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ABSTRACT

UPPAAL-TRON is a new tool for model based online black-box
conformance testing of real-time embedded systems spkcifie
timed automata. In this paper we present our experiencesig-a
ing our tool and technique on an industrial case study. Welode
that the tool and technique is applicable to practical systeand
that it has promising error detection potential and execuperfor-
mance.

Categories and Subject Descriptors

D.2 [Software Engineering: Miscellaneous; D.2.53oftware En-
gineering]: Testing and Debuggingsymbolic execution, moni-
tors, testing tools

General Terms
Algorithms, Experimentation, Languages, Theory, Verifaa

Keywords

Black-box testing, online testing, embedded systems rabsoft-
ware, real-time systems

1. INTRODUCTION

Model-based testing is a promising approach for improvieg t
testing of embedded systems. Given an abstract formalizein
(ideally developed as the design process) of the behavibas-o
pects of the implementation under test (IUT), a test geimrabol
automatically explores the state-space of the model torgemealid
and interesting test cases that can be executed again&tTh&he
model specifies the required and allowed behavior of the IUT.

UPPAAL is a mature integrated tool environment for modeling,
verification, simulation, and testing of real-time systemsdeled
as networks of timed automata [8]. PEAAL-TRON (TRON for
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short) is a recent addition to thePBAAL environment. It per-
forms model-based black-box conformance testing of thietiea
constraints of embedded systems. TRON ialine testing tool
which means that it, at the same time, both generates and exe-
cutes tests event-by-event in real-time. TRON representval
approach to testing real-time systems, and is based ontraden
vances in the analysis of timed automata. Applying TRON oalsm
examples has shown promising error detection capabilitlypsar-
formance.

In this paper we present our experiences in applying TRONwon a
industrial case study. Danfoss is a Danish company knowitdwor
wide for leadership in Refrigeration & Air Conditioning, Eiéng
& Water and Motion Controls [2]. The IUT, EKC 201/301, is an
advanced electronic thermostat regulator sold world-vindeigh
volume. The goal of the case study is to evaluate the fedgibfl
our technique on a practical example.

TRON replaces the environment of the IUT. It performs twc log
ical functions, stimulation and monitoring. Based on tineetil se-
quence of input and output actions performed so far, it dbtes
the IUT with input that is deemed relevant by the model. At the
same time it monitors the outputs and checks the conformahce
these against the behavior specified in the model. Thus, TRON
implements a closed-loop testing system.

To perform these functions TRON computes the set of stass th
the model can possibly occupy after the timed trace obseswéat.
Thus, central to our approach is the idea of symbolically pom
ing the current possible set of states. For timed automatantis
first proposed by Tripakis [16] in the context of failure di@gis.
Later that work has been extended by Krichen and Tripaki$d9]
online testing from timed automata. The monitoring aspéthis
work has been applied to NASA's Mars Rover Controller where e
isting traces are checked for conformance against giveouéine
plans translated into timed automata [15]. In contrast,wiek
presented in this paper performs real-time online black-fest-
ing (both real-time stimulation and conformance checkifugy)a
real industrial embedded device consisting of hardware safid
ware. Online testing based on timed CSP specifications hers be
proposed and applied in practice by Peleska [14].

Our approach, previously presented in [5, 13, 11]; an atistra
appeared in [12]), uses the matur@rAAL language and model-
checking engine to performelativized timed input/output confor-
mancetesting, meaning that we take environment assumptions ex-
plicitly into account.

Compared to current control engineering testing practioas



emphasis is on testing discrete mode switches (possibhdeter-
ministic) and on real physical time constraints (dead)iras ob-
servable input/output actions, and less on continuous statlu-
tion characterized by differential equations. Also manygieeer-
ing based approaches has no general formal correctnessagrit
and correctness is assessed manually (tool assisted) tafatiog

a simulated-model with observed test data. In our case we hav
an explicit correctness relation allowing us to autométicaap
events and timings into model and assign verdicts to therebde
behavior online. Itis also important to remark that our eswinent
models need not represent a single deterministic scermriogp-
resents all relevant environment behaviors/assumptions dhich
samples are randomly chosen during test execution. On ke ot
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Figure 1: TRON test setup.

tween a formal specification and its black-box implemeatato
the timed setting and relatively to a given environment.
Intuitively 7 rtioco. s means that after executing any timed in-

hand, the strong focus and dependency on environment modelsput/output traces that is possible in the composition of the system

common in control engineering testing appear new to forrofil s
ware testing.

