
Online Testing of Real-time Systems UsingUPPAAL

Kim G. Larsen, Marius Mikucionis, and Brian Nielsen

Department of Computer Science, Aalborg University
Fredrik Bajers Vej 7B, 9220 Aalborg Øst, Denmark

{kgl,marius,bnielsen}@cs.auc.dk

Abstract. We present T-UPPAAL — a new tool for online black-box testing of real-time
embedded systems from non-deterministic timed automata specifications. We describe a
sound and complete randomized online testing algorithm andhow to implement it using
symbolic state representation and manipulation techniques. We propose the notion of rela-
tivized timed input/output conformance as the formal implementation relation. A novelty of
this relation and our testing algorithm is that they explicitly take environment assumptions
into account, generate, execute and verify the result online using the UPPAAL on-the-fly
model-checking tool engine. A medium size case study shows promising results in terms
of error detection capability and computation performance.

1 Introduction

The goal of testing is to gain confidence in a physical computer based system by means of
executing it. More than one third of typical project resources is spent on testing embedded and
real-time systems, but still it remains ad-hoc, based on heuristics, and error-prone. Therefore
systematic, theoretically well-founded and effective automated real-time testing techniques is of
great practical value.

1.1 Model Based Testing

Testing conceptually consists of three activities: test casegeneration, test caseexecutionand
verdict assignment. Using model based testing, a behavioral model can be interpreted as a spec-
ification that defines the required and allowed observable (real-time) behavior of the implemen-
tation. It can therefore be used for automatic generation ofsound and (theoretically) complete
test suites.

An embedded system interacts closely with its environment which typically consists of the
controlled physical equipment (the plant) accessible via sensors and actuators, other computer
based systems or digital devices accessible via communication networks using dedicated pro-
tocols, and human users. A major task of the embedded system development is to ensure that
it works correctly in its real operating environment. Due tolack of development resources it is
not feasible to validate the system for all possible environments. Also it is not necessary if the
system environments are known to a large extend. However, the requirements to the system and
the assumptions made about the environment should be clear and explicit.

We denote the system being developedIUT, and its real operating environmentRealENV.
These communicate by exchanginginput and output signals (seen from the perspective of
IUT). Using a model-based development approach, the environment assumptions and system

input

output

oE S

IUT

i

RealENV

(a) Abstraction of an embedded system.

coin?

w
ea

kC
of

fe
e!

st
ro

ng
C

of
fe

e!

req?req?

l0

l1

l2 l3

x := 0

x := 0

x > 30

x := 0

x < 50

x
>

1
0

x
>

3
0

x < 30 x < 50

(b) Example SpecificationSc.

coin!

req!

st
ro

ng
C

of
fe

e?

w
ea

kC
of

fe
e?

k0

k1

k2

x ≥ 60

x := 0

x := 0

(c) Example environmentEc.

Fig. 1. Embedded system and example models.

requirements are captured through abstract behavioral models denotedE andS respectively,
communicating on abstract signalsi ∈ Ain ando ∈ Aout corresponding (via a suitable abstrac-
tion) to the realinput andoutput . This setup is depicted in Figure 1(a).

Modeling the environment explicitly and separately and taking this into account during test
generation has several advantages: 1) the test generation tool can synthesize only relevant and
realistic scenarios for the given type of environment, which in turn reduces the number of re-
quired tests and improves the quality of the test suite; 2) the test engineer can guide the test
generator to more specific situations of interest; 3) a separate environment model makes it easy
to test the system under different assumptions and use patterns.

The goal of relativized conformance testing is to check whether the behavior of theIUT is
correct (conforming) to its specificationS when operating under assumptionsE about the en-
vironment. We propose relativized timed input/output conformance relation between model and
IUT which coincides with timed trace inclusion taking the environment behavior into account.

1.2 Online Testing

Test cases can be generated from the model offline where the complete test scenarios and verdicts
are computed apriori and before execution. Another approach is online (on-the-fly) testingthat
combines test generation and execution: only a single test primitive is generated from the model
at a time which is then immediately executed on theIUT. Then the produced output by theIUT

as well as its time of occurrence are checked against the specification, a new test primitive is
produced and so forth until it is decided to end the test, or anerror is detected. An observed test
run is a timed trace consisting of an alternating sequence of(input or output) actions and time
delays.

There are several advantages of online testing: 1) testing may potentially continue for a
long time (hours or even days), and therefore long, intricate, and stressful test cases may be
executed; 2) the state-space-explosion problem experienced by many offline test generation tools
is reduced because only a limited part of the state-space need to be stored at any point in time;
3) online test generators often allow more expressive specification languages, especially wrt.
allowed non-determinism in real-time models.

1.3 Related Work

Model based test generation for real-time specifications has been investigated by others (see e.g.,
[23, 18, 5, 11, 9, 7, 25, 22, 15, 10, 17]), but remain relatively immature.

A solid and widespread implementation relation used in model based conformance testing
of untimed systems is the input/output conformance relation by Tretmans [27]. Informally, in-
put/output conformance requires for all traces in the specification that the implementation never
produces an output not allowed by the specification, and thatit never refuses to produce an
output (stays quiescent) when the specification requires one.

As also noted in [15, 17] a timed input/output conformance relation can be obtained (assum-
ing input enabledness) as timed trace inclusion between theimplementation and its specification.
Our work further extends this to arelativizedconformance relation taking environment assump-
tions explicitly into account. In [27] the specification is permitted to be non-input enabled (thus
making the conformance relation non-transitive in general) in order to capture environmental
constraints. However, this requires explicit rewriting ofthe specification when different envi-
ronments are to be used. Following the seminal work [16] our approach is based on an separate
model of the environment. In particular, once conformance has been established with respect to
a particular environment we can automatically conclude conformance under more restricted en-
vironments. Also, when theIUT is to be used in different environments, it suffices to test itunder
the most liberal environment assumptions. Furthermore, relativized conformance is transitive.

