized adversaries, and hence lies between the minimal and maximal mea-
sure of I' w.r.t. non-randomized adversaries. Since we are only interested in the maximal
and minimal measures (cf. Section 4), we shall not need the randomized adversaries.

Definition 3.4 An adversary (or scheduler) of a concurrent probabilistic system & =
(S, Steps) is a function A mapping every finite path w of S to a distribution A(w) on S
such that A(w) € Steps(last(w)) is a transition in S. An adversary A of S is called simple



iff for every state s € S there exists a transition p, € Steps(s) with A(w) = fuast(w) for
all w € Pathg, (S). A(S) denotes the set of all adversaries of S and Asgimpie(S) the set of
simple adversaries.

When clear from the context we write A and Ay rather than A(S) and Agimpie (S). An
adversary (called ”policy” in Markov decision processes) chooses for every finite path w in
S an outgoing transition from last(w). Simple adversaries (corresponding to “stationary
policies”) resolve the non-determinism by selecting for every state a next step which is
executed whenever the state s is reached — independent of the past history. In some sense,
simple adversaries are extremely unfair and would be ruled out for practical purposes.
We need them only for the sake of convenience. For example, the system of Figure 1 has
exactly two simple adversaries A, B. These are given by A(s) = u, B(s) = ul. (Note
that the other states are “deterministic”.)

With each adversary we associate a sequential (in general infinite-state) Markov chain
which can be viewed as a computation tree of §. Formally, if A is an adversary of
a concurrent probabilistic system S = (S, Steps) then MC* = (Pathg,(S),P?*) is a
Markov chain where P4 (w,w’) = A(w)(s) if w' is of the form w A 5 and PA(w,w') =0
in all other cases. If A is simple then MC* can be identified with the finite-state Markov
chain (S, A) where A is viewed as a function S x S — [0, 1]. For a simple adversary A we
write A(s,t) instead of A(s)(t).

For an adversary A of a concurrent probabilistic system S = (.S, Steps), Path;}d (S), ab-
brev. Pathful, denotes the set of all paths m € Pathp,(S) with step(r,i) = A(x@) for
all 4 > 0. Similarly, we define the set of paths Pathﬁn (8) induced by the adversary A,
abbrev. Pathﬁn, to be the set of all finite paths w € Pathg, with step(w,i) = A(w®)
for all i < |w|. If T is a set of fulpaths in & then I'* = T'N Pathﬁl. In the notation
of Section 3.1, Path]‘f;l(s) = Pathp(s) N Path}il, Pathﬁn(s) = Pathgn(s) N Pathﬁn and
T4(s) = {m € T : first(n) = s,7 € Path}il}. Reach”(s,S), abbrev. Reach®(s), denotes
the set of states ¢ € S such that there exists w € Pathﬁn(s) with last(w) = t. We identify

each path £ = wow; ... in MC* which starts in a state sy € S (i.e. wg = sp is a path of
length 0) with the path

last(wo) Ay last(wr) U

in S. Vice versa, if 7 € Path}il then we identify 7 with the path z = 7@7M7®@  in
MC#. This yields a one-to-one correspondence between Path}‘,tl(s) and Path (s, MC#).
Hence, for each s € S and adversary A, Path}il(s) is a probabilistic space (where the
o-algebra ¥(s) and the measure Prob is defined as in Section 2). If I' C Pathpy,(s) and
['4 is measurable then we refer to Prob(I'4) as the measure of ' w.r.t. A. For instance,
for the system of Figure 1 and the finite path w of Example 3.3, w € Pathﬁn(s) for each

adversary A with A(s) = pu, A(s Bt % 5) = pl. For each such adversary A, the
probability measure of the set of fulpaths 7 € Pathﬁd(s) which have w as a prefix is %



3.3 Fairness and strict fairness of adversaries

Our notion of fairness imposes (strong) fairness of the adversaries, or, in other words,
fairness of non-deterministic choices between probability distributions as in [33, 58] (rather
than the probabilistic choices as in [49, 50, 51, 12]). We adapt Vardi’s notion of fair paths
in concurrent Markov chains to our (more general) model for concurrent probabilistic
systems; recall that we do not distinguish non-deterministic and probabilistic states. For
simplicity, we require fairness in all states, which differs from the approach of [58] where
the set of non-deterministic states is partitioned into the “fair” states (in which fairness
is required) and possibly “unfair” states. This simplification is made for technical reasons
only. In Section 8 we briefly explain how to extend our approach to cater for such sets
of fair states. We define a fulpath 7 of a concurrent probabilistic system to be fair iff
for each state s occurring infinitely often in 7, each non-deterministic alternative which
is enabled in s (i.e. each distribution p € Steps(s)) is taken infinitely often in =.

Definition 3.5 Let S = (S, Steps) be a concurrent probabilistic system and 7 a fulpath
in §. 7 is called fair iff, for each s € inf(mw) and each p € Steps(s), there are infinitely
many indices i with w(i) = s and step(m,i) = p. Fair(S), abbrev. Fair, denotes the set of
fair fulpaths in S.

Remark 3.6 Our notion of fairness of a fulpath is stronger than fairness of fulpaths in
[33]. In [33] “process fairness” is considered, in the sense that for 7 to be fair all sequential
processes (whose composition is the concurrent probabilistic system under consideration)
are activated infinitely many times in 7. If S is a concurrent probabilistic system which
arises through the interleaving of sequential processes without shared variables then fair-
ness in the sense of Definition 3.5 implies fairness in the sense of [33]; to see this suppose
that there are k sequential probabilistic processes Pq, ..., Pr where each of them is de-
scribed by a Markov chain MC; = (S;,P;), i = 1,...,k, and that S = (S, Steps) where
S =5 X...x S and Steps(si,...,s) = {Vésh___,sk) :4=1,...,k} where

; Pi(si,t;) : ift;j=s57=1,...,k i#]
] _ AGIERZ j IR ) s vy
V(sl"“’sk)(tl""’tk) o { 0 . otherwise.

Then, whenever 7 is a fulpath in S that is fair in the sense of Definition 3.5 then 7 is fair
in the sense of [33], which requires that for each ¢ € {1,...,k} there are infinitely many
indices j > 0 with step(m,j) = v};). ®

As in [33] we consider two kinds of fairness for adversaries: strictly fair adversaries, where
each fulpath is fair, and fair adversaries, where the set of fair paths has probability 1.

Definition 3.7 Let S = (5, Steps) be a concurrent probabilistic system and F an adver-
sary for S. F is called strictly fair iff Pathﬂl C Fair. F is called fair iff Prob(Fair® (s)) =
1 for all s € S. Ay (S) denotes the set of strictly fair adversaries, Agir(S) the set of
fair adversaries.

When clear from the context, we write Ay and Ay, rather than A, (S) and Ay (S).
Clearly, strictly fair adversaries are fair. If F' is a fair adversary then for each w € Pathgn

there exists 7 € Fair’ where w is a prefix of 7. This reflects “liveness” in the sense



of [1] which states that every finite computation can be extended to an infinite (fair)
computation.

Example 3.8 For the system of Figure 1, the fulpathmy = s -5 ¢ 5 st 5 s . lis
not fair since s € inf (mo) and p, ¢ {step(mo,7) : i > 0}. Every other fulpath 7 € Pathpy(s)
“ends” in v or u (i.e. 7(i) € {u,v} for almost all 7). Thus, Fair(s) = Pathp(s) \ {70}
The simple adversary B with B(s) = p) is strictly fair since my ¢ Pathﬁ,. The simple
adversary A with A(s) = p is not strictly fair since m € Path]‘?ul(s). Nevertheless, A is
fair. To see this, consider the set I' of all fulpaths © € Pathp, where 7(i) € {u,v} for
almost all (or, in this case, for some) i. Then, I'A(z) = Fair®(x) for all states x since
Prob(Fair(u)) = Prob(Fair®(v)) = 1,

Prob (FairA(s)) = i % (%)Z =1

=0

and Prob (FairA(t)) = Prob {t Borire FairA(s)} = 1. Hence, A is fair. m

4 Probabilistic branching time temporal logic

In this section we introduce the syntax of the logic PBTL (probabilistic branching time
logic) interpreted over concurrent probabilistic systems and give three semantics for it.
PBTL is a probabilistic extension of CTL! which allows to express quantitative properties
such as “the system terminates within 3 steps with probability at least %”. In essence,
the syntax of PBTL agrees with the logic PCTL considered by Segala & Lynch [55] and
the logic pCTL considered by Bianco & de Alfaro [14]. Asin [14, 55], PBTL formulas are
interpreted over the states of a concurrent probabilistic system. Note, however, that the
models allow non-determinism in the sense of selecting one of possibly many distributions,
and so one cannot establish the probability of an event unless non-determinism has been
resolved (by means of adversaries). Since each adversary induces a probability space on
paths, it is thus natural to allow quantification over adversaries: we replace the CTL
formulas of the form Jp (where ¢ is a path formula) by formulas of the form [ 3¢ |5, (or
[ 3¢ |sp) which state that there exists an adversary such that the probability for ¢ is > p
(or > p). In other words, the quantifiers 3 and V in PBTL range over the adversaries but
yield Markov chains and not paths as in the non-probabilistic case.?

PBTL contains atomic propositions and operators of: next-step X, bounded until &/<*
and unbounded until 4. The operators X, U=* and U are used in connection with the
branching time quantifiers 9 and V and an interval of probabilities. The bounded until
operator can be used to describe constraints such as “with probability p, within & steps

'We call our logic PBTL in order to prevent confusion with other probabilistic extensions of CTL, e.g.
PCTL [55], TPCTL [30] or pCTL [14].

2This should be contrasted with the logics PCTL/PCTL* considered in [31, 6, 37] which are proba-
bilistic extensions of CTL/CTL* that are interpreted over (sequential) Markov chains. PCTL and PCTL*
use the probabilistic operator IP, instead of the CTL path quantifiers 3 and V. The CTL/CTL* formulas
Jip and VY are replaced in PCTL/PCTL" by formulas of the form IP>,(y) which is true iff the probability
measure of the paths fulfilling ¢ is > p.
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something will happen” where the interpretation of a “step” depends on the underlying
system. If the components of a concurrent system are asynchronous and proceed at a
different pace, one can think of a step as the time taken by the slowest component to
perform an atomic action.

In what follows we suppose a fixed set of atomic propositions. The syntax of PBTL is:

(I) = tt | a | q)l/\q)g | _|(I) | [HX(P]QP ‘ [VX(I)]QP | [(13131/{5’“(132]2,, ‘
[ @0 VUSF @y )5y | [@10FU By gy | [0 VU B2 ],

where @ is an atomic proposition, p € [0,1], 3 is either > or >, and k a non-negative
integer. Formulas of the form X®, & US*®, or ®;UD,, where &, &, &, are PBTL
formulas, are called path formulas.

PBTL formulas are interpreted over states of concurrent probabilistic processes, whereas
path formulas over paths. Informally, X ® asserts that ® holds in the next state. Formulas
of the form ®,US*®, state that there is some [ with 0 < [ < k such that ®; holds from
now on and including the (I — 1)-th step and ®5 holds in the [-th step. ®;UP, is true iff
from now on @, is fulfilled until ®, holds and ®5 holds sometime in the future. Depending
on the interpretation, the branching time quantifiers 4 and V denote quantification over
the adversaries of a certain type: 3 “there exists an adversary of this type”, and V “for all
adversaries of this type”. The subscript J p denotes that the probability for paths (in an
adversary) fulfilling the path formula is 3 p. The usual derived constants and operators
are: ff = —tt, &V Py = (=P A =Dy), &y —» Py = P, V &y. Operators for
modelling “eventually” & or “always” O can be derived by: [ 3O @ |5, = [ tt U P |5,
[VO @ |op = [t VU @ |p, [FA P |5p = o[ VO P[5, [VER |5y =[O =P |5,
where > = > and > = >. For instance, [ 3¢ @ |5, states the existence of an adversary
where the probability for a path in which ® eventually holds is > p. Formulas of the form
[ VO @ |5, express safety properties asserting that for all adversaries the probability for
paths where ® holds continuously is > p.

The main difference between our logic PBTL and the logic PCTL of [55] is that the latter
deals with action-labelled concurrent probabilistic systems, while we label the states with
atomic propositions. The logic pCTL of [14] (and [4]) essentially agrees with our logic
PBTL except that [14] uses a probabilistic operator IP,(-) for formulas containing the until
operator. The PBTL formula [ ®; VU @, |5, can be identified with the pCTL formula
P, (21U P,), while [ &1 FU Py |5, corresponds to P, (P1UP,). It should be pointed
out that [4] uses an extension of pCTL that contains an operator to express bounds on the
average time between events which does not have a counterpart in PBTL. More minor
differences between pCTL and PBTL are that PBTL contains the next step operator X
and the bounded until operator U=*, whereas pCTL does not (but these operators could
easily be added). Vice versa, pCTL contains the usual CTL quantifiers A and E that
range over all paths: A meaning “for all paths” and E “there is a path”. Formulas of
the form Ap and F¢ (where ¢ is a path formula) could be added to our logic PBTL, but
we omit them for the sake of simplicity. For the semantics of Ay and E¢ we can either
use the standard interpretation (where Ap asserts that ¢ holds for all fulpaths) or an
interpretation that requires “path fairness” (i.e. where Ap asserts that all fair fulpaths
satisfy ¢).?

3In the latter case our model checker of Section 5 would have to be extended, e.g. using the method
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S Eag tt for all s € S and s Fagy a iff a € L(s)

S Eag @1 A Do iff s =pgy O, =1,2

s Eaa P iff 5 FEpgy ©

s Eady [3X @], iff Prob{r € Path}‘;l( ): T Eag X®} O p for some A € Adv.

s FEagy [VX @], iff Prob{m € Pathful( S): 7T Eagw XP} O pforall Ae Adv.

s Eaa [213US Qo] iff Prob{m € Path}y(s) : m Eaay ©:U="®,} O p for some A € Adv.
S Eado [P1VUSF R,y iff Prob{m € Path}y(s) : m =g ©1UF®2} T p for all A € Adv.
s E adw [®1TUD,| 5, iff Prob{r € Pathful( s) 1 T =g ©1UDP,} I p for some A € Adv.

s Eady [P1YUD,| 5, iff Prob{r € Pathful( $) 1 Eag ©1UDL} O p for all A € Adv.

T Eagw XO iff (1) Fag @

T Ead P1UTP iff (1) Ea <I>2 and (i) F=ag ®1,i=0,...,0 — 1, for some | < k

T =gy PLUD, iff 1 =44y ®USF By for some k > 0.

Figure 2: The satisfaction relation = 44,

Definition 4.1 A PBTL-structure is a tuple M = (S, L) where S = (S, Steps) is a con-
current probabilistic process and L a labelling function for the states, i.e. L is a mapping
which assigns to each state s of S a set L(s) of atomic propositions that are true in s.

For a given PBTL-structure M = (S, L) and a set Adv of adversaries of S, the satisfaction
relation =440 € S X PBTL is shown in Figure 2 (where we write s =44, ® instead
of (s,®) € Faa).- When referring to the truth value of a path formula w.r.t. a path
T € Pathﬁl(s) we consider 7w as a path of S, but we take the probability Prob{...}
w.r.t. the Markov chain MC“#. Recall that we identify each path 7 € Path}‘}d with the
path z = 7@7W7@  in MCA. (The fact that for a path formula ¢ the set {7 €
Path}il(s) : T Ead @} is measurable is an easy verification, see e.g. [58].)

If s =aay @ then we say s fulfills & (or s satisfies ® or ® holds in s) w.r.t. Adv. The
truth value of formulas involving the (linear time) quantifiers ¢ and O can be derived. For
example, s =44 [ 3O D |5, iff Prob{m € Path}il(s) : (k) Eaq © for some k > 0} > p for
some A € Adv. By this we obtain: s =44, [ VO @ |5, iff Prob{r € Path;}d(s) : (k) E adv
-® for some k >0} < 1 —p for all A € Adv iff Prob{r € Pathful(s) : (k) Fade
® for all £ > 0} > p for all A € Adv.

Given a probabilistic process P, described by a concurrent probabilistic system S with an
initial state s and a labelling function L which assigns to each state s a set L(s) of atomic
propositions, we say P satisfies a PBTL formula ® (w.r.t. Adv) iff s a4, ® where

= (S, L). For instance, if stop is an atomic proposition which stands for termination
and P satisfies | VO stop |>, then P terminates with probability at least p; more precisely,
for every computation tree of P that arises from an adversary A € Adv, the probability
for a terminating execution is > p. If crit;, © = 1,2, are atomic propositions stating that
subprocesses P; of P are in their critical sections and P satisfies [ VO (—crity V —erita) |>p

proposed in [16] for the standard interpretation or the method of [25] for checking whether a path formula
holds for all (some) fair paths.
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then P fulfills mutual exclusion with probability p; more formally, for each computation
tree which arises from an adversary A € Adv, the probability of an execution in which
P, and P, are never simultanously in their critical sections is at least p.

We focus on three interpretations for PBTL which are as follows. The first interpretation
is standard and assumes the whole class of adversaries, i.e. Adv = A(S). In the second
interpretation we allow only the fair adversaries, i.e. Adv = Ay, (S), while in the third
the strictly fair adversaries, i.e. Adv = Aypir(S). We write =, Epur and =gpir for
the induced satisfaction relations. In Section 5 and 6 we give examples that show the
differences between =, =fir and =ypgir-

5 Model checking for PBTL

In [14] a model checking algorithm for PBTL w.r.t. = (called pCTL in [14]) can be found,
which is time polynomial in the size of the underlying concurrent probabilistic system.
In addition, [14] contains a model checking algorithm for a much richer logic pCTL*
which allows arbitrary combinations of path formulas by the boolean connectives and
path operators such as next step and until (see Section 9). In the non-probabilistic case,
e.g. when using CTL, fairness of fulpaths can be expressed by path formulas of the full
branching time logic, e.g. CTL*. Typically, this is achieved by means of formulas of the
form ¢pir = Vi \j(OOg;; vV OO ;), and the model checking for CTL under fairness
assumptions (e.g. w.r.t. a non-probabilistic version of our satisfaction relation =) can
be reduced to the model checking problem for CTL" since one has an equivalence of the
form s =g Yo iff s = V(@gir = @) (cf. [25]). Unfortunately, this equivalence does not
hold in the probabilistic case. The problem is that formulas of the form [ V(¢ — @) |5p
interpreted over = state that in all adversaries the measure of all fulpaths, whether fair
or unfair, that satisfy ¢ is J p, whereas the interpretation w.r.t. = quantifies over the
fair adversaries. Hence, the model checking algorithm of [14] for PBTL* cannot be used
to handle fairness (at least not in a straightforward manner).