In Section 2 we introduce the concepts behind our testingdra
work. Section 3 describes the case, Section 4 our modelipgriex
ences, and Section 5 performance results. Section 6 caxthe

paper.
2. TESTING FRAMEWORK

The most important ingredients in our framework is relatd
conformance, timed automata, environment modeling, aadetst
generation algorithm.

2.1 Relativized Conformance Testing

An embedded system interacts closely with its environmédnit v
typically consists of the controlled physical equipmehe(plant)
accessible via sensors and actuators, other computer dgsteths
or digital devices accessible via communication networgsa
dedicated protocols, and human users. A major developraskt t
is to ensure that an embedded system works correctly in as re
operating environment.

The goal of (relativized) conformance testing is to checlethier
the behavior of the IUT is correct according to its specifaatin-
der assumptions about the behavior of the actual envirohinen
which it is supposed to work. In general, only the correcirias
this environment needs to be established, or it may be tdtyams
ineffective to achieve for the most general environmentpliex
environment models have many other practical applications

Figure 1 shows the test setup. The test specification is aonletw
of timed automata partitioned into a model of the environhan
the IUT and the IUT. TRON replaces the environment of the IUT,
and based on the timed sequence of input and output actions pe
formed so far, it stimulates the IUT with input that is deemeld
evant by the environment part of the model. Also in real-time
checks the conformance of the produced timed input output se

specifications and environment specification the implementa-
tion ¢ in environment may only produce outputs and timed delays
which are included in the specificatierunder environmeni. Rel-
ativized timed input/output conformancetioco [6] is defined
formally in Equation 1.

irtioco. s = Vo € TTr(s,e). out((i,e) after o) C

out((s,e) after o) 1)

Here after o denotes the set of states the specification system
(s,e) (resp. implementation systef, e)) may possibly occupy
after executing the timed i/o trace out () denotes the possible
outputs (including permissible delays) the system canyredrom
a given set of states.

The output inclusion in the relation guarantees both fometi
and time-wise correctness. The IUT is not allowed produge an
output actions (including the special output of lettingeipass and
not producing outputs in time) at a time they could not be done
the specification.

2.2 Timed Automata

We assume that a formal specification can be modeled as a net-
work of timed automata. We explain timed automaton by exampl
and refer to [1] for formal syntax and semantics. A timed ede
ton is essentially a finite state machine with input/outpeticas
(distinguished respectively by ? and !) augmented withrdisc
variables and a set of special real-valued clock variablbihw
models the time.

Clocks and discrete variables may be used in predicategon tr
sitions (called guards) to define when the transitions mie/péace.
A location invariant is a clock predicate on an automatoration
that defines for how long the automaton is allowed to stay &b th
location, thus forcing the automaton to make progress withe
specified time bounds. On transitions, the variables cassigrsed

quence against the IUT part of the model. We assume that thea value, and clocks may be reset to zero.

IUT is a black-box whose state is not directly observable.lyOn
input/output actions are observable. The adapter is an pgTific
hardware/software component that connects TRON to the IUT.
is responsible for translating abstract input test everttsphysical
stimuli and physical IUT output observations into abstracidel
outputs. Itis important to note that we currently assumeitiputs
and outputs are discrete (or discretized) actions, and owtinu-
ously evolving.

Depending on the construction of the adapter, TRON can be con
nected to the hardware (possibly via sensors and actuatitts)
embedded software forming hardware-in-the-loop testing,can
be connected directly to the software forming softwaréhieHoop
testing.

We extended the input/output conformance relaibmo [17] be-

Figure 2(a) shows an kPAAL automaton of a simple cooling
controllerC™ wherez is real-valued clock and is an integer con-
stant. Its goal is to control and keep the room temperatuhdad
range. The controller is required: 1) to tu@n the cooling de-
vice within an allowed reaction timewhen the room temperature
reacheddigh range, and 2) to turn ©ff within » when the temper-
ature drops td.owrange.