Model basedoffline testingis often based on a coverage criterion of the model like in [12,
10], on a test purpose as e.g. [14, 15], or a fault-model as [11, 9]. When specifications allow non-
determinism, the generated test cases cannot simply be a sequence, but take the form ofbehavior
treesadaptive to implementation controlled actions, e.g different outputs or timing. Therefore,
most offline test generation algorithms explicitly determinize the specification [8, 14, 22]. How-
ever, for expressive formalisms like timed automata this approach is infeasible because in gen-
eral they cannot be determinized [2] and their unobservableactions cannot always (and when
they can it may be very costly) be removed [29]. Much work on timed test generation from timed
automata therefore restricts the amount and type of allowednon-determinism. Some works [25,
9, 10] completely disallow non-determinism, whereas others [15, 22] restrict the use of clocks,
guards or clock resets. However, in many cases it is important to allow non-determinism, be-
cause 1) specifications are often given as a parallel composition of model-components, 2) it
allows the implementor some freedom, and 3) the tester is usually concerned with abstract re-
quirements rather than concrete details of theIUT. Note that in particular for real-time systems
it may be crucial to allow specification of timing uncertainty, e.g., that an output is expected in
some interval of time (e.g., between 1 and 5 time units from now), but not exactly when. Timed
automata model this by a non-deterministic choice of letting time pass or outputting an event.

In contrast, online testing is automatically adaptive and only implicitly determinizes the
specification, and only partially up to the concrete trace observed so far. The (untimed) online
testing algorithm proposed by Tretmans et. al. in [31, 4] continually computes the set of states
that the specification can possibly occupy after the observations made so far. Based on this the
tester can at any time decide to either perform one of the inputs enabled in the specification, or
wait for output from the implementation, and then check whether the output (or its absence) is
allowed in the state-set. Online testing from Promela [31] and LOTOSspecifications for untimed
systems have been implemented in the TORX [30] tool, and practical application to real case
studies show promising results [28, 30, 4]. However, TORX provides no support for real-time.

Our work generalize the TORX approach to timed systems and to the handling of explicit envi-
ronment assumptions. We allow a quite generous (non-deterministic) timed automata language.
In addition, we compute the state-set symbolically to trackthe (potentially dense) timed state
space.

Online testing from unrestricted non-deterministic timedautomata using symbolic state-set
computation [24] was first published by Krichen and Tripakis[17]. We implement a similar ap-
proach by extending the UPPAAL model-checker resulting in an integrated and mature testing
and verification tool. Our work (originating from [6, 21, 19]; an abstract appeared in [20]) is
different from [17] in that 1) the exact timed automata language variant is different and includes
separable environment models, 2) we propose a relativized version of timed input/output con-
formance, 3) our algorithm (presented in much greater detail) generate tests relevant only for
the specified environment, and 4) is shown to be sound and complete under certain assumptions,
and finally 5) we provide experimental evidence of the feasibility of the technique.

1.4 Contributions

In this paper we describe a tool for online testing of real-time systems. Our main contributions
are the notion ofrelativized timed input/output conformanceand an implementation based on
UPPAAL of a symbolic algorithmthat performs online testing based on a (possibly densely
timed and potentially non-deterministic) timed automata model of theIUT and its assumed
environment. We prove under a certain testing hypothesis that our algorithm is sound and (in
a precise probabilistic sense) complete. Furthermore, we apply T-UPPAAL to a medium sized
case that demonstrates good error detection potential and very encouraging performance.

2 Test Specification

This section formally presents our semantic framework, andintroduces TIOTS, timed automata,
and our relativized input/output conformance relation.

2.1 Timed I/O Transition Systems

We assume a given set of actionsA partitioned into two disjoint sets of output actionsAout

and input actionsAin . In addition we assume that there is a distinguished unobservable action
τ 6∈ A. We denote byAτ the setA ∪ {τ}.

Definition 1. A timed I/O transition system (TIOTS)S is a tuple(S, so, Ain , Aout ,−→), where
S is a set of states,s0 ∈ S, and−→⊆ S × (Aτ ∪R≥0)×S is a transition relation satisfying the

usual constraints oftime determinism(if s
d
−→ s′ ands

d
−→ s′′ thens′ = s′′) and time additivity

(if s
d1−→ s′ ands′

d2−→ s′′ thens
d1+d2−−−−→ s′′), d ∈ R≥0, whereR≥0 denotes non-negative real

numbers.

Notation for TIOTS. Let a, a1...n ∈ A, α ∈ Aτ ∪ R≥0, andd, d1...n ∈ R≥0. We writes
α
−→ iff

s
α
−→ s′ for somes′. We use⇒ to denote theτ -abstracted transition relation such thats

a
⇒ s′

iff s
τ
−→

∗ a
−→

τ
−→

∗
s′, ands

d
⇒ s′ iff s

τ
−→

∗ d1−→
τ
−→

∗ d2−→
τ
−→

∗
· · ·

τ
−→

∗ dn−→
τ
−→

∗
s′ whered = d1 + d2 +

· · · dn. We extend⇒ to sequences of actions and delays in the usual manner.

We assume that the TIOTSS is stronglyinput enabledandnon-blocking.S is strongly input

enabled iffs
i
−→ for all statess and for all input actionsi.S is non-blocking iff for any states and

anyt ∈ R≥0 there is a timed output traceσ = d1o1 . . . ondn+1 such thats
σ
⇒ and

∑

i di ≥ t.
ThusS will not block time in any input enabled environment.

To model potential implementations it is usefull to define the properties ofisolated outputs
anddeterminism. We say thatS has isolated outputs if whenevers

o
−→ for some output actiono,

thens 6
τ
−→ ands 6

d
−→ for all d > 0 and whenevers

o′

−→ theno′ = o. Finally,S is deterministic if
for all delays or actionsα and all statess, whenevers

α
−→ s′ ands

α
−→ s′′ thens′ = s′′.