In this section we present a model checking algorithm for PBTL for each of the satisfaction
relations =, and =p,. The starting point is a PBTL-structure M = (S, L) and a PBTL
formula ®. The algorithm is similar to the model checking algorithms of [16] for CTL
and that of [14] for pCTL. First, it builds the parse tree of ® whose nodes stand for
subformulas of ®; more precisely, the leaves are labelled by tt or an atomic proposition,
and the internal nodes are labelled by one of the operators A, =, [ 3X _ |5,, [ VX _ |5,
[_3U* _]q, or [ VU* _]o, (where U* is either U or USF for some k > 0). Nodes labelled
by — or a next-step operator have exactly one son, representing the argument of the
negation, resp. next step operator, in the corresponding subformula. Nodes labelled by A
or an until operator have exactly two sons (their arguments). For each node v we calculate
the set Sat(V) of states consisting of the states where the corresponding subformula ¥
holds. The cases where the associated formula of a node v is tt, a, =®' or & = &; A &, is
clear as we have: Sat(tt) =S, Sat(a) ={s € S:a € L(s)}, Sat(—-P') = S\ Sat(P') and
Sat(Py A Dy) = Sat(Pq) N Sat(Dy).

The next-step and the bounded-until operator are dealt with in the same way for all three
interpretations. This is due to the fact that each mapping A : {w € Pathg, : |w| < k} —
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Us Steps(s) with A(w) € Steps(last(w)) can be extended in a fair (or a strictly fair) way.
The following lemma shows how to deal with subformulas whose outermost operator is
the next-step operator.

Lemma 5.1 Let Adv € {A, Apir, Aspair}, ® be a PBTL formula and Sat(®) the set of
states t € S with t =gy . Then, for all s € S:

S Eaw [3X ® o, iff there exists p € Steps(s) with > p(t) D p,
teSat(®)

S FEaaw [VX ®|op off D> w(t) dp forall p e Steps(s).
t€Sat(®)

The lemma below characterises satisfaction relations for the bounded-until operator.

Lemma 5.2 Let Adv € {A, Apir; Aspair} and @1, @3 be PBTL formulas. Let p'f* and
p;”;", s€S,1>0, be given as follows. If s Eagy ~P1 A =Py then Pyt = pi”lm =0 for all
1>0. If s =g 2 then pJf* = p;"lm =1 foralll > 0. If s =p40 ©1 then It = pg"é" =0
and

i, = max {Tiesplt) - pie : p € Steps(s)},

Pyt = min {Ties p(t) - pff" : € Steps(s) |-

Then, for all s € S:

S ):Adv [(I)l Z/{<k (b2 ]:lp Zﬁ ps e :lp,
S ):Ad'u [(1)1 VU @2 ]:Ip Zﬂ. pmm b.

Proof: For A € Adv let pf}, = Prob {7r € Path}il( )t T E Ad 1Z/{Sl<1>2}. By induction

on [ it can be shown that p'** = max{py, : A € Adv}, pT" = min{pZ, : A € Adv}
which yields the claim. m

Example 5.3 Let M be the following PBTL-structure and ® = [aFU=°b]1 4.
b
{a} ©{b}

@—»—

1

D) (©))
0y 2 N

RN

®{a} @ 0

Using the notation of Lemma 5.2 we have p;’s* = p3* = 1, py¥ = py's® = 0 and the

recursive formulas p'f; = max{p{**/2,1/4}, p{”z’ffl =1/2+p / 2 where p{§® = pig® =
0. We obtain p{'f* = 1/4, p/'** = 1/2 piet = 1/4, piy* = 5/8, piy® = 5/16 and

Pyt = 21/32. Hence s,t,0,2 = ®, w,u % &. m

SO

The remainder of this section is concerned with the unbounded until operator. We develop
a series of technical results (Theorems 1-7) which essentially allow us to obtain in our view
a surprising result: to deal with the unbounded until operator an examination of the simple
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adversaries suffices. For readers’ convenience we state the main theorems in this section
without proof (those are included in Section 12). Instead, we include justification for the
technical results in the form of examples.

First, the following example shows that the above-mentioned reduction to simple adver-
saries fails for the unbounded-until operator.

Example 5.4 Let M be as in Example 5.3. We saw that s E=aq, [aEIZ/I§3b]>1/4. On the
other hand, Prob{r € Path}?d(s) :m = ald=*b} = 1/4 for each simple adversary A. (Note
that there are exactly two simple adversaries A, and A,. These are given by A,(s) = u
and A,(s) = v respectively. In both adversaries, there is exactly one fulpath 7 starting

1
in s and fulfilling al/=%b, namely the fulpath s 5 ¢t 5 2z %5 ... in A, and the fulpath

1
p .
sSv=3...inA4,)n

For the rest of this section we fix a PBTL-model M = (S, L) where § = (S, Steps) and
two PBTL formulas ®;, ®,. We suppose that the sets of states s € S with s Fag @;
are already computed, where Adv is either A, Ay, or Agpi,. We may suppose that @,
®, are atomic propositions with ®; € L(s;) if and only if s Fa4, @i, 7 = 1,2. This
simplifying assumption allows us to use the same notation for all three interpretations
(since s =40 ©; iff s = @), and is made for this reason alone.

Notation 5.5 Let Sat(®;)) ={s€ S:sE=®;},i=1,2. For A€ A, w € Pathp,, s €S,

po(@UD;) = Prob{z € Pathu(w, MC*) : z}= ®:US, |,
p;naw(q>1uq>2) = max { p?(fblu(bg) A€ -Asimple },
PI(@UP) = min { pH(@UPBy) : A€ Aimpe |-

Here, for an adversary A and a fulpath z in MCA, z = O UD, iff T = & UP, where 7
is the unique fulpath in S with z = 7071 ... Note that

pH(®.UDy) = Prob {7r € Path}tl(s) T E <I)1L{CI>2}

S S

and that p™(®,;U®,) and p™r(®,;UDP,) are well-defined since Asgimpie is finite.

Theorem 1 below can be derived from Corollary 20 (part 1) of [14], which uses the results
of [20]. The reason we state it here is that part (a) of this theorem carries over to the
satisfaction relation =y, (Theorem 2), while part (b) does not (cf. Example 5.14).

Theorem 1 (cf. [20, 14]) For all s € S:

(a) s = [ @ U Py |5, iff pI*(P1UD,)

D.
(b) S ): [(1)1 VL[ @2 ]Qp Zﬁ p;nm((l)lu(bg) p.

-
-

Theorem 1 ensures that p™(®UD,) > p' (O UD,) for all fair adversaries F. Vice versa,
for each (simple) adversary A there is a fair adversary F' with {w € Pathﬁn Cw E
®1UP,} C Pathfy,. (Here, w = ®1U®P,y iff w(i) = 1 A =Py, i = 0,1,...,|w| — 1, and
last(w) & ®9.) Thus, pf'(®1UD,) > p™®(®UD,) for all fair adversaries (see Section
12.4). Hence:
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Theorem 2 Foralls € S: s Epip | Q1 U @y |5, iff pI*(21UD,) I p.

We defer the proof to Section 12.4. It turns out that the satisfaction relation k=, differs
from =g, and = in that only a stronger statement (whose proof is also given in Section
12.4) for formulas of the form [ ®; FU @, |5, can be shown:

Theorem 3 Foralls € S: s Eypir | ©1 U @3 |5, iff pI**(21UD2) > p

Example 5.6 shows that the inequality “> p” in Theorem 3 cannot be replaced by “> p”
as pL (P1UDP,) < p™=(P1UD,) for all F € Ay, is possible.

Example 5.6 Consider the PBTL-structure M of Example 1 where L(s) = L(t) = {a},
L(v) = 0 and L(u) = {b} and the path formula alfb. Then, pf'(aldb) < 1 for each strictly
fair adversary F' (and hence, s g [a U b ]>1) On the other hand, p2 (alfb) = 1 for
the simple adversary A with A(s) = u. Hence, p! (aldb) < 1 but pm“’”(aZ/Ib) 1. (Note
that A is fair, cf. Example 3.8). m

In order to describe how the set of states fulfilling formulas of the form [ ®; U @, |5,
W.I.t. =44 can be computed we first introduce some notation. We define Reache, p-a, ()
to be the set of states which are reachable in § from s via a path where all states — possibly
except the last one — fulfill the formula ®; A =®5. ST (P, @) is the set of all states from
which one can reach a ®,-state via a path through ®;-states. Formally:

Notation 5.7 Reache,r-a,(5) is the set of statest € S such that there is some finite path
w in S with first(w) = s, last(w) =t and w(i) = ®1 A =Dy for all i < |w|. For a simple
adversary A we define Reachél,\ﬁ%( ) to be set of states t such that there is some finite
path w € Path? with first(w) = s, last(w) =t and w(i) = & A=y for all i < |w|. Let

fin

ST(®y,®y) = {s € S: Reacha, n-a,(8) N Sat(Py) # 0}.
Then, S € S—i_(@l, @2) iff pf(q)lbl(I)Q) > 0 for some A € ./4 iff pgn‘“‘((l)lu(bg) > 0.

Example 5.8 For the system of Example 5.6 (Figure 1 with L(s) = L(t) = {a}, L(u) =
{b} and L(v) = () we have Reachor—s(s) = Reachon—s(t) = {s,t,u,v} and Reachop—p(z) =
{z} for x € {u,v}. For the simple adversaries A, B with A(s) = p and B(s) = pu! we
have:

Reach? _,(s) = Reach’, _,(t) = {s,t,u}, Reach’ _,(z)={z}, z € {u,v},
Reach®,_,(s) = {s,v}, Reach® _,(t) = {s,t,v}, Reach? _,(v) = {z}, z € {u,v}.

Moreover, Sat(b) = {u}, Sat(a) = {s,t}. Thus, S*(a,b) = {s,t,u}. m

We define a set T™* (P, ®,y) for which we show that it contains exactly those states s
such that p7 (®,UP,) can be “reached” by a strictly fair adversary (i.e. p7*%* (®1UP,) =
pI (®1UP,) for some strictly fair adversary F).

Notation 5.9 Ifs € S\Sat(®P,) then we define MazSteps(s) = Steps(s). Fors € Sat(P,)
let MazSteps(s, @1, ®y) be the set of p € Steps(s) such that

maz 1Z/{(I>2 Z ,U, maz 1Z/{CI)2)-

D
tesS
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Let Tma:c(@h(b2) = UiZO T~maz(@1,@2) where Tomaz((l)l,(bg) = Sat(éz)U(S\S_F((I)l,(I)Q))

7

and ijaz(q)l,q’ﬁ = Tﬁam(‘bl,@z) U 71]'7,75”(‘1’1,@2) for j > 1. Here,

o T (@1, ®y) is the set of states t € S\ Uje; T/ (P1, Pa) such that Supp(p) C
Uic; 7% (@1, ®2) for some p € MaxSteps(t, @1, q),
) TJ-'E“(<I>1,<I)2) s the set of all states t € S which are contained in some subset T of
S\ (Ui<j T (®q, ®g) U T14™ (D, <I>2)> such that for all u € T':
(i) MazSteps(u,®1,Py) = Steps(u)
(i1) for all p € Steps(u):

Supp(p) € T U [J T (D1, P2) U T[% (D1, By).

1<j

Intuitively, MazSteps(s, ®1, ®2) is the set of steps p € Steps(s) that are “optimal” in the
sense that the maximal probability pI** (®,UP,) is obtained when in state s the distri-

S
bution g is chosen and when all further non-deterministic choices are made “optimal”.

Clearly, p™®(®UD,) = p!'(P,UD,) for all states s € T (P, P,) and strictly fair ad-

S
versaries F. T]**(®1, ®3) denotes the set of states ¢ for which there is such an “optimal”
step p; such that, for all possible successor states (i.e. all states u € Supp()), the max-
imal probability p***(®;UP,) is obtained by a strictly fair adversary under which all
fulpaths starting in u only pass those states that belong to 7;%*(®;, ®5) for some i < j.
1}-’,'3“(@1,@2) is the set of states ¢ where all possible steps are “optimal” in the above
sense and where all possible successor states u either belong to 775 (®1, ®;) or are states
for which the maximal probability p™**(®,U®,) is obtained by a strictly fair adversary F

u

where all fulpaths m € Path,(u) only visit states from T/ (@1, ®5) or U;; T (@1, ®s).

2

Example 5.10 We consider the PBTL-structure of Figure 3. We write 7,"** rather than
T*maav(a’ b)- Then’ pmaz — 1/2’ pmaz — pgaz — pgaz — 1/3’

S5 S4

9

s 1 & /1\* 2
=52 (5)

=0

and py"*® = max{2/3-1/3,2/9} = 2/9. Hence, Steps(s;) = MaaSteps(s;), j = 1,...,5,
Vo = Iy, ¢ MazSteps(sg). Thus, Tg" = S\ S*(a,b) U Sat(b) = {u1, us, us, us, ug, ts, te },
T = {ss}, T3 = {s3, 54}, To1™* = {82}, T55" = 0, T3 = {s1} and T;"* = 0 in all

other cases. We get T™*(a,b) =S\ {s¢}. m

For all s € S\ T™%(®,, ®y) and strictly fair adversaries F, there is a finite path w €
Pathﬁn(s) with F(w) ¢ MazSteps(last(w), ®1,Py) and w(i) = Py A =Dy, i =0,1,...,|w|
Then, pf(q)ll/{@g) < pfggf(w)(<1>1b{<1>2) which yields psF(@ll/{(I)Q) < p?“£(®1U®g). (See Sec-
tion 12.6, Lemma 12.33.) For instance, for the state s¢ of the system in Example 5.10 and
each F' € Aypir, there is some finite path w in Pathﬁ of the form sg = s = ... = s

n

with F(w) = vy ¢ MazSteps(ss, a,b) which yields pf (aldb) < 2/9 = pe® (aldb).

56
Vice versa, a strictly fair adversary F' with F(w) = u; for all w € Pathﬁn with last(w) =
t € T[*(®y, ®3) (where yiy € MazSteps(t) and Supp(u) C T (@1, ®2) for some i < j)
can be defined. For this adversary F, pI'(®1U®,) = p®® (®,UD,) for all t € T™¥ (D, By).
(See Section 12.6, Lemma 12.32). For instance, for the system of Example 5.10 and each
strictly fair adversary with
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Figure 3:

Flw)=wifwe Pathﬁn, last(w) = s1 and w(i) # s1,1=0,1,...|w| -1,

we have pl'(aldb) = p*®(aldb) for all t € T™*(a,b). (Note that there is no fair fulpath
where s3 occurs infinitely often. Thus, pf (aldb) = 1/3 = p7**(aldb) for all F' € A,pir.)
We obtain:

Theorem 4 For all s € S andp > 0:

| P (D UDY) >p 0 if s € T™ (D, D)
S Izsfazr [ Ql U @2 ]ZP — { pgnax((I)IZ/{(I)Q) >p - otherwise.
Example 5.11 For the system of Example 5.10 we have: sg Fgair [ @ U b 529 (but

S6 ):fair [ adUDb ]22/9) and S1 ):sfair [ aJUDb ]22/9. | ]
Corollary 5.12 If s ¢ T™*(®y, ®y) then s FEgpuir [ ®1 YU Do |51.

Example 5.13 For the system in Example 5.6 (Figure 1 with L(s) = L(t) = {a}, L(u) =
{b} and L(v) = () we have S*(a,b) = {s,t,u} and Sat(b) = {u} (cf. Example 5.8). Hence,
T (a,b) = {u,v}. For the simple adversary A with A(s) = u we get p(aldb) = p{(aldb)
and p2(aldb) = 1/2 + 1/2-p{*(aldb). Hence, p2(aldb) = 1. Thus, p™=(aldb) = 1. Since
S te(z) - pm(aldb) = p™®(a,b) = 0 we get MazSteps(s) = {u} # Steps(s). This
yields 77 (a,b) = T7%*(a,b) = 0 and T™*(a,b) = T;"*(a,b) = {u,v}. By Corollary
5.12 we obtain s i [a U b1 as s € T (a,b). m

Next we deal with formulas [ ®; VU ®; |5, and the satisfaction relations =i and =g
The following example shows that p™™(®1UP,) < inf{pl (P1UDPs) : F € Apur} (thus,
s Efuir | ®1 YU P4 |5, while p™n(®,;UPy) < p) is possible. In particular, this example
shows the difference between |=f; and =, and that in Theorem 1(b) the satisfaction

relation = cannot be replaced by =fuir OF Ffair)-
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Example 5.14 Consider the following PBTL-structure M and the path formula a U b.

©fa} |

Then, p2(aldb) = 0 for the simple adversary A with A(s) = pul, whereas pf'(aldb) = 1 for
each fair adversary F. Hence, s Epur [ @ VU b |51 but p™"(aldb) = 0. m

{0}@

S

In order to reduce the question of whether or not a formula of the form [®;VU P55, is
fulfilled w.r.t. =, to an investigation of certain simple adversaries we must find a subclass
of simple adversaries A where the probabilities pZ' (®,U/®;) can be “approximated” by fair
adversaries. In Example 5.14 we saw that the liveness property [ a VU b |1 cannot be
established unless fairness is required. The problem with the simple adversary A is that it
forces the system to stay forever in a “non-successful” state (s) from which a “successful”
state (t) can be reached. In fair adversaries, with probability 1, all states that are reachable
from a state that is visited infinitely often are also visited infinitely often (cf. Lemma
12.5(b) and Lemma 12.6). This explains why pZ (al{b) cannot be “approximated” by fair
adversaries. Thus, in order to handle formulas of the form [®;VU/®y|5, we restrict our
attention to those simple adversaries A in which almost all fulpaths 7 contain a state
s that either fulfills &5 (i.e. s € Sat(Ps)) or where &;UP, cannot be satisfied with a
non-zero probability (i.e. s ¢ ST (®q, P3)).

Definition 5.15 A simple adversary A is called admissible for (®1, o) iff
Reachy, p-g,(s) N ( Sat(®y) U (S\SH(®1,82))) # 0.

for all s € ST (P, Ps). Let Agam(P1, o) be the set of simple adversaries that are admis-
sible for (®q, ®y).