In the encircled initial locatioff, it forever awaits temperature
input samples.ow, MedandHigh. WhenC" receivedHighit resets
the clockz to zero and moves to locatiamp, where the location
invariantz < r allows it to remain for at most time units. Edges
may also have guards which define when the transition is edabl
(see e.g. in Figure 2(d)). At latest whenreaches- time units
the outputon is generated. If &ow is received in the mean time



it must go bacloff. Transitions are taken instantaneously and time ature changes througked range and with a speed bounded by

only elapses in locations.
In locationoff the automaton reacts non-deterministically to in-

d. Figure 2(e) shows an even more constrained environéignt
that assumes that the cooling device works, e.g., temperaaver

putMed C" may choose either to take a loop transition and stay in increases when cooling is on. Notice tlfatand&; have less dis-

locationoff or move to locatiorup. WhenC" is used as a specifi-
cation a relativized input/output conforming controllerglemen-
tation may choose to perform either. Thus non-determiniamsg
the implementation some freedom. There are two sourcesrof no
determinism in timed automata: 1) in the timing (tolerancas
actions as allowed by location invariants and guards, and e
possible state after an action.

criminating power and thus may not reveal faults found umdere
discriminating environments. However, if the erroneoubawor
is impossible in the actual operating environment the emey
be irrelevant. Consider again the implementaﬁ,’éﬁ from above.
This error can be detected unc&randgi’d“ via the timed trace
that respects the environmertdled?d-High?-d-Med?2d-Low?e-
Onl, ¢ < r. The specification would produe@ff. The error cannot

Timed automata may be composed in parallel, communicate via he detected undet; if it too slow 3d > r, and never undef- for

shared variables and synchronize rendezvous-style orhimgtn-
put/output transitions. In elosedtimed automata network all out-
put action transitions have a corresponding input actiansition.

no value ofd.
In the extreme the environment behavior can be so restricted
it only reflects a single test scenario that should be testedur

UPPAAL is an model checker for real-time systems, and supports view, the environment assumptions should be specified @ttpli

timed automata networks with additional integer varialylpes,
broadcast (one-to-many) synchronizations and other sices. Up-
PAAL provides an efficient set of symbolic model-checking algo-
rithms for performing symbolic reachability analysis ah&d au-
tomata. Since clock values are real-valued, the stateespathe
model is infinite, and cannot be represented and computdit-exp
itly. A symbolic state represents a (potentially infinite} sf con-
crete states and is implemented as particular set of limesyuia-
tions on clock variables. Thus the evaluation of guards amapi-
tation of successor symbolic states is done symbolically.

2.3 Environment Modeling

In this section we exemplify how our conformance relatiog di
criminates systems, and illustrate the potential powermefren-
ment assumptions and how this can help to increase the neleva
of the generated tests for a given environment.

Consider the simple cooling controller of Figure 2(a) and th
environment in Figure 2(c). Tak&® to be the specification and as-
sume that the implementation behaves iRe Clearly,C® riigtos ,,

C® because the timed trabeMed! - 7- On! is possible in the imple-
mentation, but not in the specification. Formalrly,lt(c8 after 0-
Med!-7) ={On!}UR>o € out(C® after 0-Med!-7) =Rxo
(recall thatC™ may remain in locatioroff on inputMed and not
produce any output). The implementation can thus perforugn
put at a time not allowed by the specification.

Next, suppos€” is implemented by a timed automatbrf equal
to C", except the transitiomp Lov, dn is missing, and replaced
by a self loop in locationip. They are distinguishable by the timed
trace0-Med?0-High?-0- Low?0- On! in the implementation that
is not in the specification (switches the compres3ffrinstead).

Figures 2(b) to 2(e) show four possible environment assump-
tions forC". Figure 2(c) shows the universal and completely un-

constrained environmeit,; where room temperature may change
unconstrained and may change (discretely) with any ratés i€h
the most discriminating environment that can generate apyti
output sequence and thus (in principle) detect all errors.