An observabletimed traceσ ∈ (A∪R≥0)
∗ is of the formσ = d1a1d2 . . . akdk+1. We define

the observable timed tracesTTr(s) of a states as:

TTr(s) = {σ ∈ (A ∪ R≥0)
∗ | s

σ
⇒} (1)

For a states (and subsetS′ ⊆ S) and a timed traceσ, s After σ is the set of states that can
be reached afterσ:

s After σ = { s′ | s
σ
⇒ s′ }, S′ After σ =

⋃

s∈S′

s After σ (2)

The setOut
(

s
)

of observable outputs or delays that can occur ins ∈ S′ ⊆ S is defined as:

Out
(

s
)

= { a ∈ Aout ∪ R≥0 | s
a
⇒}, Out

(

S′
)

=
⋃

s∈S′

Out
(

s
)

, (3)

Timed Automata [2] is an expressive and popular formalism for modelling real-time systems.
Let X be a set ofR≥0-valued variables calledclocks. Let G(X) denote the set ofguardson
clocks being conjunctions of simple constraints of the formx ./ c, and letU(X) denote the set
of updatesof clocks corresponding to sequences of statements of the formx := c, wherex ∈ X ,
c ∈ N, and./ ∈ {≤, <, =, >,≥}. A timed automatonover(A, X) is a tuple(L, `0, I, E), where
L is a set of locations,̀0 ∈ L is an initial location,I : L → G(X) assigns invariants to locations,
andE is a set of edges such thatE ⊆ L × G(X) × Aτ × U(X) × L. We write`

g,α,u
−−−−→ `′ iff

(`, g, α, u, `′) ∈ E.
The semantics of a timed automaton is defined in terms of a TIOTS over states of the form

s = (`, v̄), where` is a location and̄v ∈ R
X
≥0 is a clock valuation satisfying the invariant of`.

Intuitively, there are two kinds of transitions: delay transitions and discrete transitions. In delay

transitions,(`, v̄)
d
−→ (`, v̄ + d), the values of all clocks of the automaton are incremented bythe

amount of the delay,d. Discrete transitions(`, v̄)
α
−→ (`′, v̄′) correspond to execution of edges

(`, g, α, u, `′) for which the guardg is satisfied bȳv. The clock valuation̄v′ of the target state is
obtained by modifyinḡv according to updatesu and satisfies the invariants on`′.

Figure 1(b) shows a timed automaton specifying the requirements to a coffee machine. It has
a facility that allows the user, after paying, to indicate his eagerness to get coffee by pushing a
request button on the machine forcing it to output coffee. However, allowing insufficient brewing
time results in a weak coffee. Waiting less then 30 time unitsdefinitely results in weak coffee,
and waiting more than 50 definitely in strong coffee. Between30 and 50 time units the choice
is non-deterministic, meaning that theIUT/implementor may decide what to produce. After
the request, it takes the machine an additional (non-deterministic) 10 to 30 (30 to 50) time
units to produce weak coffee (strong coffee). The timed automaton in Figure 1(c) models a
potential (nice) user of the machine that pays before requesting coffee and wants strong coffee
thus requesting only after 60 time units.

TIOTS Composition. Let S = (S, s0, Ain , Aout ,−→) be an input enabled, non-blocking
TIOTS. An environmentE for S is itself an input enabled, non-blocking, TIOTSE = (E, eo,
Aout , Ain ,−→). HereE is the set of environment states and the set of input (output)actions ofE
is identical to the output (input) actions ofS. The parallel composition ofS andE forms aclosed
systemS ‖ E whose observable behavior is defined by the TIOTS(S×E, (s0, e0), Ain , Aout ,−→)
where−→ is defined as

s
a
−→ s′ e

a
−→ e′

(s, e)
a
−→ (s′, e′)

s
τ
−→ s′

(s, e)
τ
−→ (s′, e)

e
τ
−→ e′

(s, e)
τ
−→ (s, e′)

s
d
−→ s′ e

d
−→ e′

(s, e)
d
−→ (s′, e′)

(4)

The timed automataSc andEc respectively shown in Figure 1(b) and 1(c) can be composed
in parallel on actionsAin = {req, coin} andAout = {weakCoffee, strongCoffee} forming a
closed network1.

2.2 Relativized Timed Conformance

In this section we define our notion of conformance between TIOTSs. Our notion derives from
the input/output conformance relation (ioco) of Tretmans and de Vries [27, 31] by taking time
and environment constraints into account. Under assumptions of input enabledness our rela-
tivized timed conformance relation coincides with relativized timed trace inclusion. Likeioco,
this relation ensures that the implementation only has behavior allowed by the specification.
In particular, 1) it is not allowed to produce an output at a time (too late or too early) when
one is not allowed by the specification, 2) it is not allowed toomit producing an output when
one is required by the specification by delaying more than allowed. Thus, timed trace inclu-
sion offers the notion of time-bounded quiescence that—in contrast toioco’s conceptual eternal
quiescence—can be observed in a real-time system.

Definition 2. Given an environmente ∈ E the e-relativized timed input/output conformance
relation rtiocoe between system statess, t ∈ S is defined as:

s rtiocoe t iff ∀σ ∈ TTr(e). Out
(

(s, e) After σ
)

⊆ Out
(

(t, e) After σ
)

Whenevers rtiocoe t we will say thats is a correct implementation (or refinement) of the spec-
ification t under the environmental constraints expressed bye. Under the assumption of input-
enabledness of bothS andE we may characterize relativized conformance in terms of trace-
inclusion as follows:

Lemma 1. Let S andE be input-enabled with statess, t ∈ S ande ∈ E respectively. Then

s rtiocoe t iff TTr(s) ∩ TTr(e) ⊆ TTr(t) ∩ TTr(e)

Thus ifs rtiocoe t does not hold then there exists a traceσ of e such thats
σ
⇒ butt 6

σ
⇒. Given

the notion of relativized conformance it is natural to consider the preorder on environments
based on their discriminating power, i.e. for two environmentse andf :

e v f iff rtiocof ⊆ rtiocoe (5)

1 To avoid cluttering the figures we have not made them explicitly input enabled; for the unspecified inputs
there is an undrawn self looping edge that merely consumes the input without changing the location.