Note that the definition of an admissible adversary depends on the underlying formula
®,UD,. For instance, for the system of Example 5.14, the simple adversary A with
A(s) = p! is admissible for (b,a) (as s € Sat(a) and t ¢ ST(b,a)) but not for (a,b) (as
s € S*(a,b) while t ¢ Reachon-s(s) = {s}). If A is a simple adversary with p2(®,U®,) =
P (&,UD,) for all s € S then A € Aggm(®1, P2). (Since Reachiy g, (s) N Sat(®s) # 0
for all s € ST(®y,®P2).) Hence, by Lemma 12.1 which ensures the existence of such a
simple adversary, p™(®,U®;) = max{p(P,UD3) : A € Agam (P1, D)}

S

Notation 5.16 For s € S, let p®™(®1UDP,) = min {p2 (1UD,) : A € Ay (D1, P2)}.

S

The following theorem states that to handle formulas of the type ®; VU @y w.r.t. =gy it
suffices only to consider the simple adversaries that are admissible for (®;, ®5); proof can
be found in Section 12.5.

S

Theorem 5 For all s € S: s Efur | @1 YU B9 |5, iff p¥™(®1UD,) T p.

If Reachg,p-a,(s) C ST (D1, ®2) and s € Sat(P;) then pl' (®,;UPy) = 1 for all F € Ay,
(see Remark 12.26). Hence, s g [ 1 VU @3 |51. Vice versa, if Reachep-a,(s) &
ST(®y,P;) then there is a finite path w € Pathg,(s) with w(i) = &3 A Py, i =
0,1,...,|w| — 1, and last(w) ¢ ST(Py,Py). Hence, for a fair adversary F with w €
Pathi, (s), we have pf (®1U®;) < 1 — P(w) < 1. Thus:
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Corollary 5.17 Foralls € S: s =pir [ ®1 YU P2 |51 iff Reacho,p-a,(s) C ST(P1, o).

In particular, a concurrent probabilistic system S with initial state s;,; satisfies “qualita-
tive progress properties” expressed by PBTL formulas of the form [ VO® |5, (satisfaction is
understood to be w.r.t. =) if and only if the system is “safe” in the sense that no “dead-
locked” state (a state ¢ from which no ®-state can be reached, i.e. Reach(t) N Sat(®) = ()
is reachable from the initial state s;,;:

Sinit Fpair [ VOP |51 iff Reach(Sinit) € {s € S : Reach(s) N Sat(®) # 0} .

Thus, for verifying “qualitative progress properties” as explained above an analysis of the
“topology” of the system suffices. This result was first established in [33].

Example 5.18 For the PBTL-structure of Example 5.14 we have Reach(s) = {s,t} and
Sat(b) = {t}. Hence, s |=pir [VOb]>1. m

For the case of the =, satisfaction relation we obtain:
Theorem 6 For all s € S: s Egur | @1 YU Dy |5, iff 2™ (D1UD,) > p.

A stronger version of Theorem 6 stating that s Egpir [ P1 YU Py |5, iff p2m(®;UD,) > p
is incorrect, as can be seen from Example 5.19 below. (This example again demonstrates
the difference between =i and =yir-)

Example 5.19 We consider the following PBTL-structure of Figure 1 with the inter-
pretation L(s) = L(t) = {a}, L(v) = {b} and L(u) = (. The simple adversary A with
A(s) = p is admissible for (a,b) since Reach’,_,(s) = Reach’ _,(t) = {s,t,u} and
u € S\ S*(a,b). We have p2(aldb) = 0 but pf'(aldb) > 0 for all F € Ay, Hence,
$ Esfair [ @ YU b 5o while p2@™ (aldb) = 0. m

The next result is an analogue of Theorem 4, in which we show how to deal with formulas
[ @1 YU P, |5, with respect to the satisfaction relation |=gp,. (See Section 12.7 for the
proof). Similarly to the definition of 7™ (®,, ®;) we define a set T (d;, B,):

Notation 5.20 If s € S\ Sat(®,) then we define AdmSteps(s) = Steps(s). For s €
Sat(®y) let AdmSteps(s) be the set of u € Steps(s) such that

pLm (@, ®o) = D plt) - pi™(21UD,).
tes

Let Tadm((I)l,(I)Q) = UiZO T.adm(q)h (1)2) where Toadm((pl’ @2) = Sat(@g)U(S\S+(<I>1,<I>2))

2

and T (@1, @) = TH™ (D1, ®y) U TP9™ (1, ®y) for j > 1. Here,
o THmM(®y, @) is the set of states t € S\ U;o; TP (®1, ®y) such that Supp(p) C
Uic; T4 (D1, By) for some p € AdmSteps(t, D1, P,),

o T4 (D1, ®,) is the set of all states t € S which are contained in some subset T of
S\ (Ui<j T4 (D, By) U TH™ (P, (I>2)) such that for all u € T':

(i) AdmSteps(u, @1, Py) = Steps(u)
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(i1) for all u € Steps(u, @1, Py):
Supp(u) € T U |J TP (@1, ®3) U TH™(P1, By).

1<j

Example 5.21 For the PBTL-structure of Example 5.10 (Figure 3) we get (with 7.%4m =
T (a,b)): ptdm = 1/2, pldm = pidm — padm — 1/3 pedm — ( and p24™ = 0. Thus,

pa ¢ AdmSteps(s1), v1 ¢ AdmSteps(s¢) and T¢*™ = S\ {s1,...,s6}, T'{™ = {ss, 56},
TM™ = {s3, 54}, T3 = {50}, T34™ = 0 and T3{™ = {s,}. Hence, T*"(a,b) = S. m

In Section 12.7 we show that 799 (®,, ®,) is the set of states t € S where p2a™ (®UDy) =
pf (®1, ®,) for some F € Agp. Finally, we obtain a result similar to Theorem 4 charac-
terising the strictly fair satisfaction for formulas of the type ®; ViU ®,:

Theorem 7 Forallse S:

adm ; adm
. ps(@UD,) >p 1 if s € T (D, @)
§ B [0 U D]y = { Pl (@ UDy) > p : otherwise.

Corollary 5.22 If s ¢ T%™ (&, ®y) then s Egpuir | ®1VU Py |5o.

Example 5.23 In Example 5.19 we have T°%" (a,b) = {u,v}. Hence, s Egir [a VU b]so
since s ¢ T (a,b). m

6 Example

In this section we consider an application of the logic PBTL and our model checking
algorithm to a simple distributed protocol. Our intention is to illustrate the necessity
of fairness assumptions in the case of concurrent probabilistic systems. Other known
protocols, such as the alternating bit protocol, can also be specified and verified.

Let P be a concurrent process which sends messages to another process Q along an
uncertain medium M, which possibly loses or destroys messages. In cases where the
messages are lost, M sends a signal to P and P tries again to send the message. We
suppose that neither P nor M nor Q are able to detect whether or not the message is
destroyed in cases when a message is actually delivered to Q. Apart from the sending of
messages, P can also perform some internal actions which we do not specify. We describe
the system from the point of view of an “observer” who does not have access to the local
variables of P. In all variants of the system which we consider we have the following
states:

Singg | the initial state in which P can send messages or perform internal actions
Ssena | the state in which the system is ready to send a message

Spst | the state which the systems reaches when the message sent is lost

Sok the state which the systems reaches when the correct message is delivered
Serror | the state which the systems reaches when the message is destroyed

We assume that M delivers the correct message with probability 1 — ¢ (for some small €)
and that it loses (resp. destroys) the message with probability ¢; (resp. €4 = ¢ — &;). We
consider three variants of the system:
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1. In the first variant (Figure 4), we suppose that the decision whether P attempts to
send a message or performs an internal computations is made non-deterministically
by a scheduler. The execution of internal actions always succeds and leads back to
the initial state.

2. The second variant (Figure 5) extends the first one, where we assume that with
probability ¢ the execution of an internal action of P causes deadlock and leads to
the state Sgeaqiocr in Which the system stays forever.

3. In the third variant (Figure 6) we suppose that, in the initial state, P decides non-
-deterministically either to abandon the delivery mode or to send a message. In the
former case, the system reaches a state s.;; where only internal actions of P can be
performed. The execution of an internal action in s..; leads back to sggi;.

We consider the atomic propositions send, lost and ok and the labelling function L with
a € L(s) iff s = s,. Let pseng be the unique distribution with psenqg(Ssend) = 1 and let
Aseng be the unique simple adversary with Agena(Sinit) = Msend- A% geng denotes the simple
adversary with A% .1 (Sinit) # Hsena in the v-th variant (v = 1,2,3). =", Fju, FEier
denote the satisfaction relations in the v-th variant. The formula

o, = [VO(send — V¥g,) |5, where ¥o, = [ (sendV lost) VU ok |-,

asserts that whenever P tries to send a message (i.e. the system is in the state senq)
then Q will receive the message sometime in the future (i.e. the system reaches the state
Sor) with probability 3 p. For all adversaries A, we have pA((send V lost) U ok) = 0
if s ¢ {Ssend, Swost, Sox} and pfgk((send V lost) U ok) = 1. For each adversary A, the
probabilities p((send V lost) U ok), s € {Ssend, Siost }, are obtained by solving the linear

equation system
1 —& . Psend — 1—-¢
-1 1 Plost 0

which has the unique solution pseng = pProst = (1 — €)/(1 — ;). Hence, for all Adv €
{.A, Afaira -Asfair}:

. {Ssend7 Slost, Sok} o if (1 - 5)/(]— - El) ; p
Sat(Vp) = { {Sor} . otherwise.

As @, abbreviates the formula —[ 3C(send A =¥ o,)]s0, we have
Sat(®o,) = S\ Sat([ IO(send A =¥ 5,)]s0)-

We have:

o If (1—¢)/(1—¢;) 2 p then Sat ([FO(send A =Vo,)]s0) = Sat ([FCsend |so) = S since
Ssena can be reached from all states. We obtain Sat(®-,) = 0.

o If (1 —¢)/(1 —¢;) O p then no state satisfies send A =¥5,. Thus,
Sat ([3O(send A =¥—,)]s0) = 0.

Hence, all states fulfill ®5,. Le., Sat(®5,) = S.
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Figure 4: Variant 1

1-9§
(S send) Gzﬂ’ Sdeadlock

Figure 5: Variant 2

> Sexit

Figure 6: Variant 3
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Thus, for v =1,2,3, Adv € {A, Apir, Aspair }* Sinit Fgp Pp iff (1 —€)/(1 —¢) Jp.

As in [31], “soft deadlines” can be formulated by means of the bounded-until operator.
The following formula ®%, , asserts that whenever P tries to send a message then Q will
receive the message Wlthln at most k£ steps with probability O p.

= [VD (send — \Ilgp) ]21 where U% = [ (send V lost) VU ok I

Since <I>’c = = IO(send A ~TE »)]>0, the algorithm first computes the set of states
satlsfylng [ 3O(send A =¥5,)]s0. In all three variants we have: p%, , = pl. = 0,
psend = 1- g, p;co—:tl = plscend’ pll:;zld = & plost+1 ¢ where p* = ps*( (SendVZOSt) u<k Ok)
and A is an arbitrary adversary. (Then, p* = P in the notation of Lemma 5.2.) Hence,
1—git!

2942 2141 21 2i+1

Piost = Plost = Psend = Psend = 1 - ‘S Zgl - (1 _‘S)'

1—81

With 7 = k£ div 2 we obtain in all three variants:

o If (1—¢/™)(1—¢)/(1 —&) 3 p then Sat(send A ~VE ) = {s,.nq}. Hence, Sat(®L)
consists of exactly those states from which s,.,4 is not reachable.

o If (1—¢/*")(1—¢)/(1—¢&) 2 p then Sat(send A —~¥% ) = ). Thus, all states satisfy
h .

In particular, iy EY%4 @ :,p iff (1—e/™)(1—¢)/(1—¢&;) 3 p where Adv € {A, Aair, Asfair }

and v = 1,2, 3.

The liveness property A5, = [ VOsend |5, states that, in all computations, P will
eventually try to send a message with probability J p. In all three variants we have
Sinit =¥ As1 since for the simple adversary A = A° . we have p2 (tt U send) = 0,
i.e. without any fairness assumptions we cannot ensure that P will try to send a message.

e In the first variant we have: syt Fjy; As1 and Sinig Fypas As1- This follows immedi-
ately by Theorem 5 and Theorem 6 and the fact that in the first variant all states can

reach the state Senq (hence, Reachyp-send(Sinit) € ST (tt, send)).

e In the second variant, Aeng and A2, , are admissible w.r.t. (tt send). Moreover,
A2?,,,.q is fair (but not strictly fair). With A = A2, we have pZ (tt U send) = 0
and therefore, by Theorem 5: p“dm(tt U send) = 0. Hence, S béfw Asy. Since
Adeteps(sWt,tt send) = {lsena} We get Sini ¢ T“dm(tt send). By Theorem 7,

Sinit ):sfazr A>0
e In the third variant, A = A%, is admissible for (tt, send) and p2 (tt U send) = 0.
Hence, Sinit %Adv A>0 where Adv € {-A Afazra sﬁm‘}

7 Time complexity of model checking

The size of the parse tree (the number of nodes) is linear in the length |®|. Let n be
the set of states and m the number of transitions in the underlying PBTL structure. For
every node v of the parse tree where the associated formula ® is tt, an atomic proposition
or of the form —®" or ®; A ®,, the costs for computing the set of states fulfilling ® is O(n).
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The nodes which represent formulas whose outermost operator is the next-step operator
require O(n - m) time, since for every transition u € Steps(s) we have to compute the
sum Y u(t) (cf. Lemma 5.1). Computing the states that fulfill a formula whose outermost
operator is the bounded until operator using the method of Lemma 5.2 takes O(k -n-m)
time, where £ is the superscript of the bounded until operator.

The main contribution of this paper is a method for dealing with nodes representing
formulas of the form | ®; U P, |5, or [ D1 YU @y |5, w.r.t. the fair and strictly fair sat-
isfaction relation. The technical results of the previous section (Theorems 2-7) establish
that in order to compute the sets of states fulfilling formulas of the form [ ®; IU @, |5, or
[ @1 YU Dy |op, W.r.t. FEjair OF Fgpeir One has to calculate the probabilities p*** (®:U®P,) or

8

pYm(D1UD,), and possibly T™% (1, ®y) or T4™ (B, d,). As in [20, 14], p™=® (DU D,) can
be computed by solving a linear programming problem by means of well-known methods.
More precisely, the vector (pT'® (®;UPs))ses is the unique solution of the linear minimiza-

tion problem

zs = 1 if s € Sat(Ps)
zs, = 0 ifse S\ (Sat(Py) U Sat(Py))
T, > Y pt) -z, if s € Sat(Py) )\ Sat(P2) and p € Steps(s)

tesS

where Y ,cs =, is minimal. (Note the slight departure from [14] which proposes first to
compute all states s € S where p*(®,;UPy) = 0 by an analysis of the graph.) The

algorithms with ellipsoid methods have time complexity which is polynomial in n and m.

Computation of ST (®y, ®,): Let G1(P1, P3) be the directed graph (S, E') where (s,t) €
E iff t = &; A =Py and u(s) > 0 for some p € Steps(t). Then, ST (P, Dy) is the set of
states which are reachable in G+ (®;, ®y) from a state s € Sat(Py). Hence, SH(Py, Dy)
can be derived by a depth-first search in G*(®;, ®;). The construction of G*(®q, d5)
needs O(n-m) steps. The time for performing a depth-first search in G is linear in n and
the number of edges in GT(®1, Py). As the number of edges in G (P, ;) is bounded by
min{n?,n - m} we get the time complexity O(n - m) for the computation of S*(®, ®,).

Computation of p2®™(®,;Ud,): We show how to compute the values p®™(®;UP,) by

S S
solving a linear optimization problem. The state space S is split into three parts:

S = SH Dy, By) U SY(By, By) U S (B1, By)
where

SO(®y, @) = {s es: pf(q)lU(IJQ) = 0 for some F' € Ay, } ,
S' (@1, ®;) = {s€S: Reachs,n-a,(s) N S° =0},
S' (@1, ®y) = S\ (S'(®1, D) US (D1, ®y)).

We assume that there are atomic propositions a’ and a° with a’ € L(s) iff s € S*(®;, ®5)
and a° € L(s) iff s € S°(®, Po). In Section 12.5, Corollary 12.27, we show:

Lemma 7.1 For all states s € S: p®™(®UD,) = 1 — p™®(a’UaP).

S S
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Hence, the values p%™(®,;U{®,) can be obtained by first computing the sets S(®;, ®y),
S (®y,®y) and S?(®;,P,) and then computing p?™(®,Ud,) by solving the following
linear optimization problem. Using standard methods of linear programming we calculate
the unique solution of the linear minimization problem

Ts = 1 ifse So(q)l,q)g)
Ts = 0 ifse Sl(q)l,q)g)
> pt)-m if s € SY(®1,Py) and p € Steps(s)

tesS

3
Y

where
Z Ty 1s minimal
SES

and then put p®™ (&, UD,) = 1 — x,.

We describe a method to calculate the set S%(®;, ®,). In Section 12.5, Lemma 12.28, we
show that
SO(®y, Dy) U T;

>0

where Ty = S\ ST(®1, Py) and T}y, is the largest subset of S\ (To U ... UT; U Sat(Ps))
such that for all ¢ € T;,, there is some u; € Steps(t) with:

e Supp(p) CToU...UT;UTi

. . [z
e there is a finite path ¢t = ¢, Hoy g, By ey ty where tg,...,tx_1 € Tj11 and

tr € ToU...UT;.

We compute the sets 71, Ty, ... by the following graph analysis. For s € S, let Steps'(s)
be the set of all u € Steps(s) where u(s) = 0 for all s € Sat(Py). We consider the directed
graph G°%(®,, ®,) where the vertices are

= {1} U {(s, Supp(u) : s € S*(®1,P2) \ Sat(P2), 1 € Steps'(s) }

and where the edges are given by: L — (s, A) iff ANS\ST(®1, Ps) # 0 and (s, A) — (¢, B)
iff s € B. Forv = (s, A) € V\{L}, v.state denotes the first component of v, i.e. v.state =
s. Let Cy = {L}, C1,...,C; be an enumeration of those strongly connected components
of G%(®y,®,) that are reachable from L (i.e. those strongly connected components C
where Cy — C) such that, whenever C; — C; for some i € {1,...,1} then i < j.* Let

Co-states = S\ ST (@1, Dy), Cj.states = {v.state:v e C;}, 1=1,...,1.