This may not be realistic in the given physical environment
there may be less need to test the controller in such an @nviro
ment, as temperature normally evolves slowly and contislypu
e.g., it cannot change drastically frdnow to High and back un-

and separately.

2.4 Online Testing Algorithm.

Here we outline the algorithm behind TRON informally. The
precise formal definitions and algorithms behind TRON haaenb
documentedin[12, 11, 6, 7] and we refer to these for furtietaits.

The environment model functions as a (state-dependent}-inp
stimuli (load) generator. The IUT-model functions as asshdea-
cle, and is used to evaluate the correctness of the obsenved in-
put output sequence. In order to simulate the environmeshiraom-
itor the implementation, Algorithm 1 maintains the curregsch-
able symbolic state s C S x E that the test specification can
possibly occupy after the timed trace observed so far.

Based on this symbolic state-set, TRON checks whether the ob
served output actions and timed delays are permitted ingbe fs
cation. In addition TRON computes the set of possible ingheas
may be offered to the implementation.

ALG. 1. Test generation and executiof: := {(so, €o)}-

while Z # () A fiterations < T do choose randomly:
offer input action
if EnvOutput(Z) # 0
randomly choosé € EnvOutput(Z)
sendi to IUT, Z := Z after ¢
delay and wait for an output
randomly choosé € Delays(Z)
sleepd or wake up on output atd’ < d
if o occursthen
Z:= Z after d
if o ¢ ImpOutput(Z) then return fail
dse Z := Z after o
dse Z := Z after d
reset and restartz := {(so,eo0)}, reset IUT
if Z = () then return fail else return pass

TRON randomly chooses between one of three basic actions: ei
ther send a randomly selected relevant input to the [UTintgtime
pass by some (random) amount and silently observe the IUT for
outputs, or reset the IUT and restart. The set of input asttbat
are possible in the current state-Setenabled environment output)

less througiMed Similarly, most embedded and real-time systems is denoted byEnvOutput(Z). Similarly, ImpOutput(Z) denotes

also interact with physical environments and other digitetems

the allowed set of implementation outputs, &wlays(Z) the pos-

that— depending on circumstances—can be assumed to betcorre sible delays before the tester must give an input to the 14T ¢a-

and correctly communicate using well defined interfacesand

tocols. The other extreme in Figure 2(c) is the least diso@ting

environment; it merely passively consumes output actions.
Figure 2(d) shows the environment modgl where the temper-

strained by invariants the environment model). In the fpcatim-
plementation the probability of restarting is chosen corateely
very low.

If the tester observes an output or a time delay it checksivenet
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Figure 2: Timed automata of simple controller and various ewironments.

this is legal according to the state set. The state set igegeehen-
ever an input is offered, an output or a delay is observedsiden
the system(C”, &{). The initial state-set is the single symbolic
state: {(off, L, = 0 Ay = 0)}. After a delay ofd or more,

{Med} is the set of possible inputs. Suppose that TRON issues

Med afterd > d time units. The state-set now consists of two
states:{(off , M,z =5 Ay = 0),{up, M,z =0 Ay = 0)}. If
Onis received later at timé& < r the first element in the state-set
will be eliminated resulting if {on, M,z =0 Ay = §')}. lllegal
occurrence or absence of an output is detected if the sthtwese
comes empty which is the result if the observed trace is ntitén
specification.

TRON uses using the RPAAL engine to traverse internal, de-
lay and observed action transitions, to evaluate clock amible
guards, and to perform variable assignments. We use théeeaffic
reachability algorithm implementation [3] to implementetop-
erator after . It operates on bounded symbolic states, checks
for symbolic-state inclusions and thus always terminates ef
the model contains loops of internal actions. Further imi@tion
about the implementation of the required symbolic operatican
be found in [6].

Currently TRON is available to download via the Interneefoé
charge for evaluation, research, education and other aonmercial
purposes [10]. TRON supports allPBAAL modeling features in-
cluding non-determinism, provides timed traces as testlud a
verdict as the answer totioco relation, and features for model-
coverage measurements.