(to be readf is more discriminating thane). It follows from the definition of rtioco that
e v f iff TTr(e) ⊆ TTr(f). In particular there is a most (least) discriminating inputen-
abled and non-blocking environmentU (O) given by TTr(U) = (A ∪ R≥0)

∗
(

TTr(O) =

(Aout∪R≥0)
∗
)

. The corresponding conformance relationrtiocoU (rtiocoO) specializes to sim-
ple timed trace inclusion (timed output trace inclusion) between system states. In Figure 2(a) and
Figure 2(b) the most-discriminating and the least-discriminating environments are given when
Ain = {req, coin} andAout = {weakCoffee, strongCoffee}.

re
q!

coin!

wea
kC

of
fe

e?
strongCoffee?

k0

(a) most-v environmentEU .

wea
kC

of
fe

e?
strongCoffee?

k0

(b) least-v environmentEO.

coin?

w
ea

kC
of

fe
e!

st
ro

ng
C

of
fe

e!

req?req?

l0

l1

l2 l3

x := 0

x := 0

x ≥ 41

x := 0

x
=

=
D

W

x
=

=
D

S

x ≤ 40

x ≤ DW x ≤ DS

(c) IUT: I(DS , DW).

Fig. 2. Implementation of coffee machine

2.3 Examples

The specification machineSc and environmentEc were described in Section 2.1. The (de-
terministic) implementationI(DS , DW) in Figure 2(c) produces weak coffee (strong coffee)
after less than 40 time units (more than 41 time units) and an additional brewing time of
DS (resp.DW) time units. Observe that any trace of the implementationI(40, 20) (in any
environment) can be matched by the specification; henceI(40, 20) rtiocoEU

S. Thus also
I(40, 20) rtiocoEc

Sc. In contrastI(70, 5) rt�iocoEU
Sc for two reasons: 1) it has the timed

tracecoin · 30 · req · 5 · weakCoffee thatSc does not, i.e., it may produce weak coffee too soon
(no time to insert a cup); 2) it has the tracecoin · 50 · req · 70 not inSc meaning that it produces
strong coffee too slowly. Assume now that the strong coffee error is fixed, and that the machine
I(40, 5) is used in the restricted environment of nice usersEc. Here, despite the remaining weak
coffee error inEU , I(40, 5) rtiocoEc

Sc becauseEc never requests weak coffee.

3 Test Generation and Execution

We present the main algorithm, its soundness and completeness proof, and how to implement it.

3.1 The Main Algorithm

The input to Algorithm 1 is two TIOTSsS ‖ E respectively modelling theIUT and environment.
It maintains the current reachable state setZ ⊆ S × E that the test specification can possibly
occupy after the timed trace observed so far. Knowing this state estimate allows it to choose
appropriate test primitives and to validateIUT outputs.

Algorithm 1 Test generation and execution:TestGenExe(S, E , IUT, T). Z := {(s0, e0)}.

while Z 6= ∅ ∧]iterations ≤ T do switch(action, delay, restart) randomly:
action: // offer an input

if EnvOutput(Z) 6= ∅
randomly choosea ∈ EnvOutput(Z)
senda to IUT

Z := Z After a
delay: // wait for an output

randomly chooseδ ∈ Delays(Z)
sleep forδ time units and wake up on outputo
if o occurs atδ′ ≤ δ then

Z := Z After δ′

if o /∈ ImpOutput(Z) then return fail
elseZ := Z After o

else // no output within δ delay
Z := Z After δ

restart: //reset and restart
Z := {(s0, e0)}
resetIUT

if Z = ∅ then return fail
else returnpass

The tester can perform three basic actions: either send an input (enabled environment output)
to theIUT, wait for an output for some time, or reset theIUT and restart. If the tester observes
an output or a time delay it checks whether this is legal according to the state set. The state set
is updated whenever an input is offered, or an output or delayis observed. Illegal occurrence
or absence of an output is detected if the state set becomes empty which is the result if the
observed trace is not in the specification. The functions used in Algorithm 1 are defined as:
EnvOutput(Z) = {a ∈ Ain | ∃(s, e) ∈ Z.e

a
−→}, ImpOutput(Z) = {a ∈ Aout | ∃(s, e) ∈

Z.s
a
−→}, andDelays(Z) = {d | ∃(s, e) ∈ Z.e

d
⇒}. Note thatEnvOutput is empty if the

environment has no outputs to offer. Similarly,Delays cannot pick at random from the entire
domain of real-numbers if the environment must produce an input to theIUT model before
a certain moment in time. We use the efficient reachability algorithm implementation [3] to
compute the operatorAfter. It operates on bounded symbolic states, checks for inclusions and
thus always terminates even if the model containsτ action loops.

3.2 Soundness and Completeness

Algorithm 1 constitutes a randomized algorithm for providing stimuli to (in terms of input and
delays) and observing resulting reactions from (in terms ofoutput) a givenIUT. Assuming the
behavior of theIUT is a non-blocking, input enabled, deterministic TIOTS withisolated outputs
the reaction to any given timed input traceσ = d1i1 . . . dkikdi+1 is completely deterministic.
More precisely, given the stimuliσ there is a uniqueρ ∈ TTr(IUT) such thatρ ↑ Ain = σ,
whereρ ↑ Ain is the natural projection of the timed traceρ to the set of input actions.

Under a certain (theoretically necessary) testing hypothesis about the behaviour ofIUT and
given that the TIOTSsS andE satisfy certain assumptions, the randomization used in Algo-

rithm 1 may be chosen such that the algorithm is both completeand sound in the sense that it
(eventually with probability one) gives the verdict “fail”in all cases of non-conformance and
the verdict “pass” in cases of conformance. The hypothesis and assumptions are based on the
results on digitization techniques in [26]2 which allow the dense-time trace inclusion problem
between two sets of timed traces to be reduced to discrete time. In particular it suffices to choose
unit delays in Algorithm 1 (assuming that the models andIUT share the same magnitude of a
time unit).