The set S°(®;, P,) can be computed with the following method.

(1) I:={0}

(2) Forj=1,...,ldo
If{ie{l,...,j—1}:C; — C;} C I then I := I U{j}

(3) Return S° = ;¢ Ci.states.

‘Here, we write C; — C; iff there exists v € C; and an edge v —+ w for some w € Cj.
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Clearly, G°(®, ®,) has at most m vertices. Hence, the computation of S°(®;, ®,) takes
O(m?) time. Thus, the sets SO(®,, ®,), S1(®,, D,), S” (P, P;) and the values p2a™ (D, UD,)
can be obtained in time polynomial in the size of the system.?

Example 7.2 We compute the probabilities p™(aldb) for all states s in the PBTL-

structure that is shown in the following picture. Here, we suppose that L(s;) = {a},
L(t;) = {b} and L(u) = 0.

¢)—Q

The outgoing transitions from the states ¢; and u, are omitted since they are irrelevant for

the truth value of the path formula al/b. Before we explain how our method for computing
adm

™ (aldb) works we observe that the desired result is p24™ (aldb) = 0, p?j,dm (aldb) =1 and

U
3/8 : ifi=1

peim(aldb) = ¢ 1/2 : ifie {2,3}
0 ;o if ¢ =4,

Note that there are two simple adversaries A, and A,. These are given by A,(s1) = p
and A,(s1) = v where v = p . It is easy to see that A, is admissible for (a, ) while A,
is not. Let A = A,. Then, pt™(aldb) = p(aldb). We have p;(aldb) = 1, p; (aldb) =
p;‘i(aljb) =0, k = 1,2,4. The probabilities p; = p;“i(aL{b), i =1,2,3, can be obtained by
solving the linear equation system

1 -1 —; P 1/8
0 1 -2 pp | = | 1/6
-+ 0 1 P3 3/8

whose unique solution is p; = 3/8, p = p3 = 1/2.

Now we show how the method for computing p2®™ (aldb) described above works. First,
we compute S*(a,b), S°(a,b), S*(a,b) and S?(a,b). Secondly, we have to calculate the
probabilities p™ (a’Ua®). For computing S*(a, b) we consider the directed graph G*(a, b)

which is of the following form.

5Note that the set S'(®;, ®2) can be derived from S°(®;, ®3) by a reachability analysis in G (®;, ®).
More precisely, S \ S*(®1,®P2) is the set of states that are reachable from a state s € S°(®,®P,) in
Gt (®,,®;). Thus, S'(®;,®,) can be obtained in time O(n - m).
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We compute St (a,b) as the set of states that are reachable from ¢; or ¢, (as they satisfy
b) and obtain ST(a,b) = {t1,ts, 1,82, s3}. For the computation of S°(a,b) we consider
the following directed graph G°(a, b):

O—G@mD) Gl

(Note that Steps'(s2) = Steps'(s3) = 0 and Steps'(s1) = {u.,}.) We compute the strongly
connected components of G°(a, b) that are reachable from 1| and obtain Cy = {1} and
01 = {(84, {U4})} Hence,

S%(a,b) = {u,us, us, 54}, S'(a,b) = {t1,t2}, 5?(6% b) = {s1, s2, 53}

Thus, pj**(a’Ua’) = pji**(a’Ua®) = 1 and p***(a’Ua’) = 0. For computing the values

k
p(a’Ual), i = 1,2,3, we solve the following linear optimization problem:

1 1 3
xsl Z % . ~T53 + %xSQ + FE .Tsl Z '/Llsl
Ty 2 5 Tty

1
:I"S?, 2 3 - xsl + 24

where x5, + x5, + x5, is minimal. We obtain

maz (7 0y _ _ 5/8 cifi=1
Py, (aua)—xSi_{l/Q : ifi€{2a3}'

Thus, our method yields

1 : ifs e Sl(a, b) = {tl,tg}
adm _ __ omaz (7 0y _ 0 :ifse So(aa b) = {ula U, Ug, 34}
ps (a’ub) =1 ps (a Z/{CL ) - 3/8 . lf § =8

1/2 : if s € {s9,s3}
as desired. m

Computation of 7™ (®,, ®y) and T (d,,dy): We give an algorithm for the com-
putation of 7™ (®;, ®,). (The computation of 7% (®d,, ®,) is similar; one only has to
replace MazSteps(-) by AdmSteps(-)). First we compute MazSteps(s) for all s € S and
set T = Sat(Py) U (S\ ST(P1,P2)) and U = {v € S\ T : MazSteps(s) # Steps(s)}.
We compute the strongly connected components in the directed graph (S '\ (7" UU), E)
where (s,t) € E iff pu(t) > 0 for some p € MazSteps(s) = Steps(s). Let Cy,...,Cy be
an enumeration of the strongly connected components which satisfies: if s € C}, s' € ()
with (s,s') € E then [ < j. Fori=1,...,k we compute the set W; of states w € S\ T
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such that pu(w) > 0 for some u € Steps(s) and s € C;. Let Z be the set of pairs (V, W)
such that V', W are nonempty subsets of S\7T and V = {v € S\T : u € MazSteps(v)},
W = {weS\T: u(w) > 0} for some distribution p. For z € Z we denote the first
component of z by 2.V, the second component by z.Wand we define |z| = [2.W]. Let Sy
be the set of states s € S\ T" with s € 2.V for some z € Z with |z| = 0. We successively
modify Sy, T and |z| by the following procedure:

Fori=1,2,...,k+1 do:
(1) While Sy # 0 do:
(1.1) choose some s € S
(1.2) Sp:=So\{s}, T:=TU{s}
(1.3) For all z € Z do:
(1.3.1) If s € 2.W then |2| := |z| — 1.
(1.3.2) If |z| = 0 then Sy := Sp U (2.V \T).
(2) Ifi <kand W; C C;UT then Sy := SoUC; \ T.

Then, T™ (&, ;) = T.

Example 7.3 We consider the PBTL-structure Example 5.10 (Figure 3). Then, u, s €
MazSteps(s1) and MazSteps(sg) = {v1}. We obtain U = {sg} and T' = S\ {s1,-..,56}-
We first compute the strongly connected components of the directed graph

E)—>)

/

)—&)

N

and obtain 01 = {85}, 02 = {83, 84}, 03 = {82}, 04 = {81} and W1 = @, WQ = {83, S4, 85},
W3 = {s3, 84}, Wy = {59, s¢}. Initially, the set Z consists of the pairs

({853, 0), ({ss}, {s5}), ({ss}, {sa}), ({54}, {3, 54}),
({s2}, {83, 54}), ({s1}; {s2}), ({s1} {s6}), ({56}, {s6})-

This yields Sy = {s5}. In the first iteration step (i = 1), we first remove s from Sy and
obtain Sy = {s3} and s; € T. Then, we remove s3 from Sy and obtain Sy = 0, s3 € T.
Thus, in the second iteration step (i = 2), step (1) is not applicable (since Sy = 0). In
step (2) we have Wy = {s3, 54,55} C Co UT and obtain Sy = {s4}. The third iteration
step (7 = 3) removes s; from Sy and yields Sy = {s2}, s4 € T. Then, we remove sy from
So and obtain Sy = {s1}, s € T. Finally, we remove s; from Sy and get Sy = () and
s1 € T. In the iteration steps ¢ = 4,5, only step (2) is applicable that yields Sy = (). The
algorithm returns 7% (a,b) = S\ {s¢}. m

For the computation of MazSteps(-), the set U, the components C1,...,Cy and the sets
Wi, ..., Wi we need O(n - m) time. (Note that for the computation of MazSteps(s) we
have to calculate the sum > ,cq p(t) - p™*(d;UD,) for each p € Steps(s). As G has at
most min{n?,n-m} edges and as the strongly connected components of a directed graph
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can always be computed in time linear in the number of states and edges, the computation
of C1,...,Ck takes O(n - m) time.) In what follows, Ty denotes the initial value of T,
i.e. the set Sat(®y, Py) US\ SH(Py, Py). For the computation of Z and the function |- |
we suggest the following method. Let si,...,s be an enumeration of the elements of
S\ Tp. We construct a binary tree by successively inserting nodes and edges where each
node y is labelled by a natural number |y| and a subset y.WW of S\ T;. The leaves of the
resulting tree correspond to the elements of Z. Each leaf z has depth [ and is labelled
additionally by the set z.V. We start with the tree of depth 0, i.e. the tree consisting of
its root yo which we label by |yo| = 0 and yo.W = 0. Then, for each s € S\ Ty and each
u € MazSteps(s) we traverse the tree in the following way:

e If we have reached a node y of depth £ — 1, £ < [, then:
- If y has a left son z and u(sg) > 0 then we go to z.
- If y does not have a left son and pu(sg) > 0 then we create a new left son z of y
where we set |z| := |y| + 1, 2.W :=y.W U {s} and, if k =, 2.V := (). We go to z.
- If y has a right son z and pu(sx) = 0 then we go to z.

- If y does not have a right son and pu(sx) = 0 then we create a new right son z of y
where we set |z| := |y|, 2.W = y.W and, if £k =1, 2.V := 0. We go to z.

e If we have reached a node z of depth [ then we set 2.V := 2.V U {s}.

This method takes O ( l-Yses\m, |MaxSteps(s)| ) = O(n-m) steps. (Note that [ =
S\ To| < n.)

In what follows, we suppose the sets T, C'1,...,C} and z.W for z € Z to be represented as
boolean vectors (one bit for each state s € S\ Tpy) and that each of the sets Z, Wy, ..., Wy,
So and z.V for each z € Z is represented as a list consisting of pointers to their elements.
Then, the test in (1) and steps (1.1), (1.2) can be performed in constant time. Step (1.3)
can be performed in time linear in the size of Z. As |Z| < m we get the time complexity
O(m) for step (1.3). As each state s € S\ Ty can only be chosen once in step (1.1) the
while-loop can be performed at most n-times. Hence, ranging over all 7 € {1,2,... . k+1}
and all executions of the while loop we need O(n - m) time to perform steps (1.1),(1.2)
and (1.3). Ranging over all i € {1,2,...,k} we need
k

Zl O(Wil) = O(IS\(LuU)|) = O(n)

iz
time for step (2). We conclude that the time complexity of computing 7™ (®;, ®,) by
the method described above is O(n - m). Summing up over all nodes in the parse tree we
obtain the time complexity

O (|<I>| : (kq’-n-m—i-p(n,m))).

Here, p(n, m) is a function that is polynomial in n and m (the time for computing p™**(-)
and p2m(-) by solving a linear optimization problem) and k® is either 1 (in the case
where ® does not contain the bounded until operator) or the maximal value & such that
® contains a subformula of the form [ ®; FUSF &, |5, or [ &; VUSF @, |,. Le., the time
complexity is polynomial in the size of the structure and linear in the size of the formula.

The space complexity is O(|®|-n+mn-m). ¢

6The representation of the set associated with each node v of the parse tree requires O(n) space. For
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8 Fairness a la Vardi

Our method can be easily modified to deal with the original definition of fair adversaries
in the sense of Vardi [58] which requires fairness w.r.t. the non-deterministic choices in
certain (but not all) states. For the rest of this section, M = (S, L) is a PBTL-structure,
S = (S, Steps) and W C S.

Definition 8.1 A fulpath m in S is fair w.r.t. W iff for all s € inf(m) N W and all
u € Steps(s) there are infinitely many indices j > 0 with step(w,j) = u.

Fairness w.r.t. W = S (in the sense of Definition 8.1) is weaker than fairness of a ful-
path in the sense of Definition 3.5. (Note that in Definition 8.1 we do not require that
step(m,j) = p and 7(j) = s.) Vardi’s notion of fairness adapted to our model for concur-
rent probabilistic systems is the following:

Definition 8.2 An adversary F is called fair w.r.t. W iff, for all s € S, the measure of
the set of fulpaths m € Pathf;l(s) which are fair w.r.t. W is 1.

Let A;Zir be the set of adversaries which are fair w.r.t. W and let ):}er be the induced
satisfaction relation. As each fair adversary A (in the sense of Definition 3.7) is fair
w.r.t. W, Theorem 2 carries over to the satisfaction relation =} :

Theorem 8 Foralls € S: s =, [ @1 3U O3 |5, iff pl* (1UD,) I p.

Proof: follows by Theorem 1(a), (cf. Lemma 12.1), Theorem 2 and A C A},

air”

Definition 8.3 A simple adversary A is called admissible for (1, ®y) w.r.t. W iff for all
s € S+(©1,(D2).'
Reachy g, () N (Sat(¢>2) U S{?V) # 0.

Here, S = Uiso Sep’ with Sy = S\ ST(®y, ®y) and, fori > 1, Syt = Siy™t U Si™?
where U™ = 852U S U...USH ™" and
o Syt = {t € S\ (U™t U Sat(®,)) : A(t,u) > 0 implies u € Uy ™ }
o Si"? consists of all those states t € T where T C S\ (Upy" " U Siy™' U Sat (D)) such
that:
- for allt € TOW and p € Steps(t): Supp(p) C T U (U ™" U Si™")
- for allt € T\ W: A(t,u) > 0 implies u € T U (U U S™).

AV (&1, ®,) (abbreviated AY, ) denotes the set of adversaries which are admissible for
(®1,®y) w.r.t. W. For s € S we define p®™w (®,Udy) = min{p (&, UP,) : A € AV, 1.

Clearly, if A € AV
S N Sat(®,) = 0).

s € Si then Reachy ,_g,(s) C Sfi and p2(®:UDy) = 0 (as

adm

the PBTL-structure itself we need O(n-m) space (where we neglect the space needed for the representation
of the labelling function L). For the computation of p™®(®1U®P2), p™"(S1UD,) or pd™ (D1 UD,) we
need O(n?) space while the computation of the sets 7™ (®;, ®,) or T*™ (&, ) needs O(n-m) space.
(Note that n < m.)
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Remark 8.4 If A € Agmpie then A is admissible for (®,, ) w.r.t. W = S if and only if
A is admissible for (®;, ®,) in the sense of Definition 5.15. Note that when W = S then
Reachly n5,(5) N (S\ S*(®1,®2)) # 0 for all s € Siy,. In the case where I is a proper
subset of S, Reachy, p p,(s) N (S\ ST(®1,P,)) might be empty for some state s € Sip.
For instance, consider the following PBTL-structure.

{0} @ {a}@——©{b}

Let W = {w}. We have S*(a,b) = {s,t,w}. Hence, Si° = . Then, Si"' = 0 and
St = {t,w}. Thus, S& = {t,w} and Reach?, _,(z) N S{ # 0, z € {t,w}. Hence, the
simple adversary A with A(t) = u. is admissible for (a,b) w.r.t. W = {w}. On the other
hand, Reach?,_,(w) N (Sat(®;) US\ St(a,b)) = {t,w}n{s} =0 which yields that A is
not admissible for (a,b) in the sense of Definition 5.15. m

Theorem 9 Forall s € S: s Ep;, [ O VU By |5, iff pld™w (®1UD,) 3 p.

The proof of Theorem 9 can be found in Section 12.8. Similarly to the results stated in
Section 7 we have:
Pyt (@1UB,) = 1 — Pl (ayUayy,)

where a};, a¥, are atomic propositions that characterise the sets S, = S\ (S§ U S%)
and Sp,. Here, Sp, is the set of states s € S where pl'(®:U®,) = 0 for some F € A,
and Sj, = {s € S : Reachg,p-a,(s) N Sy = 0}. SY and S}, can be computed with
graph theoretic methods (cf. Remark 12.48 and see the proof of Lemma 12.40 for a graph
theoretic characterization of S3,). Thus, the values p®™ (-) can be obtained by solving
a linear optimization problem.

Theorems 2, 5, 8 and 9 show that the satisfaction relations |=fq and =7, coincide,
although fairness w.r.t. S (in the sense of Definition 8.1 with W = S) does not coincide
with fairness in the sense of Definition 3.7. It is clear that fairness w.r.t. a proper subset
W of S induces a satisfaction relation which differs from =g, (e.g. in the example in
Remark 8.4 we have t =por [ a VU b |1 while ¢ R [ a YU b ]51).

Example 8.5 Consider the path formula al/b and the PBTL-structure of Figure 7 where
W = {wy, ws}. Let A be a simple adversary with A(w;) = p; , A(ws) = p,,, and A(vy) =
ph . Then, Sp° = 0, Syt = {u}, Sip™* = 0, Sy = {w1} and Si™? = {wy, v}
Thus, S = {v1, v, w1, ws}. Hence, A is admissible w.r.t. W. We get p2™w (aldb) = 0
for z € Sif,. Hence, pf™™" (aldb) = 1/5. By Theorem 9: t =i [ @ YU b |05 On the
other hand, ¢ {5, [ a YU b |51 while ¢ Fpyip [ @ YU b ]51. (Note that pi®™ (aldb) = 1 for
all z € S\ {t}. Hence, pf¥™(aldb) =1.) m

9 Model checking for PBTL*

Similarly to the way in which CTL" extends CTL [24], our logic PBTL can be extended
to a much richer logic PBTL* which allows more complex path formulas, i.e. arbitrary
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combinations of path formulas by the boolean connectives and the operators X and U.
This logic (more precisely, the logic pCTL* which essentially coincides with PBTL") was
already considered in [14]. In contrast to [14], where fairness is not treated, we also allow
the interpretation of PBTL" over fair or strictly fair computations. [14] presents a model
checking algorithm for pCTL* (corresponding to PBTL" with the standard interpretation
=) which uses the model checker for pCTL and runs in time polynomial in the size of
the concurrent probabilistic system and triply-exponential in the size of the formula. The
main idea of [14] for reducing the complexity of the model checking problem for pCTL*
to the model checking problem for pCTL is the use of normal forms for path formulas.
[4] proposes an alternative method, which is based on the representation of linear time
formulas by w-automata and runs in time polynomial in the size of the concurrent prob-
abilistic system and doubly-exponential in the size of the formula. (Thus, the method of
[4] is optimal by the results of [21].)

In this section, we briefly explain how the model checking procedure of [4] can be modified,
thus yielding a model checking algorithm for PBTL* when interpreted by means of a
satisfaction relation that involves fairness.