3. THE DANFOSS EKC-201 REFRIGERA-
TION CONTROLLER

We applied WPAAL-TRON on a first industrial case study pro-
vided by Danfoss Refrigeration Controls Division. The EKé@he
trols and monitors the temperature of industrial cooliranpd such
as cooling and freezer rooms and large supermarket reditiyst

3.1 Control Objective

The main control objective is to keep the refrigerator rodm a

temperature at a user defined set-point by switching a caspre
on and off. It monitors the actual room temperature, and @sun
an alarm if the temperature is too high (or too low) for toodan
period. In addition it offers a myriad of features (e.g. defing
and safety modes in case of sensor errors) and approximélely
configurable parameters.

The EKC obtains input from a room air temperature sensor, a
defrost temperature sensor, and a two-button keypad timatot®
approximately 40 user configurable parameters. It delivatput
via a compressor relay, a defrost relay, an alarm relay, adan
lay, and a LED display unit showing the currently calculatedm
air temperature as well as indicators for alarm, error aretamg
mode.

Figure 3 shows a simplified view of control objective, nantely
keep the temperature withsetPointand setPoint-differential de-
grees. The regulation is to be based on an weighted averaged r
temperaturel’, calculated by the EKC by periodically sampling
(around 1.2 sec.) the air temperature sensor such that aameples
T is weighted by 20% and the old averdfje_; by 80%:

Th-1 24 + 7T @
A certain minimum duration must pass between restarts afdtre
pressor, and similarly the compressor must remain on forra-mi
mum duration. An alarm must sound if the temperature ine®as
(decreases) above (belohighAlarmLimit(lowAlarmLimif) for alar-
mbDelaytime units. All time constants in the EKC specification are
in the order of seconds to minutes, and a few even in hours.

3.2 Test Adaptation.

A few comments are necessary about the test adapter for the
EKC since it determines what and how precise the IUT can be con
trolled and observed.

Internally, the EKC is organized such that nearly every inpu
output and important system parameter is stored in a seecph-
rameter database in the EKC that contains the value, typpamd
mitted range of each variable. The parameter database cian be

T, =
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Figure 3: EKC Main Control Objective.

directly accessed from a visual Basic APl on a MS Windows XP
PC host via monitoring software provided by Danfoss. The EKC
connected to a MS Windows XP PC host, first via a LON network
from the EKC to a EKC-gateway, and from the gateway to the PC
via a RS-232 serial connection. The required hardware aftd so

ekcResetf ) .compressorRelayOn!

manualDefrostOnf | compressorRelayOffl
manualDefrostOff7 | defrostRelayOn!
CT(int -20..20 iTEKC defrostRelayOff!

alarmRelayOn!
—
alarmRelayOff!
PO
highAlarmDisplayOn!
T .
highAlarmDisplayOff!
f—————

setpoint(int -50..602’

setAlarmDelay(int 0..90)

Figure 4: Model Inputs and Outputs.

the temperature as calculated by the EKC and base contiohact
on this value. To make this work, the computation part of tlogleh

and also its real-time execution must be quite precise. pjéuisof

the model thus approximates the continuous evolution ofrarpa
eter, and almost approaches a model of a hybrid system, vidich
on the limit of the capability of timed automata. An alteimat
would be to monitor the precision of the calculated tempeeain

the adaptation software and let that generate events &agm-
LimitReached! to the model as threshold values are crossed. This
would yield a simple and more abstract “pure” event driverdeio

ware were provided by Danfoss. As recommended by Danfoss we ~1he model consists of 18 concurrent components (timed aatejm

implemented the adaptation software by accessing the paeam
database using the provided interface. HoweverpAAL-TRON

only exists in UNIX versions, and thus it required a secondXJN
host computer connected to the MS windows PC using a TCP/IP
connection properly configured to prevent unnecessaryitelaf
small messages. The adaptation software thus consiststbird “
visualBasic part running on the MS windows host, and a C++ par
interfacing to the TRON native adaptation API running on alXIN
host. It is important to note that this long chain (three kv
hops) adds both latency and uncertainty to the timing of tsven

More seriously it turned out that the parameters represgsgn-
sor inputs are read-only, meaning that the test host caraotge
these to emulate changes in sensor-inputs. Therefore saame f
tionality (temperature based defrosting, sensor errodlivegy and
door open control) related to these is not modeled and teSteel
main sensor, the room temperature, is hardwired to a fixdithget
via a resistor, but the sensed room temperature can be ahamlie
rectly via a writable calibration parameter with the radgzd °C.