Theorem 1. Assume that the behaviour ofIUT may be modelled3 as an input enabled, non-
blocking, deterministic TIOTS with isolated outputs. Furthermore assume thatTTr(IUT) and
TTr(E) areclosed under digitizationand thatTTr(S) is closed under inverse digitization. Then
Algorithm 1 with only unit delays is sound and complete in thefollowing senses:

1. WheneverTestGenExe(S, E , IUT, T) = fail thenIUT rt�iocoE S.

2. WheneverIUT rt�iocoE S thenProb
(

TestGenExe(S, E , IUT, T) = fail
) T→∞
−−−−→ 1

whereT is the maximum number of iterations of the while-loop beforeexiting.

Proof. (Sketch)Soundness follows from an easy induction on|ρ| that when starting each itera-
tion of the while-loop the timed traceρ observed since the last restart satisfiesρ ∈ TTr(IUT),
ρ ∈ TTr(E) andρ ∈ TTr(S) and that any chosen extensionρα still lies in TTr(IUT)∩TTr(E).

As for completeness assume that theIUT does not conform toS relative toE . ThenTTr(IUT)∩
TTr(E) 6⊆ TTr(S). However due to the assumed properties of closure with respect to digitiza-
tion respectively inverse digitization this failing timedtrace inclusion is equivalent to the ex-
istence of a timed traceρ = d1a1d2a2 . . . dkakdk+1 with all delays being integral such that
ρ ∈ TTr(IUT) ∩ TTr(E) but ρ 6∈ TTr(S). Now let σ = ρ ↑ Ain ; that isσ is the input-delay
stimuli allowed byE which when given toIUT will result in the timed traceρ. Now assume that
the random choice of input action, unit delay and restart is made using a fixed discrete and finite
probability distribution (withp being the smallest probability used) it is clear that:

Prob(σ is generated between two given consecutive restarts) ≥ pK+D

whereK respectivelyD is the number of input actions respectively accumulated delay in σ.
Now let ε = pK+D it follows that

Prob(σ is generated before k’th restart) ≥ 1 − (1 − ε)k−1

Obviously there will in general be several input stimuli that will reveal the lack of conformance.
Hence the above probability just provides a lower bound for Algorithm 1 yielding the verdict
“fail” before the k’th restart. Obviously, asT → ∞ also the number of restarts diverges and
hence we see thatProb(σ is generated) = 1. ut

From [26, 13] it follows that the closure properties required in Theorem 1 are satisfied if the
behaviour ofIUT andE are TIOTSs induced by closed timed automata (i.e. where all guards
and invariants are non-strict) andS is a TIOTS induced by an open timed automaton (i.e. with
guards and invariants being strict). In practice these requirements are not restrictive, e.g. for
strict guards one can always scale the clock constants to obtain arbitrary high precision.

2 We refer the reader to [26] for the precise definition of digitization and inverse digitization.
3 The assumption that theIUT can be modelled by a formal object in a given class is commonlyrefered

to as thetest hypothesis. Only its existence is assumed, not a known instance. In particular it may be
extremely large, and structurally totally unrelated to thespecification.

3.3 Symbolic State-set Computation

We now discuss the concrete realization of Algorithm 1. We use (well established) symbolic
constraint solving techniques to represent sets of clock valuations compactly. A zone over a set
of clocksX is a conjunction of clock inequations of the formxi − xj ≺ ci,j , xi ≺ ciu, and
cil ≺ xi, where≺∈ {<, ≤}, ci,j , cil, ciu are integer constants including±∞, andxi, xj ∈ X .
A symbolic stateis a pair〈¯̀, Z〉 consisting of a vector̀̄ of locations for each parallel automaton
and the zoneZ. Z denotes a set of clock valuations, i.e., a symbolic state represents a set of
concrete states:〈¯̀, Z〉 = {(¯̀, v̄) | v̄ ∈ Z}. HenceforthZ = {〈¯̀1, Z1〉 . . . 〈¯̀n, Zn〉} denotes the
set of concrete states represented by the union of the symbolic states ofZ.

We use the following operations on zones: conjunctionZ ∧ Z ′, futureZ↑ = {v̄ + δ | v̄ ∈
Z, δ ∈ R≥0}, clock x assignment toc valueZx:=c = {v̄[c/x] | v̄ ∈ Z}, Zr the (successive)
assignment of all clock assignments inr, containment checkZ ⊆ Z ′, and check for emptiness
Z = ∅. The symbolic transition relation� between symbolic states denotes the possibility of
taking a transition from a (concrete) state in the source symbolic state to one in the destination.
It is computed as follows:

〈¯̀, Z〉
γ
� 〈¯̀′, (Z ∧ g)r ∧ I(¯̀′)〉 if ¯̀ g,γ,r

−−−→ ¯̀′ whereγ ∈ Aτ (6)

The required symbolic algorithms are similar to those used for model checking [3, 1] except
that only states up to a certain time limit needs to be computed. This is most easily accomplished
by introducing an auxiliary clockt that is set to zero whenever an observable action occurs.

Algorithm 2 computes the functionClosureδτ (Z, d) =
⋃

0≤d′≤d Z After d′ that collects the
reachable symbolic state set within a delay ofd. The predicateContains(Z, 〈¯̀, Z〉) tests whether
a symbolic state〈¯̀, Z〉 is covered by some symbolic state inZ.

Algorithm 2 Closureδτ (Z, d) pass := ∅, wait := Z

while wait 6= ∅ do
wait := wait\{〈¯̀, Z〉} // pick a symbolic state
Z := Z↑ ∧ (t ≤ d) ∧ I(¯̀) // limited delay
pass := pass ∪ {〈¯̀, Z〉}

for eachsymbolic transition〈¯̀, Z〉
τ
� 〈¯̀′, Z ′〉

if notContains(pass , 〈¯̀′, Z ′〉) then wait := wait ∪ {〈¯̀′, Z ′〉}
return pass.