PBTL" consists of state formulas and path formulas which are recursively defined:

1) tt and all atomic proposition are state formulas.
2) If &, ®;, ®, are state formulas then =® and ®; A $, are state formulas.
4

(
(
(3) If ¢ is a path formula, p € [0,1] then [ 3¢ |5, and [ V¢ |5, are state formulas.
(4) If @ is a state formula then ® is a path formula.

(

5) If ¢, @1, @y are path formulas then —p, ¢1 A o, X and p1Upy are path formulas.
Replacing (4) and (5) by
(6) If @, &y, @, are state formulas then X® and ®;UP, are path formulas.

we obtain the logic PBTL (where e.g. the PBTL" formula [ V(®1U®,) |5, is identified
with the PBTL formula [ ®; YU @5 |5,). As usual, Cp = ttU ¢ and Op = O
Given a PBTL-structure M = (S, L) and a subset Adv of A = A(S), the satisfaction
relation =44, is defined in the obvious way. For instance, s =440 [ V( X(®1UDs) ) |5, iff

Prob {r € Pathjy(s) : 7 =pa0 X(2:1UD,)} D p for all A € Adv. Here, 7 =pqy X(21UD,)
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Figure 8: The roulette player
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iff there is some j > 1 with 7(j) = ®2 and 7(i) = ®; for all 1 < i < j. As before, =,
F=fair and =g denote the satisfaction relation w.r.t. Adv = A, Ayr, Aspair respectively.

Example 9.1 Figure 8 shows a simplified roulette player who keeps placing bets until
his wife comes to the casino (we assume that the player is infinitely rich). We use the
atomic propositions won and stop together with the interpretation L(Syen) = {won},
L(Sst0p) = {stop} and L(s,) = @ for the other states. The formula ® = [ 3¢ |51/ where
¢ = O(won A Xstop) states that, with probability at least 1/2, the player leaves the
casino having won the last game. Observe that the validity of ® cannot be established
unless fairness assumptions are made. Formally, s;,;; =, ® where * is fair or sfair while

Sinit l;é (ONN |

Before we explain how the model checker of [4] for pCTL* w.r.t. = can be modified, thus
yielding model checking procedures for PBTL" w.r.t. =juir and =y, We give an example
which shows that — in contrast to our results of Section 5 — an analysis of the simple
adversaries is not sufficient when one uses PBTL".

Example 9.2 Let ¢ be the path formula Xb — Oa and ® = [ V¢ |>1. We consider the
following PBTL-structure.

(0.0} {)O—@ 0
‘\_J

Then, p2(¢) = 1 for all simple adversaries A, while pf'(¢) = 0 for the fair adversaries F’
with F'(s) = p; and F(w) = p, for all paths w with last(w) = s and |w| > 1. This example
also shows that, unlike in Theorem 2, a result stating that sup{p. (p) : F € Apir} =
sup{p2(p) : A € A} cannot be established. =

The model checker of [4] when applied to PBTL* w.r.t. = successively computes the set
of states satisfying a state subformula of the given state formula ®. Since s =44y [ Voo |5p
iff s =aaw [ 3(—¢) |5, , (Where > => and > =>) only the case where ® has the form
® = [Jp]o, is of interest. The state subformulas occurring in ® can be viewed as atomic
propositions. We briefly sketch how to modify the method of [4] in order to obtain a
model checker for PBTL* w.r.t. =fr and =i This modification has been suggested
by Luca de Alfaro [5].

We consider a state formula ® = [ dp |5, where we assume that the state subformulas
®y,..., P, of p are atomic propositions. As in [4], we use the results of [59, 54] for
constructing a deterministic Rabin automaton A = (St, qq, Alph, 6, AccCond) with state
space St, initial state qo € St, alphabet Alph = 2{®1--®} transition relation & : St x
Alph — St and acceptance condition AccCond = {(H;,K;) : j = 1,...,7} such that the
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set. AccWords(A) of accepted words over Alph is the set of words over Alph that satisfy
¢ (w.r.t. the usual satisfaction relation for linear time formulas built from the atomic
propositions ®1,. .., $,, the boolean connectives and the temporal operators X and U).
Formally, AccWords(A) is the set of words a = apa; ... over Alph such that for the induced
word q = qoqy - -. over St (i.e. ;11 = (q;,a;) for all 4 > 0) and for some j € {1,...,r}:
inf(q) C H; and inf(q) N K; # 0. (inf(q) denotes the set of states q € St that occur
infinitely often in q.) The size of A is doubly-exponential in |¢|.

We construct a new PBTL-structure M' = (§', L"), §' = (S', Steps'), where S’ = S x St,
u' € Steps'(s,q) iff there exists u € Steps(s) with

en = {30 ™

and L'(s,q) = L(s). We define K; = S x K;, H; =S xH;, j =1,...,7. We embed S
into S’ = S x St as follows: for s € S, let q; = d(qo, L(s)) and sa = (s,qs). Each fulpath
T:s=s02 s B ... in S induces a fulpath 7’ in S’ which is given by:

! !

Sa = (805p0) ﬂ} (Slapl) &? --+y Po=4ds, Pi+1 = 5(Pi,L($i))

and where pf (¢, p) = p;(t) if p = 0(pi—1, L(si—1)), and otherwise y;(¢, p) = 0. The functions
Pathsy(s,S) = Pathp(sa,S'), m — 7', yield a one-to-one correspondence between the
fulpaths of S starting in s and the fulpaths of &' starting in sa such that a fulpath 7
in § is fair (strictly fair) if and only if the corresponding path 7' in &' is fair (strictly
fair). Moreover, each fair (strictly fair) adversary F for S induces a fair (strictly fair)
adversary F' for &' with Pathﬁl(sA) ={r":7me Pathf;l(s)} and vice versa. Identifying
each fulpath 7 in & with the corresponding fulpath #’ in &', the associated probability
spaces on Pathf;l(s) and Pathflzll(sA) coincide. For j =1,...,7, let U} be the union of all
subsets 7" of H; such that for all ' € T":

(1) Supp(p') CT' for all y' € Steps'(t')
(2) Reach(t')N K} # 0
Let U' = Ui<j<, U; and let az; be an atomic propositions with a;; € L'(s') iff ' € U'. Tt
is easy to see that for all F' € A (S'):
Pl (Cay) = Prob{r' e Pathﬁl(s', S') : word(n") € AccWords(A)}
where word(7') = L'(7'(0))L'(7'(1)) . ... Hence, for all s € S:

S Ffr [30]3p < SA Ffair [HOCLIU Jop
S ):sfair [HQD ]Qp <~ SaA ):sfair [E]OCLIU ]QP

We obtain Sat(®) by computing the probabilities pI*** ($ay,) for the PBTL-structure M.

This can be done by means of the methods describeAd in Section 5.

Example 9.3 We apply the method described above to the PBTL-structure of Example
9.1 and the formula ® = [VO¢]>1/5. The following Rabin automaton with acceptance
condition AccCond = {(St,{qo,q:})} accepts the words satisfying —~C¢p = =O(won A
X stop).
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{won}, {won, stop}

\ N t
e 0 = {stop}, {won, stop} )

(J J

0, {stop} {won}

The PBTL-structure M’ is of the following form (where states that are not reachable from

(Sinit, do) = 6(do, L(Sinit)) are omitted).
N W

—> (Sstop q

For the acceptance condition (H,K) = (St, {qo,q:}) we get H' = S" and K' = {(s,q;) : s €
S,1=0,1}. Thus, U’ contains (S;os,q0) and (Ssp, do) but none of the other states shown
in the picture above. We obtain pf (<®af) = 1/2 for each fair adversary F'. Hence,
Sinit Ffair (37C@]51/2 Which yields sinit Fpair [VOP]>1/2 (as stated in Example 9.1). m

Slostr 90

When dealing with the satisfaction relation ):}/er the definition of U’ has to be changed.
We define W’ = W x St and U’ = U, <<, Uj where U; is the union of all subsets 7" of H;
such that for all ¢’ € T":

(1) It ¢’ e W', ' € Steps'(t') then Supp(u') C T'.
(2) If ¢ ¢ W' then there is some p}, € Steps'(t') with Supp(uy) C 1"
(3) Reach(t',S;) N K # 0 where Sy = (S', Steps) is a concurrent probabilistic system
such that:
o If ¢ € (S'\T")U (T"NW') then Stepsy(t') = Steps'(t').
o If ¢ € T\ W' then Stepsy(t') = {uy} where uj, € Steps'(t') with Supp(uy,) C T".
Let az; be an atomic proposition with aj; € L'(s') iff s € U'. Then, s =, 3], iff
Sa Efair [30ay]2p-

10 Related work

Apart from the temporal logic framework, probabilistic extensions of equivalence rela-
tions and preorders have been investigated and applied to the specification and verifica-
tion of probabilistic processes; most are suitable for the formulation of qualitative and
quantitative properties, see e.g. testing preorders [18, 62, 60, 39, 48, 47|, bisimulation
[41, 42, 36, 55, 10] and various kinds of simulations [38, 55, 61, 56, 57, §].

Several authors presented verification methods for proving qualitative properties of con-
current probabilistic systems (e.g. [33, 49, 32, 58, 50, 59, 19, 2, 3, 51, 21]), but only a
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minority of them deal with fairness. [49, 50, 51] use fairness w.r.t. the probabilistic choices
(extreme or a-fairness), rather than the non-deterministic choices, in order to verify qual-
itative properties of probabilistic proceses with non-probabilistic methods. [33] presents a
decision procedure for checking that a given liveness property is fulfilled with probability
1 in all fair computation trees of a concurrent probabilistic system. [58] extends the re-
sults of [33] and presents a verification method for showing for a concurrent Markov chain
whether or not a linear time formula holds with probability 1 for all fair computations.
Our method is more general, as it allows to verify properties which hold with probability
> p for some p € [0, 1].

Verification methods for proving quantitative properties of probabilistic systems can be
found in [20, 21, 31, 45, 52, 56, 6, 14, 4, 37, 34]. [21] investigates the complexity of
model checking for (sequential and concurrent) probabilistic systems and presents an
algorithm which tests whether a sequential Markov chain satisfies a linear time formula
with probability 1. This algorithm computes the exact probabilities, and hence can also be
adapted to the verification of quantitative properties of sequential probabilistic processes.
[31, 6] deal with sequential Markov chains (and families of sequential Markov chains,
called “generalized Markov chains” in [6]) as models for probabilistic systems and present
model checking algorithms for probabilistic extensions of CTL. [37] gives a model checking
algorithm for sequential Markov chains against probabilistic linear time specifications.

In contrast to the above threshold-based probabilistic extensions, which define a proba-
bilistic formula as being true if the probability of the corresponding event is above the
threshold level (e.g. is at least p for some p in the [0,1] interval), [34, 35] present a non-
standard interpretation for the modal mu-calculus over sequential Markov chains with
action labels. The operators pz.¢/vz.¢ are interpreted as least/greatest fixed points over
the infinite lattice of maps from states to the unit interval, and a quantitative model
checker for a fragment of the mu-calculus based on linear programming is given. Indepen-
dently, [46] propose a similar interpretation of a temporal logic based on expectations and
derive a suitable axiomatisation, but neither model checking nor fairness is considered.

The models for concurrent probabilistic processes used in [20] are based on concurrent
Markov chains, and it is shown that the verification problem w.r.t. a specification given
in the form of a set of w-regular languages can be reduced to a linear programming prob-
lem (and thus yields a polynomial time method to verify concurrent probabilistic systems
w.r.t. a specification expressed in some temporal logic). [14, 4] deal with a model similar
to ours. The logic pCTL considered in [14] agrees with our logic PBTL (cf. Section 4), and
is extended in [4] by an operator to express bounds on the average time between events.
However, the issue of fairness is not treated in [14, 4]. [14] (and [4]) give model checking
algorithms for pCTL and pCTL* (and the extended versions). Although the logic pCTL*
considered in [14] is capable of expressing fairness of execution sequences, formulas stat-
ing the existence or non-existence of (strictly) fair computations with certain properties
cannot be expressed in pCTL*. Hence, the model checking algorithm for pCTL* of [14]
does not yield a method for proving quantitative properties of concurrent probabilistic
systems assuming fairness of schedulers that resolve the non-deterministic choices.

[45, 52, 56] formulate proof rules for establishing quantitative (timed) progress properties
for randomized distributed systems which can be combined with several notions of fairness,
but model checking is not considered.
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11 Concluding remarks and further directions

We have presented an algorithm for model checking of a probabilistic branching time
logic PBTL assuming fairness of choice, and also proposed modifications of existing model
checking procedures for PBTL" [14, 4] to cater for fairness. The algorithms have applica-
tions in the specification and verification of concurrent probabilistic systems, for example,
fault-tolerant systems or distributed systems with uncertainty. In many such systems it is
essential to allow non-determinism, which arises through a scheduler or external interven-
tion, as well as probabilistic choice. To the authors’ knowledge, this is the first attempt
to formulate an automatic method to verify quantitative properties of such systems which
takes fairness into account.

Following [55] we consider a model of concurrent probabilistic systems which can be de-
composed into a collection of “computation trees”. These computation trees arise through
selecting one of possibly many probability distributions available in a state, with the
choices being made by the so called “adversaries”, or “schedulers”. We define fair and
strictly fair adversaries by adapting Vardi’s notion of fairness to our setting. The branch-
ing time quantifiers 3 and V range over adversaries. We consider three interpretations
for PBTL: the first (k=) is standard (quantification is over all adversaries), while for the
remaining two interpretations we restrict the class of adversaries to the fair adversaries
(Ffair) and the strictly fair adversaries (=) respectively. While the difference between
Ffair and =gpir turns out to be only marginal (cf. Theorems 2-7), the difference between
= and i (Or i) reflects the familiar statement that certain liveness properties
(e.g. the progress property in Section 6 which asserts that whenever the system is contin-
uously able to send a message it will eventually send the message) can only be shown when
appropriate fairness assumptions are made. We obtain, in our opinion, a surprising re-
sult: that to verify properties w.r.t. =fair and =g an examination of simple adversaries,
known to be extremely unfair, suffices.

The algorithm presented here allows the verification of “quantitative” properties, i.e. those
which state that something holds with probability > or > p for p in the interval [0, 1].
Our model checking method for PBTL has the same time complexity as the one proposed
in [14] (where fairness is not considered). Both run in time polynomial in the size of the
system and linear in the size of the formula. The time complexity of the model checker
for PBTL* depends on the size of the formula and the size of the model, and is in line
with the expected complexity of verification for concurrent probabilistic processes [58, 21].
Model checking for PBTL* (with or without fairness assumptions) can be done in time
doubly-exponential in the size of the formula and polynomial in the size of the system.

Alternatively, instead of computing the exact probability one could calculate lower and
upper bounds on the probabilities of quantitative properties in the sense of [34, 46]. We
expect this to be more efficient, although clearly at a cost of some loss of information.
We investigate this issue in more detail separately [13]. Of course, these lower and upper
bounds still apply when we range over fair (or strictly fair) adversaries, as opposed to all
adversaries, but they cannot help in establishing (qualitative or quantitative) properties
that are not satisfied unless fairness assumptions are made. Another direction worth
pursuing is an investigation of whether the (multi-terminal) BDD method [17, 9] can be
applied in this case to yield efficient procedures.
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One possible use of our algorithm might be to test whether a probabilistic process meets
its specification with a given probability p when the specification is given in the form of a
collection of “canonical” formulas of a non-probabilistic logic such as C'TL. For instance,
given a canonical CTL safety formula YOp (where ¢ is a propositional formula) and a
probabilistic process P — described by a concurrent probabilistic system & and an initial
state — our method, applied to the formula [ VOg |>, and one of the satisfaction relations
=, Efair OF Eypir, yields whether P satisfies VOg with probability p when the adversaries
(or the environment in which P works) that resolve the non-deterministic choices in P
obey the restrictions associated with the chosen satisfaction relation.

Finally, it is an open question whether satisfiability of PBTL (or PBTL") is decidable
w.r.t. any of the satisfaction relations, and — closely related to decidability — whether
the synthesis of probabilistic processes fulfilling a given specification in the form of a
satisfiable PBTL formula can be performed automatically.
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12 Appendix: Proofs of Main Results

This section includes the proofs of Theorems 2-9 which we have used to derive the model checking
procedure. We include them for the sake of completeness.

First, we explain some additional and simplified notations used throughout this section. We fix
a PBTL-structure M = (S, L) where S = (S, Steps) and two PBTL formulas ®; and ®3 which
we treat as atomic propositions. We use the following abbreviations in the proofs. We shortly
write St rather than S*(®1, ®,), pZ instead of p2(21UD,), p™* instead of p™® (B1UD,), ptdm
instead of p2¥™(®U®,), p™™ instead of p™"(®;UP;). Similarly, we abbreviate 7™ ($y, ®y)
by T™ T/ ($y, ®y) by T, T ($y, ®y), resp. T4 (D, ®y), by T9™, resp. T4™, and
MazSteps(s, @1, P), resp. AdmSteps(s, @1, P2), by MazSteps(s), resp. AdmSteps(s).

We often use the following lemma which follows from the results of [14] (Corollary 20, part 1,
in [14]) and yields Theorem 1.

Lemma 12.1 (cf. [14]) There ezist A™*?, A™" € A e with

" (®UD,) > pB(@1UD,) > pATT(21UD,)

S

for all states s € S and all adversaries B.

Sometimes we shall need induction on the length of a shortest path through ®;-states leading
to a ®o-state. In such cases we use the following notation:

Notation 12.2 For s € ST (®1,P2) we define Success(s) to be the set of finite paths w €

Pathgn (s, S) with w(i) E &1 AP, i =0,1,...,|w| — 1, and last(w) = Po. We define ||s||
to be the length of a shortest path in Success(s).
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We extend the satisfaction relation |= for PBTL to path formulas of the form O® (where ® is
a PBTL formula) by putting = |= 00 iff 7(:) = @ for all 4 > 0.

12.1 Fairness w.r.t. the probabilistic choices

We rely on a result established in [12] which states that when dealing with fairness w.r.t. the
probabilistic choices (rather than the non-deterministic choices) then the set of fair paths has
measure 1.

Definition 12.3 Let 7 a fulpath in S. 7 is called state fair iff for each s € S and p € Steps(s)
such that 7(i) = s, step(m,i) = p for infinitely many ¢ and each t € Supp(u), there are infinitely
many indices j with w(j) = s, step(w,7) = p and w(j + 1) = t. 7 is called total fair iff © is fair
and state fair.