It quickly became evident to us that the monitoring softweas
meant for “coarse grained” event logging and supervisioraby
operator, not as a (real-time) test interface. An importgerteral
lesson learned is that an IUT should provide an test interfeith
suitable means for control and observation. We are col&hny
with Danfoss to provide a better test interface for futunesians of
the product.

3.3 Model Structure

We modeled a central subset of the functionality of the EKC as
a network of LPPAAL Timed Automata, namely basic temperature
regulation, alarm monitoring, and defrost modes with mbaud
automatic controlled (fixed) periodical defrost (de)aation. The
allowed timing tolerances and timing uncertainties introed by
the adaptation software is modeled explicitly by allowingput
events to be produced within a certain error envelope. Famgie,
a tolerance of 2 seconds is permitted on the compressoi-riia
general, it may be necessary to model the adaptation layearas
of the model for the system under test. The abstract inpiybu
actions are depicted in Figure 4.

From the beginning it was decided to challenge our tool. &her
fore we decided that the model should be responsible ofitigck

14 clock variables, and 14 discrete integer variables, arttits
quite large. The main components and their dependenciedeare
picted in Figure 5 and explained below.

IUT-Model
Environment tempMeasurement
autoDefrost
Te newTemp
TemperatureGenerator LECuD
defrostEventGen 'gutput [ compressor | «-]-highTempatari == aefrost |
on/off on/off...onfoff ] "'bn/ui
compressor alarm alarm defrost
Relay Relay Display Relay

Figure 5: Main Model Components

The Temperature Measurementcomponent periodically sam-
ples the temperature sensor and calculates a new estintated r
air temperature. Th€ompressor component controls the com-
pressor relay based on the estimated room temperature atad
defrost status. Theligh Temperature Alarm component moni-
tors the alarm state of the EKC, and triggers the alarm réltei
temperature is too high for too long. TBefrost component con-
trols the events that must take place during a defrost cydeen
defrosting the compressor must be disengaged, and alarrsis mu
be suppressed untilelayAfterDefrostime units after completion.
Defrosting may be started manually by the user, and is engage
automatically with a certain period. It stops when the detfrm
time has elapsed, or when stopped manually by the userAtitee
Defrost component implements automatic periodic time based de-
frosting. It automatically engages the defrost mode pésaily.

The Relay component models a digital physical output (compres-
sor relay, defrost relay, alarm relay, alarm display) thaémgiven

a command switches on (respectively off) within a certameti
bound. TheTemperature Generator is a part of the environment
that simulates the variation in room temperature, curyeaiter-
natingly increases the temperature linearly between mimrand
maximum temperature, and the reverse. FinallyQk&ost Event
Generator environment component randomly issues user initiated
defrost start and stop commands.



4. COMPONENT MODELING AND
REVERSE ENGINEERING

The modeling effort was carried out by computer scientistis-w
out knowledge of that problem domain based on the EKC docu-
mentation provided by Danfoss. It only consisted of therimé
requirements specification and the users manual, both annirf
prose. In addition we had access to questioning the Danfoss E
gineers via email and two meetings, but no design documents o
source code were available. In addition we were given dooume
tation about the EKC PC-monitoring software and associAfed
allowing us to write the adaptation software.

In general the documentation was insufficient to build theleho
In part this was due to a lack of a detailed understanding ®f th
implicit engineering knowledge of the problem domain anevho
previous generations of controllers worked. But more intgoutty
much functional behavior and especially timing constsaiwere
not explicitly defined. In general the requirements spegiifon did
not state any timing tolerances, e.g, the allowed latencgam-
pressor start and stop when the calculated temperatursesrtise
lower or higher thresholds.