The functionClosureτ (Z) = Closureδτ (Z, 0) that collects the reachable symbolic state
set after all possible internal transitions in zero delay can be computed similarly. Given these
functions, the actual algorithms for computingZ After δ andZ After a become trivial:

Z After a = Closureτ

(

{〈¯̀′, Z ′〉 | 〈¯̀, Z〉 ∈ Closureτ (Z), 〈¯̀, Z〉
a

� 〈¯̀′, Z ′〉}
)

(7)

Z After δ =
{

〈¯̀, Z ′〉
∣

∣ 〈l̄, Z〉 ∈ Closureδτ (Z, δ), Z ′ =
(

Z ∧ (t == δ)
)

t:=0

}

(8)

3.4 Choice of Delays

The environment model restricts the possible actions that can be chosen by the tester. It bounds
the delays before an input must be given or output expected, and limits the possible input actions.

In particular it is important for the correctness of Algorithm 1 to choose delays not exceeding the
time bound within which the environment is required to offeran input (environment invariant
condition may force inputs). ThusDelays(Z) must not contain delays exceeding forced inputs.

To cheaply compute a safe delay given a symbolic state-setZ we propose the following
technique: Pick a random symbolic state〈¯̀, Z〉 ∈ Z, compute its timed future asZ ′ = (Z ∧ t =
0)↑ ∧ I(¯̀), and pick randomlyδ ∈ [0, maxt(Z

′)), wheremaxt(Z) extracts the maximum value
of the auxillary clockt in Z. Note that this procedure will not compute the exact longestpossible
delay because it does not follow internal transitions (i.e the conjuncted invariantI may force an
internal transition rather than an observable input). Whenthe chosen delay has been performed,
the state-set will be updated for the next iteration of the algorithm. Computing the exact delays
is possible but would involve computing the more expensiveClosureδτ (Z,∞).

Furthermore, it is desirable to compute intervals of time where input transitions are enabled
for two reasons: 1) to optimize the algorithm to avoid too many superflous attempts to offer
inputs (conditionEnvOutput(Z) 6= ∅ in Algorithm 1), and 2) to guide the algorithm to cover the
structure (transitions and locations) of the specification[22]. This optimization can be performed
using the presented techniques, but we omit the details due to space limitations.

4 Experiments

We implemented our algorithm by extending the mature UPPAAL model-checker tool to the
testing tool T-UPPAAL . Besides a graphical timed automata editor, UPPAAL provides an ef-
ficient implementation of the needed basic symbolic operations. Unlike UPPAAL , T-UPPAAL

does not store the reached state space, but only the current symbolic state set. We allow the
full U PPAAL timed automata language, including non-deterministic (action and timing) speci-
fications and discrete variables. TheIUT is connected to T-UPPAAL via an adapter component
translating abstract I/O actions into their real representation, and sends (receives) them to (from)
theIUT.

This section presents the results of the first set of experiments using our implementation.
The purpose is to give an indication of the feasibility of ourtechnique in terms of applicability,
error detection capability, and performance in terms of state-set size and computation time.

4.1 Test Specification

A rail-road intersection controller monitors trains on a set of rail-road tracks with a shared
track segment, e.g. a train-station. Its main objective is to ensure that only one train occupies
the shared segment at a time, and to grant access in arrival order. In this setup we assume 4
tracks, and for simplicity 1 train per track at a time. Trainson tracki signal the controller when
they approach and leave the station using signalsappri and leavei respectively. When traini
approaches an occupied station the controller is required to issue astopi within 5mtu (model
time units), and is similarly required to issuegoi within 5mtuafter the station becomes free.

The environment assumption model consists of 4 concurrent timed automata each modeling
the assumed behavior of a train. The model for train 1 is shownin Figure 3(a); the remaining
trains are identical except for the train-id. The model of the IUT requirements consists of 4
concurrent train control automata (Figure 3(b)) tracking the position of each potential train,
and one queue automaton tracking their arrival order (Figure 3(c): list is an array of integers,

Safe

Stop

Station

Appr Start

x>=10
x:=0

x<=10
stop_1?
x:=0

x>=3
leave_1!

x:=0

appr_1!

x:=0

x>=7
x:=0

go_1?
x:=0

(a) Train 1 of 4.

Remove

Approach

Free

SignalRed
x<=5

HoldingTrain

WaitForLeave

SignalGreen
x<=5

leave_1?
e:=1

stop_1!

rem!

appr_1?
e:=1

x:=0
add!
len>0

e==1
release?
x:=0

go_1!

len==0
add!

e==1
release?

(b) Controller 1 of 4.

Start

Shiftdown

i < len
list[i]:=list[i+1],
i++

len==i,
len==0
list[i] := 0

len>=1,
e==list[0]
rem?
len--,
i := 0

add?
list[len]:=e,
len++

len==i,
len>0
list[i]:=0,
e:=list[0]

release!

(c) Queue

Fig. 3.Test specification for train controller: trains as environment, controller and queue as implementation.

and i is an index into the array). We use UPPAAL syntax to illustrate timed automata. Initial
locations are marked using a double circle. Edges are by convention labeled by the triple: guard,
action, and assignment in that order. The internalτ -action is indicated by an absent action label.
Committed locations are indicated by a location with an encircled “C”. A committed location
must be left immediately as the next transition taken by the system. Finally, bold-faced clock
conditions placed under locations are location invariants.

The complete test specification is a reasonably large and nontrivial first experiment: it con-
sists of 9 concurrent timed automata, 8 clocks, and a sequential queue data structure.

4.2 Implementation Under Test

TheIUT is implemented as an approximately 100 line C++ program following the basic structure
of the specification. It uses POSIX Threads and POSIX locks and condition variables for multi-
threading and synchronization. It consists of one thread per train, and queue data structure whose
access is guarded by mutual exclusion and condition variables. In the experiment, theIUT runs
in the same address space as the T-UPPAAL tool, and input and output actions are communicated
to and from the driver/adapter via two single place bounded buffers.