StateFair denotes the set of state fair fulpaths in § and TotalFair = Fair N StateFair. State
fairness can be viewed as a simplification of “extreme fairness” in the sense of [49] (cf. [12]).

Lemma 12.4 (cf. [12]) Prob(StateFair?(s)) =1 for all adversaries A and s € S.

Lemma 12.5 Let w a fulpath in S. For t € inf(w), let Steps'(t) be the set of distributions
p € Steps(t) where step(w,i) = p for infinitely many i. Then, Reach(t,S") = inf(n) for all
t € inf(m) where 8" = (inf (), Steps’). In particular:

(a) If A is a simple adversary of S, = € StateFair®, s € inf(x) then Reach”(s) = inf(r).

(b) If = € TotalFair and s € inf(w) then Reach(s) = inf(r).

Proof: easy verification.
Lemma 12.6 Prob(TotalFair® (s)) = 1 for all F € Ap;r and s € S.

Proof: follows by Lemma 12.4 and the fact that Prob(I' N T") = 1 if Prob(T') = Prob(I") = 1
(which holds in every probabilistic space). B

12.2 The prefix relation on paths

Notation 12.7 Let < be the “proper prefix ordering” on (finite or infinite) paths, i.e. if w, 7
are paths then w < v iff w € Pathg, and w = Y@ for some i < |y|. We write w < ' iff either
w=w orw < w'. Lety | be the set of paths w with w < . For A to be an adversary and
wE Pathﬁn, we define w 1 to be the set of fulpaths @ € Pathﬁd with w <7 and w Tﬁn to be the

set of finite paths W' € Pathﬁ‘n with w < w'. For Q C Pathﬁn, we define Q 4= Upeaw 14,

We often use the following facts. Let A be an adversary and €2 C Pathﬁn such that w, W' € Q, w #
w' implies w £ w'. Then, the sets w 14, w € €, are pairwise disjoint. Hence, Prob (Q 1A (s)) =
Ywea(s) P(w). If in addition, (2 is finite, k¥ = min{|w| : w € O} and A = {w®) : w € Q} then
Useaes)@ ™ € Useags) 0 M. Thus, ¥, e P@) < Xsens) P(6) for all s € S. If Q C Pathy,
such that

o ifwe Qthen w(i) & APy, i=0,1,...,|w| -1,

o ifw € Q then w4 N {r € Pathfy : m = ®1UD} # 0,
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e cach fulpath 7 € Pathﬁ, with 7 = ®;U P4 has a unique prefix in €2,

then 3 co(s) P(w) A (®1UD,) = pA(®1UD,). In particular, if Q is the set of finite paths with
w(i) F @1 APy, 1=0,1,...,|w[ -1, and last(w) [= P2 then 3 o) Pw) = pH(D1UD,).

Lemma 12.8 Let A be an adversary, 2 C Pathﬁn and k a positive integer with

(i) w AW for all w, W' € Q
(ii) for each v € Pathﬁn either w < v for some w € Q or there exists a finite path A\ with
first(X) = last(7y), |A| <k and v\ € Q.

Then, for all s € S: Prob (Q 1A (s)) = Prob ( Uvea(s) 1A ) = 1.

Proof: Let s € S and T' = Pathp,(s) \ @ 14 (s). We show that Prob(I') = 0. If the path
w = s belongs to Q then I' = (). Now we suppose that the path s does not belong to 2. Let
A be the set of paths § € Pathﬁn(s) with w £ ¢ for all w € Q. Then, @ C A. (Recall that
< denotes the “proper” prefix relation.) Let ¢ = min {u(t) : p € Useg Steps(s),t € Supp(u)}-
Note that — since |J, Steps(s) and S are finite — ¢ is well-defined and ¢ > 0. For each § € A let

ps = Prob ( rnéta ) /P(6) and let k(J) be the length of a shortest path X\ € Pathg, with
first(A) = last(6) and oA € Q. Then, x(6) < k for all 6 € A. We show that sup{ps : § € A} = 0.
(This yields Prob(I') = ps = 0 (since s € A).)

Let p = sup{ps : 6 € A}. We show by induction on I that ps < (1 —c!)-p for all § € A with
k(8) = I. In the basis of induction (I = 0) we get ps = 0 since k(§) = 0 implies § € 2. Let
[>1andd € A with x(0) = [ and let . = A(d). For u € Supp(u), let 6, = § 5 u. There
exists t € Supp(p) with k(6;) = [ — 1. Then, by induction hypothesis: ps, < (1 —c/=1) - p. With
U = Supp(u) \ {t} we have >,y pu(u) = 1— p(t). Since u(t) > ¢ we obtain:

pe = Y, ww-ps, < p-Y. p(u) + ) ps,

ueUU{t} uel
< po(1-p)-d) < pa-d).
Since k(6) < k forall 6 € A weget p < (1 —c*)-pandhence p=10. m

Remark 12.9 Let A be an adversary, 2 C Pathﬁn and k a positive integer with

(I) wA W for all w, W' € N
(I) for each v € Pathg, with v < w for some w € ) there exists a finite path A with
first(X) = last(7y), |A| < k and v\ € Q.

There exists a set ' with Q C Q' C Pathﬁn and which satisfies the conditions (i) and (ii) of
Lemma 12.8. For instance, Q' = QU A satisfies the conditions (i) and (ii) of Lemma 12.8 where
A is the set of finite paths A € Pathﬁn with A ¢ w | and w £ A for all w € Q and A9 e Q | for
all i < |Al. (Here Q| = Uyeq wl.)

If B is simple, S1, So € S and Q the set of finite paths w € Pathﬁ such that w(i) € S1\ So,

n

i < |w|, and last(w) € Sy then (2 satisfies the conditions (I) and (II) of above. In Section 12.4
and 12.5 we use this fact with S; = Sat(®;) and Sy = Sat(Ps) resp. Sy = S\ ST(P1,Dy). m

12.3 Extension of finite behaviour to (strictly) fair adversaries

In the proofs of Theorem 2, 3, 5 and 6 (Section 12.4 and 12.5) we show that the probabilities
p™9(®1UD,), resp. pl™(®1UP,), can be approximated by certain (strictly) fair adversaries.
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We define these (strictly) fair adversaries with the help of the following lemma:

Lemma 12.10 Let A€ A, Q C Pathﬁn and k > 1.

(a) If Q satisfies the conditions (I) and (II) of Remark 12.9 then there exists F € Agqir with
Q C Pathg,.

(b) If Q is finite then there exists F' € Agpgir such that Q C Pathﬁn.

Proof: We may suppose that in both cases both conditions in (a) are satisfied. (Note that in
case (b) we may deal with Q' = {w € Q:w £ ' for all W' € Q } rather than Q). For each state
state s € S we choose an enumeration 1, ...,v; _; of Steps(s). We define a fair adversary F as
follows. If o € Pathgy, is a prefix of some w € ) then we define F(0) = A(o). For every path
o € Pathp, which has no prefix in 2 we define F(¢) = vj where s = last(o), j = r mod ks
and 7 the number of indices i < |o| with o(i) = s. (Here mod denotes the “modulo-division”
function.) As Q € Pathﬁn we have if w € Q then step(w,i) = A(w®) = F(w®) for all i < |w|.
Hence, w € Pathﬁn. It is easy to see that if Q) is finite then F' is strictly fair. Using Remark 12.9
and Lemma 12.8 it can be shown that F' is fair.

Remark 12.11 In Lemma 12.10(a) we cannot ensure the existence of a strictly fair adversary
F with Q C Pathﬁn. For instance, consider the fair adversary A of Example 5.6 and the set

N={we Path};}n(s) : last(w) = u,w(i) #u, i =0,1,...|w| — 1}. Then, for each adversary F

with Q C Pathﬁn we have if last(w) = s then F(w) = u. Hence, F' contains the unfair fulpath

syt s Kt £ e F cannot be strictly fair. m

12.4 Proof of Theorem 2 and 3

By Lemma 12.1 and 12.12(b), sup {pf (D,UDy) : F € Asfai,} — pMar(Hy, B,). This yields
Theorem 3. Lemma 12.12(a) and 12.1 yield the existence of A € A, F € Ay, with

sup {pf(@ﬂ/{%) 1 F e Afair} = Pl (DiUD,) = pH(2iUD) < pl (D1UD).

S

Hence, pl® ($1U4®5) = max {pl (B1UU®s) : F € Agaip } from which Theorem 2 follows.

Lemma 12.12 For each A € Agimpie there exist

(a) F € Apgir with p(@1UP2) < pl(®1UD,) for all s € S
(b) a sequence (Fj)r>1 of strictly fair adversaries Fy, such that for all s € S:

P (@1UD,) < sup plF(D1UD,).
k>1

Proof: Let A be a simple adversary and let ) be the set of finite paths w € Pathﬁn with
w(i) E ®1A-DPe,1=0,1,,...,|w|—1, and last(w) = P2. Let O = {we D : |w| <k} Let

F be a fair adversary with Q C Pathgn (Lemma 12.10(a)). Then, p? = Ywea(s) Plw) < oL
Let Fj, be a strictly fair adversary with € C Pathp, (Lemma 12.10(b)). Then, for all s € S,

ple > Yweay(s) P(w). Hence, pi = Yweas) P(w) =supg>1 Yyea,s) P(w) < supg> pie. m
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12.5 Proof of Theorem 5 and 6

By Lemma 12.15 and 12.25 we obtain the existence of min{pf : F € Aair} and that
inf {pf (D1UB,) : F € Asfm} — min {pf (D1UDy) : F € Afm-r} = ptm(H YD)
This yields Theorem 5 and 6.

Definition 12.13 A fulpath 7 is called critical w.r.t. (®1,®2) iff 7 | O(®1 A ~P2) and
inf (1) NSt (®1,P2) # 0. Let Critical(e, o,)(s) be the set of critical paths in S starting in s.
For A€ A, let Critical&,l,%) = Critical(g,,¢,) N Pathﬁl.

Criticalébh%)(s) is measurable. Here, we use the fact that Critical(Aq,h%)(s) is the set of paths
T E Pathﬁd(s) with 7 = O(®; A =®3) A COa™’ where at is a “new” atomic proposition with
at € L(s) iff s € ST(®1,Py). See e.g. [51], where the measurability of sets of paths fulfilling a
certain a formula of a linear time logic is shown.

Lemma 12.14 Let A € Augm(P1,P2) and s € S. Then, Prob( Criticalél,h%)(s) ) = 0.

Proof: Since A is simple, MC# can be identified with the finite-state Markov chain (S, A)
(where A is identified with the function S x S — [0,1], (s,t) — A(s)(t)). We show that every
critical fulpath 7 € C’rz’tz’calé, ,,®,) 18 not state fair (w.r.t. state fairness in the sense of Section
12.1). Let 7 € Critz'cal&,h%) and s € inf(w) N ST(P1,P9). As A is admissible there exists a
state us € Reachy p g, (s) With us € Sat(®2) U (S '\ ST(®1,®s)). If we suppose 7 to be state
fair then we have Reach”(s) C inf(w) (by Lemma 12.5(a)), and hence, u; € inf (). Since all
states of 7 fulfill &; A =P9 the case us; € Sat(P2) is impossible. Since s and us occur infinitely
often on 7 there is a fragment w of 7 leading from u; to s. Hence, there is path w € Pathg, with
w(i) E @1 A—®, for all i < |w| and first(w) = us, last(w) = s. Since s € ST (P, Dy) we get
us € ST(®1,P2). Contradiction. We conclude Critical(1¢17¢2)(s) - Pathﬁl(s) \ StateFair?(s)
and we obtain Prob(Criticalfq,h%)(s)) =0 by Lemma 12.4. ®

Lemma 12.15 Let A € Aggm(P1, P2). Then, there exist
(a) a fair adversary F with p(®1UDy) > pl (®1UD,) for all s € S

(b) a sequence (Fy)i>1 of strictly fair adversaries such that for all s € S:

P (D1UDy) > inf prE(®1UD,)

Proof: We only use the fact that A is a simple adversary with Prob(C'ritical&h%)(s)) =0 for
all s € S (Lemma 12.14). We use the following notation for all adversaries B:

o I'® = { 7€ Pathy : . ®1UDy }, ¢f = Prob(TE(s)) = 1—pf

e 08 = {we Pathﬁn cw(i) |E @ A=D1 =0,1,...,|w| —1,last(w) € S\ ST}

e OF = {weQB:|w| <k}, TP = Upeor wtPand TP = I'B\TP

Then, T8 is the set of fulpaths 7 € Pathﬁl with # | O(®1 A =Dy). It is easy to see that
T4 C Crz'ticalébh%). As T4 is a measurable subset of Critz'cal(‘q, |, @) We have Prob(T4) = 0.

Hence:
() ¢ = Pob0is) = Y Pw) =swp Y Pw)
WEQA(s) k21 heqd(s)
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Let F be a fair adversary with Q4 C Pathﬁn and let Fj be a strictly fair adversary with
Qf C Pathﬁﬁ (Lemma 12.10). We show that pf’ < p2 and infy>; pf* < pZ for all s € S.
I'¥'(s) is a superset of the set of paths 7 € Pathﬁl(s) which have a preﬁx in Q4. By (),
g’ > Yweaas) Plw) = g2. We conclude p4 = 1—-¢d > 1-— = pf. Similarly,
I'Fk(s) is a superset of the set of paths m € Path;;’“l( ) which have a preﬁx in Qf. Hence,
gk > 2wed(s) P(w). By (%),

¢ =sp Y P < sup Prob(I7(s)) = sup ¢t
E>1 ~ k>1 k>1
WEQk ()

Therefore, p2 = 1 —¢2 > 1— SUPg>1 gl = infy>q plk foralls € S. m

Remark 12.16 [33] establishes a result stating that the measure induced by a strictly fair
adversary can be approximated by the measures induced by fair adversaries (cf. Proposition 2.3
of [33]). Using this result (adapted to our notion of fairness), part (b) of Lemma 12.12 and
Lemma 12.15 can also be derived from part (a) of Lemma 12.12, resp. 12.15. m

Lemma 12.17 Let A € Agimpie and U C S with

o Reachf n_g,(u) C Sat(d2)UU
o Reachél/\ﬁ%(u)ﬂSat(@g) # 0

for allw € U. Then, p2(®1UDy) = 1 for allu € U.

Proof: W.lo.g. UN Sat(®;) = O (otherwise we deal with U’ = U \ Sat(®3)). By the results of
[31], the vector (pé)uEU is the unique solution of the equation system

= Z A(u,v) -z, + Z A(u,s), ueU.
velU sESat(®2)

(The uniqueness of the solution is guaranteed by the second assumption.) The first assumption
implies 3, cyusat(@,) A(u,v) = 1. Hence, the vector (zy)uey with z, =1 for all u € U solves
(*). By the uniqueness of the solution we get p;/ = 1forallucU. m

Corollary 12.18 Let A € Agimpie, 5 € S with p2(®1U®2) < 1 and p2(P1UD2) = p"® (B1UD,)
for allu € Reachgl,\_@2 (s). Then, Reachél,\_@2 N(S\ ST (D1, D5)) # 0.

Proof: Let U = Reachél/\ﬁ%(s). We suppose U C ST(®1,®2). Then, p2 = p™® > 0 for all
u € U. Thus, Reachél,\ﬂ,2 (u) N Sat(®y) # 0 and p? = 1. (Lemma 12.17). Contradiction. m

Lemma 12.19 Let F € Apr. Then, Reachgl,\ﬁ@z(t) N(S\ ST(P1,D3)) # 0 for all t €
St (D, ®y) with pf' (®1UD,) < 1.

Proof: We suppose Reachq,l,\ﬁq,2 t) N (S\ St) = 0 for some t € ST with pf" < 1. Let T be
the set of all fulpaths 7 € Pathful( ) with 7 & ®1U®Py. Then, Prob(l') > 0. By Lemma 12.6,
Prob(Total Fairf (t)NT) = Prob(T") > 0. Hence, TotalFair® ()NT # §. Let « € TotalFair® (t)NT
and s € inf (7). Since Reachgl,\ﬁq,2 (t) C St we get by induction on i: 7(i) &= ®; A =P, for all
i > 0. By Lemma 12.5(b): Reach(s) C inf(w). Hence, Reach(s) N Sat(P2) = @, and therefore
s ¢ S*. Thus, s € Reachl p_g,(t) N (S\ ST). Contradiction. m

Notation 12.20 Let S°(®1,®5) = {s€ S : pl'(®1UD3) =0 for some F € Apr }-
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When ®;, ®; are clear from the context, we often write S° instead of S°(®;, ®5).
Lemma 12.21 If F € Ay, and Reachg, p-a,(s) N S(@1, Do) = 0 then pl' (®1UD,) = 1.

Proof: We suppose pI’ < 1. Then, Reach§ r_g,(s) N (S\ S*) # 0 by Lemma 12.19. As
S\ ST C SY we obtain a contradiction. m

Lemma 12.22 For each F € Ay there exists F' € Ay with

o pI'(®,.UDBy) > pl" (®1UD,) for all s € S
o pF'(®1UDy) = 0 for all w € Pathﬁn with w(i) ¢ S%(®1,®5), i = 0,1,...,|w| — 1, and
last(w) € SO(®@1, ®3).

Proof: Let F € Ay, and let Q be the set of finite paths w € Pathg, with w(i) ¢ S, i =
0,1,...,|w| — 1, and last(w) € S°. For each s € SO, let Fy € Ay such that pf= = 0. We define
F' as follows: F'(y) = F5()\) if y = w\, w € Q and F'(y) = F(y) in all other cases. It is easy to

see that F' € Ay, pF' < pf for all s € S and pF = pf:j;;ﬁ;) —Oforallwe . m
Lemma 12.23 There ezists A € Agam(®1,D2) with Reachiy p o, (t) C SO(®1,®s) for all t €
SO(®y,®y). (Hence, pi(®1UD2) = 0 for all t € SO(®y,®3).)

Proof: By Lemma 12.22, there exists F' € A with pl=0forallwe Path g, with w(i) ¢ S0,
i=0,1,...,|w| — 1, and last(w) € S°. Let Qf , 4, be the set of paths w € Path]lci:n such that
first(w) € SO and w(i) | ®; A —~®; for all i < |w|. For s € S\ (8% N Sat(®1)), let Steps’(s) =
Steps(s). For s € SO N Sat(®y), Steps” (s) = {step(w,i) : i < |w|,w € VY A q,,w(i) = s}. Let
ST = (8, Steps™). Then, Reach(t,ST) C 8° for all t € §°, In particular:

(*) If A € Agimple With A(t) € Steps™ (t) for all ¢ € S° then Reachél/\ﬁq,2 (t) € 8% and p =0
for all t € S°.