Therefore the modeling involved a lot of experimentationiée
duce the right model and time constraints, which to somenéxte
best can be characterized as reverse engineering or nezdalfg
[4]. Typically the work proceeded by formulating a hypotisesf
the behavior and timing tolerances as a model (of the selecte
pect/sub functionality), and then executing TRON to chebkthier
or not the EKC conformed to the model. If TRON gave a fail-
verdict the model was revised (either functionally, or bgdening
time tolerances). If it passed the timing tolerances weyletéined
until it failed. The process was then iterated a few times, e
Danfoss engineers were consulted to check whether the ioelodv
the determined model was acceptable.

In the following we give a few examples of this procedure.

4.1 Room Temperature Tracking.

4.3 Defrosting and Alarm Handling.

A similar discrepancy between expected and actual behdeior
tected by TRON was in the way that the alarm and defrost fansti
interacts. After a defrost the room temperature naturédksrbeing
higher than the alarm limit, because cooling has been sedtciff
during the defrost activity for an extended period of timénefie-
fore a high temperature alarm should be suppressed in thigisin
which can be done by configuring the EKC parameti@armDe-
layAfterDefrost However, reading different sections of the docu-
mentation gives several possible interpretations:

1. When defrosting stops and the temperature is high, alarms
must be postponed fatarmDelayAfterDefrosin addition to
the originalalarmDelay i.e., never alarms during a defrost.

. Same as above (1) except it is measured from the time where
the high alarm temperature is detected, even during a defros

. When defrosting stops and the temperature is high, alarms
must be suppressed fatarmDelayAfterDefrosti.e., alar-
mDelayAfterDefrosteplaces the originalarmDelayafter a
defrost until the the temperature becomes below critidal, a
ter which the normahlarmDelayis used again.

The engineering department could not give an immediate @nsw
to this (without reluctantly consulting old source coda)t based
on their experiences and requirements for other produeis lik-
lieved that 3 is the correct interpretation. Note that wereresug-
gesting that the product was implemented without a cleaernd
standing of the intended behavior, only that it was not cfean
its documentation.

4.4 Defrost Time Tolerance.

Another discrepancy TRON found was that defrosting started
earlier than expected or was disengaged later. It turnethatithe
internal timer in the EKC responsible for controlling theérdst pe-
riod has a very low precision (probably because defrossngiie

The EKC estimates the room temperature from Equation 2 based(e.qg., once a day) and has along duration (lasts severafolihe

on periodically samples of the room temperature sensorbasés
most control actions like switching the compressor on ooafthis
value. However, the requirements only requires a certanigion

on the sampling accuracy of the temperature senggy$(°C') and

a sensor sampling period of at most 2 seconds, and nothing abo
how frequently the temperature should be reevaluated. |@ti® a
series of tests where the temperature change rate, theisgmpt
riod, and temperature tolerance were changed to deterhergeist
matching configuration. The model now uses a period of 1.2 sec
onds, and allows: 2 seconds tolerance on compressor start/stop.

4.2 Alarm Monitoring

Executing TRON using our first version of the high tempematur
alarm monitor caused TRON to give a fail-verdict: The EKC did

default tolerance used in the model on the relays thus ha&to b
further relaxed.

5. QUANTITATIVE EVALUATION

During a test-run, the testing algorithm computes, on aiperd
event basis, the set of symbolic states in the model that ean b
reached after the timed event trace observed so far, andagese
stimuli and checks the validity of IUT-outputs based on tate-
set.

Since we use a non-deterministic model to capture the timing
and threshold tolerances of the IUT and since internal event
a concurrent model may be executed in (possibly combirshpri
many) different orders, this set will usually contain numes pos-
sible states. The state-set reflects the allowed statessdwadior of

not raise alarms as expected. The model shown in Figure 6 as-the IUT, and intuitively, the larger the state-set, the maneertain

sumed that the user’s clearing of the alarm would reset teral
state of the EKC completely. The consequence of this is tiat t
EKC should raise a new alarm withadarmDelayif the temper-
ature remained above the critical limit. However, it did,nend
closer inspection showed that the EKC was still indicatinghh
temperature alarm in its display, even though the alarm Vezsed
by the user. The explanation given by Danfoss was that cigénie
alarm only clears the alarm relay (stopping the alarm npigg)the
alarm state which remains in effect until the temperatuopslbe-
low the critical limit. The model was then refined, and inéadhe
noSoundDisplayinglocation in Figure 7.

the tester is about the state of the implementation.