In addition we have created a number of erroneous mutations based on theassumedcorrect
implementation (M0):

M1: Thestop3 signal is issued 1mtutoo late.
M2: The controller issuesstop1 instead ofstop3.
M3: The controller never issuesstop3

M4: The controller uses a bounded queue limited to 3 trains. Thus, the fourth train overwrites the third
train in the queue.

M5: The controller uses LIFO queue instead of FIFO.
M6: The controller ignoresappr3 signals if a train arrives before 2mtuafter entering the locationFree.

4.3 Error Detection Capability

The experiments are run on a 8x900 MHZ Sun Sparc Fire v880R workstation with 32 GB
memory running Sun Solaris 9 (SunOS 5.9). T-UPPAAL runs on one CPU whereas theIUT may

Table 4.Error detection and performance measures:

Error detection capability State-set size Execution time,µs

Mu- Input actions Duration,mtu After(delay)After(action)After(delay)After(action)
tant Min Avg Max Min Avg Max Avg Max Avg Max Avg Max Avg Max
M1 2 4.8 16 0 68.8 318 2.3 18 2.7 28 1113 3128 141 787
M2 2 4.6 13 1 66.4 389 2.3 22 2.8 30 1118 3311 147 791
M3 2 4.7 14 0 66.4 398 2.2 22 2.7 30 1112 3392 141 834
M4 6 8.5 18 28 165.0 532 2.8 24 3.1 48 1113 3469 125 936
M5 4 5.6 12 14 89.8 364 2.8 24 3.3 48 1131 3222 146 919
M6 2 14.1 92 0 299.62077 2.7 27 2.9 36 1098 3531 110 861
M0 35653751.43966 105 105 105 2.7 31 2.9 46 1085 3591 101 950

run on one or more of the remaining. T-UPPAAL itself does not require these extreme amount
of resources, and it runs well on a standard PC, but a multiprocessor allows T-UPPAAL and the
IUT to run in parallel as they would normally do in a black-box system level test.

To allow for faster and more experiments and reduce potential problems with real-time clock
synchronization between the engine andIUT, the experiments are run using a simulated clock
progressing when both T-UPPAAL and theIUT needs to let time pass. Each mutant is tested
1100 times each with an upper time limit of 100000mtu. All runs of M1-6 mutants failed and
all runs ofM0 passed with timeout for testing. The minimum, maximum, and average running
time and number of used input actions are summarized on the left side of Table 4.

The results show that all erroneous mutants are killed surprisingly quickly using less than
100 input actions and less than 2100mtu. In contrast the assumed correct implementationM0
was not killed and was subjected to at least 3500 inputs stimuli and survived for more than
300 times longer than other mutants in average. In conclusion, the results indicate that online
real-time testing may be a highly effective technique.

4.4 Performance

Based on the same setup from Section 4.3 we instrumented T-UPPAAL to record the number
of symbolic states in the state-set, and the amount of CPU time used to compute the next state-
set after a delay and an observable action. The right side of Table 4 summarizes the results. The
state-set size is in average only 2-3 symbolic states per state-set, but it varies a lot, up to 48 states.
In average, the state-set sizes reached after performing a delay appear larger than after an action.
In average it costs only1.1ms to compute the successor state-set after a delay, and less than
0.2ms after an action. Thus it seems feasible to generate tests from much larger specifications,
obviously depending on the scale of time units.

In conclusion, the performance of our technique looks very promising and appears to be fast
enough for many real-time systems. Obviously, more experiments on varying size and complex-
ity models are needed to find the firm limitations of the technique.

5 Conclusions and Future Work

We have presented the T-UPPAAL tool and approach to testing of embedded systems using
real-time online testing from non-deterministic timed automata specifications. Based on an ex-
periment with a non-trivial specification we conclude that our notion of relativized input/output

conformance and our sound and complete randomized online testing algorithm appear correct
and feasible. We further conclude that our algorithm is implementable, and T-UPPAAL tool
implementation shows encouraging results both in terms of error detection capability and per-
formance of the symbolic state-set computation algorithm.However, further work and real-life
applications are needed to evaluate the algorithm and the tool in detail.

Besides practical application, we plan to improve the tool in several directions. For instance,
to estimate model coverage of the trace and use it to guide therandom choices made by the
algorithm and investigate their impact on the error detection capability. Also we plan to include
observation uncertainty into our algorithm (i.e., outputsand given stimuli classified in an interval
of time rather than a time instance), to improve clock synchronization between T-UPPAAL and
the implementation, and a value passing mechanism to make tool easier to adopt.

Acknowledgments.We would like to thank anonymous reviewer for a valuable insight to our
relativized timed input/output conformance relation.

References

1. T. Henzinger and X. Nicollin and J. Sifakis and S. Yovine. Symbolic model checking for real-time
systems.Information and Computation, 111(2):193–244, June 1994.

2. R. Alur and D.L. Dill. A Theory of Timed Automata.Theoretical Computer Science, 126(2):183–235,
April 1994.

3. G. Behrmann, J. Bengtsson, A. David, K.G. Larsen, P. Pettersson, and W. Yi. Uppaal implementation
secrets. InFormal Techniques in Real-Time and Fault-Tolerant Systems: 7th International Symposium,
FTRTFT 2002, pages 3–22, September 2002.

4. A. Belinfante, J. Feenstra, R.G. de Vries, J. Tretmans, N.Goga, L. Feijs, S. Mauw, and L. Heerink.
Formal test automation: A simple experiment. In12th Int. Workshop on Testing of Communicating
Systems, pages 179–196, 1999.

5. V. Braberman, M. Felder, and M. Marré. Testing Timing Behaviors of Real Time Software. InQuality
Week 1997. San Francisco, USA., pages 143–155, April-May 1997 1997.

6. E. Brinksma, K.G. Larsen, B. Nielsen, and J. Tretmans. Systematic Testing of Realtime Embedded
Software Systems (STRESS), March 2002. Research proposal submitted and accepted by the Dutch
Research Council.