If t € S°N ST then we define Q; to be the set of paths w € Path gy, (t, ST') with last(w) € S\ ST
and w(i) | ®1 A P9, i =0,1,...,|w| — 1. Lemma 12.19 yields ; # () for all t € S° N S*. For
t € S9N ST, let k() be the length of shortest path in ;. Then, x(t) > 1. We choose some
wy € Oy with k(t) = |w¢| and put p; = step(wy, 0). Then:

(**) If A € Asimple With A(t) = p; for all t € S°N ST then llifeachﬂgl,\ﬁq,2 (t)N(S\ST) #0 for
allt € S9N ST,

If s € S\ ST then we choose some p,; € Steps?(s). For s € S\ S° we define a distribution
ps € Steps(s) by induction on ||s||: If ||s|] = 0 then s € Sat(P2) and we choose an arbitrary
ps € Steps(s). If ||s|| > 1 then we choose some pg € Steps(s) such that ps(w) > 0 for some
w € ST with ||w|| < ||s||. Let A be the simple adversary with A(s) = pus for all s € S. Then,
Reachfy p—s,(s) N (Sat(®2) U (SN ST)) # 0 for all s € ST\ S% By (**), Reachig n-g,(s) N
(Sat(®2) U (S\ ST)) # 0 for all s € ST. This yields A € Aggm (®1,P2). By (*), it follows that
pit=0forallte S m

Notation 12.24 Let S*(®1, ®9) = {s € S : Reachg, n-a,(s)NS° (D1, B2) = 0} and S* (D1, B;) =
S\ (S1(®y, By) U SO(Dy, Bs)).

In what follows, we briefly write S* rather than S'(®;,®5) and S” rather than S7(®;, ®3). We
assume that there are atomic propositions a’, a® and a® with a* € L(s) iff s € §*, x € {?,0,1}.
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Lemma 12.25 There exists A € Aggm (P1,P2) with
1= pi'(a’Ua’) = pf(@:1UD2) < pf(®1UP2)
for all s € S and F € Apgir.
Proof: Clearly, S* C S* and Reachg,r-a,(v) C S! for all v € S'. Hence, {s € S : u(s) >
0,4 € Steps(v) for some v € S} C S'. By Lemma 12.21:
(1) p'=1forallv € S and F € Ag;,.

For v € S' we define a distribution u, € Steps(v) by induction on |v||: If ||v|]| = 0 then we
choose some pu, € Steps(v). If ||v]| > 1 then there exists u, € Steps(v) with u,(w) > 0 for some
w € S with ||v]| > ||w||. Then:

(2) If A € Agimpie with A(v) = p, for all v € S* then pf =1 for all v € S'. In particular,
Iieczcllé,}l,\ﬂ,2 (v) N Sat(®2) # O for all v € S*.

Let S' = (S, Steps') where p € Steps'(s) iff either s € S and pu € Steps(s) or s ¢ S* and

p = pi. We consider L as a labelling function for S and as a labelling function for &'. Let

A" € Agimpie(S') with p2' (a’Ua®) > pP' (a"Ua®) for all B € A(S'), s € S (Lemma 12.1).

Claim 1: p2' (a’Ua®) = 1 — p&' (®1Ua') for all s € S.

Proof. Because of Lemma 12.4 it suffices to show that for each fulpath = € StateFair®' either

7 = a’'Ua® or w = ®1Ua'. (Note that m can fulfill at most one the path formulas a’Ua® and

®1Ua'.) Let w € StateFair® . We suppose 7 K ®1Ua' and 7 £ a'Ua®. Then, (i) € S*

for all i > 0. Let s € inf(r). By Lemma 12.5(a) Reach” (s) C inf(r). Hence, Reach™ (s) C

S”. Thus, Reach”’ (s) N S° = 0 and p2 (a’Ua®) = 0. By the definition of A’, we obtain

Reache, p-a,(s) N S° = (. Hence, s € S'. Contradiction (as S* C S\ S1). |

Claim 2: p¥ (®1Ua') < pIf'(®Ua') for all s € 7 and F' € Apir(S').

Proof. Using Lemma 12.5(b) it can be shown that for all # € TotalFair™ (s): = = a’Ua®
or 7 = ®Ua'. Thus, pf'(a’Ua®) = 1 — p!"(®1Ua") (by Lemma 12.6). Hence, by Claim 1:
pX (®1Ua') =1 —p2(a’Ua®) <1 —pl" (a’Ua®) = pI" (®1Ua?). |

Claim 3: Let B € A(S) and B' € A(S') be an adversary with B'(w) = B(w) for all w € Pathg,
with first(w) € S* and last(w) € S*. Then:

(i) pP (a’Ua®) = pP(a’Ua®) for all s € S
(ii) If pZ =0 forall w € Pathﬁn (s) with last(w) € S® and pZ =1 for all w € Pathﬁn(s) with
last(w) € S* then pB' (®1Ua') = pB(®1UD,) for all s € S°.

Proof. (i) is an easy verification. We show (ii). Let © be the set of paths w € Pathﬁn(s) with
w(@) € 8%, i =0,1,...,|w| — 1, and last(w) € S*. Then, Q C Pathﬁ,’](s) and pB (®Ua') =
Yuea P(w) =pd (21UDs). |
Claim 3(i) yields: Whenever A € Agjmpie With A(s) = A'(s) for all s € S” then

pi(a’Ua®) = p**(a’Ua’)
for all s € S.
Claim 4: p2' (®1Ua') < pl'(®1UD,) for all F € A (S) and s € S.

Proof. Let F € Apr(S). We may assume w.l.o.g. that pf(®:U®5) = 0 for all w € Pathg, with
w(@) ¢ 8% i =0,1,...,|w| — 1, and last(w) € S° (Lemma 12.22). We define F' € A(S') as
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follows: F'(w) = F(w) if last(w) € S* and F'(w) = pl if last(w) ¢ S°. Then, F' € A (S'). By
Claim 2 and 3: pF'(3:UD,) = pF" (®1Ua") > p2' (®1UaY). |

Let A” € Agam (®1, ®2) be an adversary with Reachig, p g, (t) C S° (and pf” = 0) for all t € S°)
(Lemma 12.23). Let A € Agimpie with

o A(s) = Al(s) forall s € §*
o A(v) = p, for allv € St
o A(s) = A"(s) for all s € S°.

We show that A is admissible for (®1,®,). Clearly, Reach§ _e,(s) = Reach§ \_o,(s) for all
s € SO Tt suffices to show that Reach§ r_o,(s) N S® # 0 for all s € §*\ U and p2 = 1 for
allu € UU S where U = {u € 87 : p2' (®1Uda') = 1}. (This ensures that Reachél/\ﬁ%(s) N
(Sat(P2)U(S\ST)) # 0 for all s € ST.) We suppose Reachél,\ﬁ%(s)ﬂso = () for some s € S\ U.
Then, p?(a’Ua’) = 0. By Claim 3, p2'(a’Ua®) = 0. Hence, by Claim 1, p2' (®;U4a') = 1. Thus,
s € U. Contradiction. For all v € U, Reachél,\ﬂp2 (u) N (VU Sat(®q)) = Reach;g’l,\ﬂ>2 (u) N
(V U Sat(®2)) # 0. By (2), p2t =1 for all v € S*. We get Reach§ r_q, (1) N Sat(Py) # § for all
u € UUS!. On the other hand, l‘ieachfl.}l,\ﬁq)2 (u) C Sat(®2) UU U S'. By Lemma 12.17, pit = 1
for allu € U U S'.

For all F' € Afqir(S) we have:

o pA(D1UDy) = p (B1Udal) < p¥(2,1UD,) for all s € S7 (Claim 3 and 4)
o pH(®UD,) = p2 (B 1UD,) = 0 < pF (31UD) for all s € SO
o pA(®1UD,) = pE (®1UDy) =1 for all v € S' (by (1) and (2)).

Hence, pf(@ﬂj@g) < pf(@ll,{(IJQ) forallse S. m

Remark 12.26 If A € A (®1,P2) and s € S such that Reachy p g,(s) C ST(®1,P2) then
p(®.UPy) = 1 (Lemma 12.17). By Lemma 12.25: If Reachg,p-a,(s) C ST(®1,Ps) then
p2m(®1UP,) = pI'(®1UP;) = 1 for all F € Ay Since Reacho,p-a,(t) C Reache, p-a,(s) for
all t € Reachg,p-a,(s) we get pj (B1UPs) = 1 for all F € Ay, and t € Reacha, p-a,(s). This
result is similar to the “Zero-One-Law” of [33] which states that min{p/®" : t € T} € {0,1}
where p/*" = inf{pF (tt U ®) : F process fair } and T = Reachyr-a(s) and where “process
fairness” means fairness in the sense of [33]. ®

Corollary 12.27 (cf. Lemma 7.1) For all s € S: p2¥™(®,UDy) = 1 — p™*(a’Ua®).

S

Proof: follows immediately by Lemma 12.15(a) and 12.25. m

Lemma 12.28 Let Ty = S\ ST(®1,P9) and, for i = 0,1,2,..., T;yq the largest subset of
S\ (ToU...UT; U Sat(®3)) such that for all t € T;11 there is some py € Steps(t) with:
o Supp(p) CToU...UT; UTiq
e there is a finite path t = ty Ho, t1 Bag utk—ff tr, where to,...,tk—1 € Ti41 and
treToU...UT;.
Proof: Let T = U;>( T;- First we observe that whenever U is a subset of S\ (T'U Sat(®2)) such
that for all u € U there is some pu, € Steps(u) with:

o Supp(u,) CTUU
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Hug_y

e there is a finite path u = ug L} U1 LGN ukﬂ t where ug,...,ur € U and

teT
then U = 0.

Let s € S°. Then, p2 = 0 for some A € Aggm (®1,P2). Let U = {u € S\ T : pi = 0}. For
u € U, let py, = A(u). Clearly, Supp(uy) C{u € S:p2 =0} C TUU.Foru € S, pf =0, let
k(u) be the length of a shortest path w € Pathﬁln (u) with last(w) € S\ ST. By induction on
k(u) we show that there exists a path

p u Hhug, _ t
u=1uy —% py =B .S oy =B ¢

where uy,...,ur € U and t € T. If k(u) = 0 then there is nothing to show as u € S\ ST =T, C
T. Let k(u) > 1 and let w € Pathﬁn(u) be a shortest path with last(w) € S\ ST. Let v = w(1).
Then, p! = 0 and x(v) < k(u). By induction hypothesis there is a finite path o' € Pathﬁn(v)

where last(w) € T and w(i) € U, i =0,1,...,|w| — 1. Hence, u %% &' is a path with the desired
property. We conclude U = (). Hence, s € {u € S :p;j1 =0} CT.

Next we show that 7" C SY. For this, it suffices to show that there is an adversary A which is
admissible for (@1, ®2) and with p/' = 0 for all t € T'. For each t € Uis1 Ti, let py € Steps(t) be
as above, i.e., if t € T; 11 then

o Supp(p) CToU...UT; UTiq

. . Bty
e there is a finite path ¢ = %y Ho, t1 a0 Ty ty where tg,...,tx_1 € Tj4+1 and

ty € ToU...UT;.

For all s € S\ (T'U Sat(®3)), we choose a path wy € Pathg,(s) with last(ws) = ®o, ws(i) =
O APy, =0,1,...,|ws|—1, and |ws| = ||s]|. Let ps = step(ws,0). Let A be a simple adversary
with A(s) = ps if s € S\ (Sat(P2) US\ ST). It is easy to see that A is admissible for (P, Ps)
and that p/! =0 forallt€ 7. m

12.6 Proof of Theorem 4

Theorem 4 follows by Lemma 12.32, Lemma 12.33 and Theorem 3.

Lemma 12.29 Let F € Agpir, s € ST(P1,®2) \ Sat(®2) and Q be the set of paths w €
Pathﬁn(s) with w(i) E @1 A =P, 1 = 0,1,...,|w| — 1, and last(w) € ST(P1,Dy). If F(w) €
MazSteps(last(w), @1, ) for all w € Q then {m € w F: 7 |= ®1UD2} # O for all w € Q.

Proof: For w € Q with last(w) ¢ Sat(P2) we define w f} to be the set of finite paths ' € w Tﬁn
where W'(i) E @1 A DP9, 7 = 0,1,...,|'| — 1. fw € Q, last(w) ¢ Sat(P3) then F(w) €

MazSteps(last(w)), and hence, F(w)(t) > 0 for some ¢ € S*. Thus, the path w Pl 4 belongs

to w . Hence, w ft # (. We define min(w) = min{||w'(?)|| : &’ € w 1, |w| < 7 < |o'|}. For
w € Q with last(w) ¢ Sat(Py) let @ be a path in w f} with ||last(@)| = min(w). We suppose
that there is some wq € 2 such that {7 € wy 1¥': 7 = ®;UP2} = (. Then, last(wy) ¢ Sat(Ps).
For i > 0 let w;y1 = w;. Note that last(w;) € ST\ Sat(P2). As wp < w1 < ... we have

min(wg) < min(w;) < .... We choose some k > 0 with min(w;) = min(w;) for all j > &
and define 7 to be the unique path with w; < « for all ¢ > 0. Then, 7 € Path;;,(s),
7 E O(®; A =Py) and there is some u € St N inf(w) with last(w;) = u for infinitely many

i > 0. Hence, ||u|| = min(w;) for all j > k. Let u € Steps(u) such that |[v|| < |lu|| for some
v € ST with u(v) > 0. As F is strictly fair there exists j > k with 7(j) = u and step(n,j) = .
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Let o' be the path () & 4. As j > k we have o' € wy, ft and hence ||[v]| > min(w) = |ul.
Contradiction. B

Lemma 12.30 Let F' € Agr, I' = {7 € Pathf;l 1w | ®1UDPs} and Ty = Upep, A 1 where
Ay ={X € Pathgy, : |N| =k and X < 7 for some m € I'}. Then, for all s€ S:

pl(®,UBy) = lim Prob(Ty)
k—o00

Proof: We have 'y DTy D ... DT. Let I = (|4~ ['x. Then, I'' is measurable and IV D T.
Hence, pf" = Prob(I'(s)) < Prob(I'(s)) = limy_, o, Prob(T'x(s)). Using Lemma 12.5(b) it can be
shown that TotalFair NI’ C I'. By Lemma 12.6, Prob(I"(s)) = Prob(TotalFairt (s) N I'(s)) <
Prob(T'(s)) = p!'. Hence, pI' = Prob(T(s)) = limg_, 00 Prob(Tx(s)). m

Lemma 12.31 Let F' € Agpgir, s € ST(P1, P2) and let Q be the set of paths w € Pathﬁn(s) with
w(i) E 1 APy, i=0,1,...,|w|. The following are equivalent:

(i) F(w) € MazSteps(last(w), ®1,P2) for all w € Q with last(w) € ST (D1, Py).
(ii) P (21UBy) = pJ (P1UP).

(1ii) p;;‘gt“(w)(@ﬂ/{(h) = pE(®1UD2) for all w € Q.

Proof: The implication (iii) = (ii) is obvious.

maz

(il) = (iii): We suppose pfo < Plast(wo) for some wy € 2. Let A be the adversary given
by: A(A) = F(A) if wg 2 X and A(A\) = B(y) if A = wgy where B is an adversary with
pﬁst(wo) = pf;‘gf"(wg) (Lemma 12.1). Then, pﬁo = pﬁst(wo) = p;:gtz(w(])_ Let & = |wg|, A the
set of paths A € Pathf,(s) with A € Q and last(\) = ®; where I = [A\| -1 < k and
= {weQ:|w =k} AsQ C Pathﬁn(s) and p} = pf for all w € '\ {wp} and as
AC Pathﬁn(s) we obtain:

Py = X PWeps + 3 PO < Y PWepl + X PO = pf < pf
weY AEA we! AEA

Contradiction.
(i) = (i): fw € Q, s = last(w) € ST and p = F(w) then pP"* = pf = 3, cqpu(t) - pf, =
Y tes 1(t) - I where w; is the path w 5 t. Hence, u € MazSteps(s).

(i) = (iii): Let A(w) be the set of paths A € Pathﬁn with last(w) = first(A\) and wA < 7 for
some 7 € w M with 7 = ®1UPs. Let Ag(w) = {X € A(w) : |A| = k}. Lemma 12.30 applied
to the fair adversary F' with F'()\) = F(w)) if first(\) = last(w) yields pf, = limg_,, p¥ where

pk = 2acAy(w) P(A)- By induction on k it can be shown that pk > pmsaf(w) for all w € Q! with

last(w) € S*. This yields pf > pmaz ) for all w € Q. Hence, pf = ngt?w) forallwe Q. m

last(w
Lemma 12.32 There ezists F € Agpyir with pl (21U®2) = p™%(®1UD,) for all s € T™ (Dq, Dy).

Proof: For each j > 1, t € T we choose some ¢ € MazSteps(t) with Supp(ut) C U;<; T
We define a strictly fair adversary F' as follows. Let T = ;»; 7}7*. For each s € S, let
Vg, -+, V4, 1 be an enumeration of Steps(s) (and ks the cardinality of Steps(s)). For w € Path gy,
let 7(w) be the number of indices 7 > |w| with w(i) = last(w). Let Q be the set of finite paths
w € Pathp, with w(i) E @1 AP, for all i < |w|. We define

Flw) = { y]l-'m(w) :if (w QEQ or last(w) € S\ T) and j = n(w) mod Kjgs ()
Plast(w) @ oOtherwise.

The strict fairness of F' follows by the fact that for each 7 € Path;;l:
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(i) If n(i) = @1 A —Py then for each s € inf(w) and each u € Steps(s): step(m, k) = p for
infinitely many k > ¢ with 7(k) = s.
(i) Ifr = O(®) A—®s) and 7(i) € T/ then (k) € T/¥ U U;; T for all k > i.

(i) 7 f= O(®@; A—®y) and (i) € T2 then (k) € U;; Ty for all k > i.

(iv) m | O(@1 A=®2), t € inf () for some ¢ € T]3** and p € Steps(t) then step(m, k) = p
for infinitely many k with 7(k) = ¢.