Since we generate and execute tests in real-time the shate-s
must also be updated in real-time. Obviously, the model aerd t
state-set size affects how much computation time this aded
one might question wheter doing this is feasible in practinghe
following we investigate whether real-time online testingealis-
tic for practical cases, like the Danfoss EKC.

Figure 8 plots the evolution of the state-set size (humbsyof-
bolic state$ for a sample test run. Also plotted in the graph is the
input temperature, temperature threshold value for higipera-
ture (compressor must switch on) and high temperature gyen
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alarm must sound if it remains high for more thelarmDelay(120
sec) time units.

It is interesting to observe how the state-set size depemdiseo
model behavior. For instance, the first larger increasedtestet
size occurs after 55 seconds. At this time the temperatosses
the limit where the compressor should switch on. But due ¢o th
timing tolerances, the model does not “know” if the compoess
relay is in on-state or off-state, resulting in a largerestsst. The
state-set size then decreases again, only to increasea@drsec-
onds at which a manual defrost period is started. The next ma-
jor jump occurs at 120 seconds and correlates nicely withirhe
where the temperature crosses high-alarm limit and thenataon-
itor component should switch intiiggered state. Similarly, 260
second into the run, the temperature drops below the thichsdmod
there is no uncertainty in the alarm state. The fluctuatiosgle
this period is caused by a manually started and stoppeddesks-
sion. In fact 5 defrost cycles are started and stopped byetttert
in this test run. The largest state-set size (960 statesyoet 450
seconds and correlates to the time-out of a defrost cyclereTis
a large tolerance on the timer controlling defrosting, aadde the
model can exhibit many behaviors in this duration.

The state-set contains most often less than a few hundres$ sta
Exploring these is unproblematic for a modern model-chegkin-
gine employed by TRON. Figure 9 plots the the cpu-time used to
update the state-set for delay-actions (typically the ragpensive
operation) for 5 test-runs of our model on a Dual Pentium X28n
GHz CPU (one used). It can be seen that the far majority oé stat
set sizes are reasonably small. Updating medium sized stéte
with around 100 states requires only a few milli-seconds) (ofis
cpu-time. The largest encountered state-sets (around S@6€xs)
are very infrequent, and requires around 300 ms.

Real-time online testing thus appear feasible for a larggeaf
embedded systems, but also that very non-deterministiehsodh
as the EKC-model may limit the granularity of time consttsithat
can be checked in real-time.
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Figure 8: Evolution of State-set.

6. CONCLUSIONS AND FUTURE WORK

Our modeling effort shows that it is possible to accuratebdsd
the behavior of EKC like devices as Timed Automata and use the
resulting model as a test specification for online testing.

Itis possible to model only selected desired aspects oftters
behavior, i.e. a complete and detailed behavioral desonijig not
required for system testing. Thus, model based testingasiliee
even if a clear and complete formal model is not availablmftbe
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Figure 9: Cost of State-set Update: Delay action

start, although it will clearly benefit from more explicit heling
during requirements analysis and system design.
In the relative short testing time, we found many discrefEmc

between our model and the implementation. Although many of
these were caused by a wrong model due to incomplete require-

ments or mis-interpretations of the documentation, andantial
implementation errors, our work indicates that onlineitgsteems
an effective technique to find discrepancies between theateg
model behavior and actual behavior of the implementaticteun
test. Thus there are also reasons to believe that it is efeit
detecting actual implementation errors.

It should be mentioned that the EKC is a mature product that
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Performance-wise we conclude that real-time online tgsijn

pear feasible for a large range of embedded systems. Tat targe [12]

even faster real-time systems with even time constrairtseifsub)
milli-second range we plan to separate our tool into twogpah
environment emulation part, and a IUT monitoring part. MonRi
ing need not be performed in real-time, and may in the extrieene
done offline. The model that will need to be interpreted irt-tieae

is thus much smaller and can be done much faster.
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