7. R. Cardell-Oliver. Conformance Testing of Real-Time Systems with Timed Automata.Formal Aspects
of Computing, 12(5):350–371, 2000.

8. R. Cleaveland and M. Hennessy. Testing Equivalence as a Bisimulation Equivalence.Formal Aspects
of Computing, 5:1–20, 1993.

9. A. En-Nouaary, R. Dssouli, F. Khendek, and A. Elqortobi. Timed Test Cases Generation Based on
State Characterization Technique. In19th IEEE Real-Time Systems Symposium (RTSS’98), pages
220–229, December 2–4 1998.

10. A. Hessel, K.G. Larsen, B. Nielsen, P. Pettersson, and A.Skou. Time-Optimal Test Cases for Real-
Time Systems. In3rd International Workshop on Formal approaches to Testingof Software (FATES
2003), Montréal, Québec, Canada, October 2003.

11. T. Higashino, A. Nakata, K. Taniguchi, and A R. Cavalli. Generating test cases for a timed i/o automa-
ton model. InIFIP Int’l Work. Test. Communicat. Syst. (IWTCS), pages 197–214, 1999.

12. H.S. Hong, I. Lee, O. Sokolsky, and H. Ural. A temporal logic based theory of test coverage and
generation. InProceedings of the 8th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, pages 327–341. Springer-Verlag, 2002.

13. J. Ouaknine and J. Worrell. Revisiting digitization, robustness, and decidability for timed automata. In
18th IEEE Symposium on Logic in Computer Science (LICS 2003)Ottawa, Canada, pages 198–207.
IEEE Computer Society, june 2003.

14. T. Jéron and P. Morel. Test generation derived from model-checking. In N. Halbwachs and D. Peled,
editors,CAV’99, Trento, Italy, volume 1633 ofLNCS, pages 108–122. Springer-Verlag, July 1999.

15. A. Khoumsi, T. Jéron, and H. Marchand. Test cases generation for nondeterministic real-time systems.
In 3rd International Workshop on Formal Approaches to Testingof Software (FATES’03). LNCS 2931,
Montreal, Canada, 2003.

16. K.G. Larsen. A Context Dependent Equivalence Between Processes.Theoretical Computer Science,
49:185–215, 1987.

17. M. Krichen and S. Tripakis. Black-box Conformance Testing for Real-Time Systems. InModel
Checking Software: 11th International SPIN Workshop, volume LNCS 2989. Springer, april 2004.

18. D. Mandrioli, S. Morasca, and A. Morzenti. Generating Test Cases for Real-Time Systems from Logic
Specifications.ACM Transactions on Computer Systems, 13(4):365–398, 1995.

19. M. Mikucionis, K.G. Larsen, and B. Nielsen. Online on-the-fly testing of real-time systems. Technical
Report RS-03-49, Basic Research In Computer Science (BRICS), December 2003.

20. M. Mikucionis, B. Nielsen, and K.G. Larsen. Real-time system testing on-the-fly. Inthe 15th Nordic
Workshop on Programming Theory, number 34 in B, pages 36–38, Turku, Finland, October 29–31
2003.Åbo Akademi, Department of Computer Science, Finland. Abstracts.

21. M. Mikucionis and E. Sasnauskaite. On-the-fly testing using UPPAAL . Master’s thesis, Department
of Computer Science, Aalborg University, Denmark, June 2003.

22. B. Nielsen and A. Skou. Automated Test Generation from Timed Automata. InTACAS 2001 - Tools
and Algorithms for the Construction and Analysis of Systems, pages 343–357, April 2001.

23. J. Peleska, P. Amthor, S. Dick, O. Meyer, M. Siegel, and C.Zahlten. Testing Reactive Real-Time
Systems. InMaterial for the School – 5th International School and Symposium on Formal Techniques
in Real-Time and Fault-Tolerant Systems (FTRTFT’98, 1998. Lyngby, Denmark.

24. S. Tripakis. Fault Diagnosis for Timed Automata. InFormal Techniques in Real-Time and Fault
Tolerant Systems (FTRTFT’02), volume LNCS 2469. Springer, 2002.

25. J. Springintveld, F. Vaandrager, and P.R. D’Argenio. Testing Timed Automata.Theoretical Computer
Science, 254(1-2):225–257, March 2001.

26. T.A. Henzinger and Z. Manna and A. Pnueli. What good are digital clocks? In Werner Kuich, editor,
Automata, Languages and Programming, 19th International Colloquium, ICALP92, Vienna, Austria,
volume 623 ofLNCS, pages 545–558. Springer, july 1992.

27. J. Tretmans. Testing concurrent systems: A formal approach. In J.C.M Baeten and S. Mauw, edi-
tors,CONCUR’99 –10th Int. Conference on Concurrency Theory, volume 1664 ofLecture Notes in
Computer Science, pages 46–65. Springer-Verlag, 1999.

28. J. Tretmans and A. Belinfante. Automatic testing with formal methods. InEuroSTAR’99:7th Eu-
ropean Int. Conference on Software Testing, Analysis & Review, Barcelona, Spain, November 8–12,
1999. EuroStar Conferences, Galway, Ireland.

29. V. Diekert, P. Gastin, A. Petit. Removing epsilon-Transitions in Timed Automata. In14th Annual Sym-
posium on Theoretical Aspects of Computer Science, STACS 1997, pages 583–594, Lübeck, Germany,
February 1997. LNCS, Vol. 1200, Springer.

30. R. de Vries, J. Tretmans, A. Belinfante, J. Feenstra, L. Feijs, S. Mauw, N. Goga, L. Heerink, and A. de
Heer. Côte de resyste in PROGRESS. In STW Technology Foundation, editor, PROGRESS2000 –
Workshop on Embedded Systems, pages 141–148, Utrecht, The Netherlands, October 2000.

31. R.G. de Vries and J. Tretmans. On-the-fly conformance testing using SPIN. Software Tools for Tech-
nology Transfer, 2(4):382–393, March 2000.