By (iii), none of the states t € T' can occur more than once in a path 7 € Path;;l with 7 |

O(®; A —=®3). By (i), (ii) and (iii) it follows that for each path 7 € Path;;, and each s € inf(7),

every u € Steps(s) is taken infinitely often in w. By definition of F' it is immediately clear that

Reachl n 5,(t) C T™ for all t € T™% and that F(w) € MazSteps(last(w)) for all w € Q
with last(w) € T™*, By Lemma 12.29 and Lemma 12.31 we get p/’ = p/"® for allt € T™. m

Lemma 12.33 If s ¢ T™%(®1, ®y) then pl (21UDs) < pI"™ (21U D,) for all F € Agpin-

Proof: We suppose pl" = p™ for some F € Aspair and s € S\ T™%. Let Q be the set of paths
wE Pathﬁn(s) with w(i) = ®; A =P, for all i < |w|. By Lemma 12.31:

(*) F(w) € MazSteps(last(w)) for all w € Q.

By definition of T™% we have S\ T™* C S\ Sat(®;). Let U be the set states u € S\ T
with MazSteps(u) # Steps(u).

Claim 1: For each w €  with last(w) ¢ T™ there exists @ € w ¥ NQ with last(w) € U.

Proof. We suppose that for some w € Q with last(w) € S\ 7™ there does not exists a path
@ € wtf N Q with last(@) € U. Let T be the set of states ¢ € S\ 7™ such that ¢t = last(w;)
for some w; € w ¥ N Q. For each t € T, we define uy = F(w;). By our assumption, TNU = (}
and Supp(ps) C T UT™ (as otherwise, pu;(u) > 0 for some u € U; hence, w; 2 u € w 17 NQ).
Since MazSteps(t) = Steps(t) for all ¢t € T' and by definition of 7™ we have T' C T™%* and
therefore T' = () (as T is defined as a subset of S\ T™%). Let u = F(w). Then, Supp(u) C T™*.
We conclude last(w) € T[7*® for some j. Hence, last(w) € T™*. Contradiction. |

Claim 2: There exists 7 € Pathf;l(s) with 7 = O(®; A =®3) and U Ninf(w) # 0.

Proof. For each w € Q with last(w) € S\ T™* we choose some @ € w 1F N Q with last(w) € U
(Claim 1). Let wp = s and w;j+1 = w;. Let 7 € Path}zl(s) be the unique path with w; < 7 for all
i>0. Then, 7 = O(®; A =®P3) and inf(w) NU # (. |

)

We choose some 7 € Path;;l(s) with 7 = O(®; A—®3) and u € inf(m)NU. As F is strictly fair

and MazSteps(u) # Steps(u) there exists j > 0 with F(7\9)) ¢ MazSteps(r(j)). Contradiction
(to (*)) as 7() € Q. m

12.7 Proof of Theorem 7

Theorem 7 follows by Theorem 6, Lemma 12.36 and Lemma 12.37. The proofs are similar to
those in Section 12.6: Lemma 12.36 is the counterpart to Lemma 12.32 and Lemma 12.37 the
counterpart to Lemma 12.33. We include the proofs for the sake of completeness.

Lemma 12.34 Let (ps)ses be a vector of real numbers with 0 < p; < 1 and ps = 1 for all
s € Sat(®2) and ps = 0 for all s € S\ ST(®1,P3). For s € Sat(Py) U (S\ ST(P1,DP2)) let
M(s) = Steps(s). For s € ST(®1,Dq)\ Sat(D2) let M(s) be the set of distributions pu € Steps(s)
with ps = Ycq 1(t) - pi- Then: If A € Agimpie with A(s) € M(s) for all s € S then
pH(D1UDyY) < p, foralls€S.
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Proof: First we observe that the assumption A(s) € M(s) for all s € S implies M(s) # () for
alls € S. Let U={s€S:p2 =0}, T=85\Uand U = {s € §:ps =0}. It is easy to see
that U’ C U. In particular, pf =0 < p, for all s € U (by Claim 1). Next we show pf < p; for
all s € T. Let A = (A(s,t))s,ter and I be the identity matrix with |T'| rows and columns where
IT| is the cardinality of T and let b4 = (b2),c1 and b = (bs)ser where

bsA = Z A(S,t), bs = bf + Z A(S,t)'pt-
t€ Sat(P2) teS\(TUSat(®2))

Using the results of [31] we obtain that the matrix I — A is regular and that the vector pA4 =
(p{")ier is the unique solution of the linear equation system (I—A)-x = b, i.e. (I—A)-p” = b".
It is easy to see that the vector p = (p;)tcr solves the linear equation system (I — A)-x = b.
Let Y = (I—A)™', Y = (ys4)ster. Then, p =Y b4 and p =Y -b. Asb? < b, for al
se€T and py =) ,crYs,t b, it = YT Usit b4 it suffices to show that yst > 0forall s,2€T.
As(I—A)-Y=Iwehave A-(—Y)=I-7Y. Hence, forall s,t € T:

D A(s,v) - (—yi) = { 1—yss @ ifs=t

— : otherwise.
veT Ysit

Let y = min{ys; : s,t € T'}. We suppose that y < 0. First we suppose that y, s = y for some
seT. As Y ,cr A(s,v) < 1 we get:

1 = Z A(s,'u) : (_yv,s) + Ys,s
veT

< Z A(S,U) : (_ys,s) - (1 - A(sa 3)) : (_ys,s)
veT\{s}
< (1 —A(s,8) - (—ys,s) — (L—A(s,9)) - (—ys,s) = 0.

Contradiction. Now we suppose that y, s > y for all s € T. Let V be the set of states v € T'
with y,; = y for some t € T. Let s € V and t € T such that y,; = y. As > or A(s,v) < 1
we get:

—y = —Ysr = >, Als,0) - (—ty) < D A(s,0) - (—ysp) < —Ysu = —y
veT veT
Hence, Y, cq A(s,t) =1 and y,; = y for all v € T with A(s,v) > 0. In particular, if A(s,v) > 0
then v € V. Hence, Reach”(v) C V. Thus, pA =0 for all v € V. (Note that V C S\ Sat(®5).)
In particular, s ¢ T (as p2 = 0). Contradiction (as s € V CT). m

Lemma 12.35 Let F' € Agfgir, s € ST(P1, P2) and let Q be the set of paths w € Pathﬁn(s) with
w(i) E 1 APy, i=0,1,...,|w|. Then, the following are equivalent:

(i) F(w) € AdmSteps(last(w), @1, P2) for all w € .

(i) pi¥™(®1UB) = pi (P1UDs).

(i) p;laﬂgg%(w)(@lm?) = pE(®,UD,) for all w € Q.

Proof: (ii) = (iii): As F is strictly fair we have pf > pf’a‘ls’,{’(w) for all w (Theorem 6). We
suppose pfo > pfadsT(wO) for some wy € N. Let 0 < e < pgo - p?ﬂ&wo) and G € Agpir such that
pgst( wo) < pfa‘i’f(wo) + ¢ (Lemma 12.15). Let F’ be the strictly fair adversary which given by:
F'(\) = F() if wo Z X and F'(A) = G(v) if A = woy. Then, p5 = p .00 < pidm  +e <

pb,- Let k = |wo|, A the set of paths A € Pathﬁn(s) with A) € Q and last(\) }= @, where

o1



I=|AN—-1<kandlet Q = {weQ:|w =k} AsQ C Pathg,lb(s) and pf" = p¥ for all
we Y\ {w} and as A C Pathgn(s) we obtain:

pyo= 3 P)epl + 3 PO > Y Pw)pl + Y PO = 2 pit”
we! AEA we! AEA

Contradiction.

(i) = (1) Tfw € O, lost(w) € §* and j = F(w) then pf¥™ = pf’ = T yeq u(t)-pl = Sres wlt)-
p2@m where w; is the path w % ¢. Note that pE, = ppdm for all t € Sat(P) U (S'\ Sat(®1)).
Hence, p € AdmSteps(s).

(i) = (ii): Let S%™ = (S, AdmSteps). Let A;‘fn’l’;le be the set of simple adversaries for S,
Let p = max{py : A € A%™ 1. By Lemma 12.34 we get p < p2¥™. As F is a strictly fair

simple

adversary of %™ pl" < p < p¥m (Lemma 12.25). m

Lemma 12.36 There exists F € Agpir with pf' (21U®P2) = pd™ (®1U®P,) for allt € T (D, Ds).
Proof: similar to Lemma 12.32. &

Lemma 12.37 If s ¢ T (1, ®y) then pl' (®1UD,) > p2™(d1UDy) for all F € Astair-

Proof: similar to Lemma 12.33. m

12.8 Proof of Theorem 9

This section gives a proof of Theorem 9, which follows by Lemma 12.38 and Lemma 12.47.

Lemma 12.38 Let A € .A%m. Then, there exist an adversary F which is fair w.r.t. W and
which satisfies pf(@ﬂl@g) > pl'(®1UP,) for all s € S.

Proof: Similarly to Lemma 12.14 it can be shown that the measure of the set of critical fulpaths
w.r.t. W in A is 0 where a fulpath € Pathj, is called critical w.r.t. W iff m = O(®; A=®,) and
inf (1) N (S\ S#t) # 0. For an adversary B, let I'B = {1 € Path]]%l T & 1UD, Y. Let Q4 be the
set of all finite paths w € Pathﬁn withw(i) | @1A-P9, 1 =0,1,...,|w|—1, and last(w) € S{,‘lv and
let T = Upeqsa wt and T4 = TA\T'{. Similarly to Claim 1 of Lemma 12.15 it can be shown
that all paths = € T'' are critical w.r.t. W. Hence, p2 = 1 — Prob(I'4(s)) = 1 — Prob(T'{}(s)) =
1= > ueoa(s) P(w). Let F be a fair adversary with 04 C Pathﬁn (Lemma 12.10 and Remark

12.8). Then, F is fair w.r.t. W and I'¥'(s) is a superset of the set of paths 7 € Path;;l(s) which
have a prefix in Q4. Hence, pf’ = 1 — Prob(T'F(s)) <1 — Yweaa(s) P(w) = pl. m

Notation 12.39 Let S2™ be the set of states s € S with s € S3, for some A € AW, .

Lemma 12.40 There exists A € AV, with Si, = S&™ and p2(21UP2) = 0 for all s € SI™.

adm

Proof: We define inductively subsets U? and S of S. Let U® = 8% and, fori > 1, U* = StUU!
where S = §\ St and, for i > 1, §* = §%1 U §%2. Here:

o Sbl={te S\ (U"1USat(Ps)) : Supp(us) C U ! for some u; € Steps(t)}.
e S%2 is the set of states t € T where T C S\ (U'~! U 8! U Sat(®2)) such that:
- Supp(p) € TUULUSH forallt € TNW and p € Steps(t)

52



- for all t € T\ W there is some p; € Steps(t) with Supp(u;) C T UUL U S%L.
Let U = U;>o Ut. Clearly, S&™ C U.

Claim: For all states s € S\ (U U Sat(®2)) there exists a path w € Pathg,(s) with w(i) €
S\ (U U Sat(®2)),i=0,1,...,|w| — 1, and last(w) | Pa.

Proof. Tt is clear that S\ U C ST. We suppose that there is some s € S\ (U U Sat(®3)) such
that for each path w € Pathg,(s) with w(i) | &1 A =89, i =0,1,...,|w| — 1, and last(w) = Po
there is some 7 < |w| with w(i) € U. Let T be the set of states ¢t € S with ¢t = last(w;) for some
wy € Pathgp(s) with wy(i) € S\ (U U Sat(®2)) for all i < |wy|. Then:

(1) TC S\ (UU Sat(®y))
(2) for all t € T and u € Steps(t): Supp(u) CUUT.”

By definition of U, (2) yields 7' C U. (More precisely, if U = U” then T is a subset of STT11))
Because of (1) we obtain 7' = (). Contradiction (as s € T). |

For s € S\U let £(s) be the length of a shortest path w € Path gy, (s) withw(i) € S\ (UUSat(®2)),
i=0,1,...,|w|—1, and last(w) = ®9. By induction on x(s) we define s € Steps(s). If k(s) =1
then we choose some pg € Steps(s) with ug(t) > 0 for some ¢t € Sat(Py). If k(s) > 2 then we

choose some ps € Steps(s) such that ps(u) > 0 for some u € S\ U where x(u) = k(s) — 1. Let
A be a simple adversary with

o A(s) =psforallse S\U
o A(t) = Ut for all ¢ S UZZO Si’l
(where, for t € S“!, u; € Steps(t) such that Supp(ut) cUY).

Then, S’W U (by induction on i we get S . Si) The claim yields that A is admissible for
(®1,P2) w.r.t. W. Hence U = Sf C Spm. Thus S4, = U = Sam. Since Reachél/\ﬁ%(u) cU
for all u € U we get p:t = 0 for alluEU Sadm m

Notation 12.41 S9, = {s € S : pI'(®1UP3) = 0 for some F € AY. }.

air

Lemma 12.42 Sadm C S%,

Proof: Let A € AV, with Sfj, = Sadm (Lemma 12. 40) and let F' € Af,m with ps < p2 for all
s € S (Lemma 12.38). Then, for all s € S&™, pl' = = p4 = 0. Hence, s € S9,

Remark 12.43 The proof of Lemma 12.40 (more precisely, the result U = S%™) shows that
whenever 7T is a subset of S\ (S&™ U Sat(®;)) such that

o forallt € TNW, p € Steps(t): Supp(u) C T U SEE™.
o for allt € T\ W there exists u € Steps(t) such that Supp(u) C T U Sgim.

then T =(. m

Lemma 12.44 Let w € Pathp, such that 7 is fair w.r.t. W, state fair and © [ ©UP,. Then,
there is some k > 0 with (i) | ®1 A =®9, i =0,1,...,k — 1, and (k) € S&™.

Proof: First we observe that, if 7(l) € S&™ for some [ then, with k = min{l > 0: = (l) € SE¢™},
(i) = @1 AP for all i < k. (Otherw1se for the smallest index i < k with 7(i) = &1 A —|<I>2

"Note that u(u) > 0 for some p € Steps(t) and u ¢ U U T implies u € Sat(®). Hence, wy % u is a
path leading from s to a ®s-state through states not belonging to U.
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we have: either (i) = ®2 which contradicts the assumption 7 & ®UPs or (i) = P A =Py
which implies 7(i) € S™ and contradicts the definition of k.)

We suppose that 7(k) ¢ Sg4™ for all k > 0. Let T = inf(w). Then, T C S\ (S&™ U Sat(®2)).
For each t € TNW and p € Steps(t), we have Supp(u) C T. For each t € T\ W, we choose some
u € Steps(t) with step(w,i) = p and w(i) = t for infinitely many ¢ > 0. Then, Supp(u) C T.
Hence, T = () by Remark 12.43. Contradiction. m

Lemma 12.45 If F € A, and pf (®1U®2) < 1 then Reachl, n_q,(s) N SE™ # 0.

Proof: We suppose Reachgl,\ﬁ%( ) N Sm = . Let I' be the set of fulpaths m € Pathfc?ul(s)
such that 7 is fair w.r.t. W, state fair and 7 £ ®;U®,. Then, Prob(T) =1 — p!' > 0 (Lemma
12.6). Hence, ' # (). By Lemma 12.44, l‘ieachgl,\ﬁq,2 (s)NSgdm £ (. m

Lemma 12.46 There erists A € AW, with Reach?‘f,}l,\ﬂ,2 (t) € SY, for all t € SY,. Hence,
P (®1UDy) =0 for all t € SY,.

Proof: The argument is similar to that in the proof of Lemma 12.23. It can be shown that
there exists F' € A}Yavir with p’ = 0 for all s € S}},. Let Q3 ,_4, be the set of paths w € Pathﬁn
such that first(w) € SY and w(i) = ®; A = for all i < |w|. Then, pf, = 0 and last(w) € SY,
for all w € QF . g, For each s € §\ (S), N Sat(®1)), let Stepst (s) = Steps(s). For each
s € SY N Sat(®;) let Steps’ (s) be the set of distributions step(w,i) where i < |w| such that
w(i) =s and w € VG r_g,- Then:

(*) Supp(p) C 8Y, for all t € SY, and u € Steps™ ().

Let Ag be a simple adversary of S which is admissible w.r.t. W and S}/ Ao — = S%m (Lemma 12.46).
For s € S we define pus; = Ag(s). If t € SY, \ SE™ then we deﬁne Q; to be the set of paths
wE Pathﬁn(t ST) with last(w) € SE™ and w(i) |: By A-Dy,i=0,1,...,|w|— 1. Lemma 12.45
yields €, # 0 for all t € S, \ S“dm For t € S, N ST let k(t) be the length of shortest path in
Q. Then, k(t) > 1. We choose some wy € Qy with k() = |w| and put pu; = step(wy,0). For
each A € Agimpie With A(t) = p; for all t € SY9, we have:

(**) Reachél,\_‘% (t) N S%lm 7& @

If s € S\ ST then we choose an arbitrary distribution us; € Steps(s). For s € ST\ S, we
define a distribution us; € Steps(s) by induction on ||s||. If ||s|| = 0 then s € Sat(®2) and we
choose an arbitrary us € Steps(s). If ||s|| > 1 then we choose some u; € Steps(s) such that
ps(w) > 0 for some w € ST with ||w|| < ||s||. Let A be the simple adversary with A(s) = u; for
all s € S. Then, Reachgl,\ﬁ%( )N (Sat(®2) U (SH, NST)) # @ for all s € ST\ SY.. By (**),
Reachfy n—p,(s) N (Sat(®s) U SEI™) # § for all s € S*. Since A(s) = Ag(s) for all s € SEI™ we
obtain Sij, 2 S = Sgim. Hence, Reachq,l,\ﬁ@z( 8) N (Sat(®2) USH) # 0 for all s € S*.
Hence, A is admissible for (®1,®5) wr.t. W (and Sfiy = SE™). By (*), Reachy r-o,(t) C SY
for all t € SY,. Thus, p/! =0 forallt € SY,. m

Lemma 12.47 There exists A € .Aadm with pf(@ﬂj@g) < pf(@ﬂ/{@g) forallse S, F € AE’Z-T.

Proof: The argument is almost the same as in the proof of Lemma 12.25, the only essential
difference being that we deal with S§, = {v € ST : Reachg,p-a,(v) N SV, = 0} rather than S*
and SY, rather than S°.

Remark 12.48 By Lemma 12.42 and 12.47 we get: S{}ﬂm = Sg[,. [ |
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