Online Testing of Real-time Systems UsingPPAAL

Kim G. Larsen, Marius Mikucionis, and Brian Nielsen

Department of Computer Science, Aalborg University
Fredrik Bajers Vej 7B, 9220 Aalborg @st, Denmark
{kgl, mari us, bni el sen}@s. auc. dk

Abstract. We present T-BPAAL — a new tool for online black-box testing of real-time
embedded systems from non-deterministic timed automageifggations. We describe a
sound and complete randomized online testing algorithmhamdto implement it using
symbolic state representation and manipulation techsidive propose the notion of rela-
tivized timed input/output conformance as the formal impéatation relation. A novelty of
this relation and our testing algorithm is that they exglijdiake environment assumptions
into account, generate, execute and verify the result enlging the BRPAAL on-the-fly
model-checking tool engine. A medium size case study sheoamiping results in terms
of error detection capability and computation performance

1 Introduction

The goal of testing is to gain confidence in a physical compbiésed system by means of
executing it. More than one third of typical project resasg s spent on testing embedded and
real-time systems, but still it remains ad-hoc, based onistges, and error-prone. Therefore
systematic, theoretically well-founded and effectiveomudted real-time testing techniques is of
great practical value.

1.1 Model Based Testing

Testing conceptually consists of three activities: tesiecgneration test caseexecutionand
verdict assignmentJsing model based testing, a behavioral model can be istiexgbas a spec-
ification that defines the required and allowed observabk-time) behavior of the implemen-
tation. It can therefore be used for automatic generaticsoahd and (theoretically) complete
test suites.

An embedded system interacts closely with its environmemthvtypically consists of the
controlled physical equipment (the plant) accessible gi@ers and actuators, other computer
based systems or digital devices accessible via commionca¢tworks using dedicated pro-
tocols, and human users. A major task of the embedded systeatogpment is to ensure that
it works correctly in its real operating environment. Duddok of development resources it is
not feasible to validate the system for all possible envitents. Also it is not necessary if the
system environments are known to a large extend. Howeeretjuirements to the system and
the assumptions made about the environment should be cldaxalicit.

We denote the system being developed, and its real operating environmeRéalENV.
These communicate by exchangingut and output signals (seen from the perspective of
IUT). Using a model-based development approach, the envinohassumptions and system

strongCoffee!

Q -
‘s g

T |

S- ~

c

—

xz > 10
weakCoffee!

weakCoffee?
strongCoffee?

& 8

(a) Abstraction of an embedded systen(b) Example Specificatiof.. (c) Example environmerf..

Fig. 1. Embedded system and example models.

requirements are captured through abstract behavioraéimanoted® and S respectively,
communicating on abstract signals A;, ando € A,,; corresponding (via a suitable abstrac-
tion) to the realinput andoutput. This setup is depicted in Figure 1(a).

Modeling the environment explicitly and separately andrglthis into account during test
generation has several advantages: 1) the test generatibcein synthesize only relevant and
realistic scenarios for the given type of environment, Whit turn reduces the number of re-
quired tests and improves the quality of the test suite; 8)tést engineer can guide the test
generator to more specific situations of interest; 3) a sgpanvironment model makes it easy
to test the system under different assumptions and usemstte

The goal of relativized conformance testing is to check Wwaethe behavior of thBJT is
correct (conforming) to its specificatia$ when operating under assumptiahigbout the en-
vironment. We propose relativized timed input/output @snfance relation between model and
IUT which coincides with timed trace inclusion taking the eamiment behavior into account.

1.2 Online Testing

Test cases can be generated from the model offline wherethg@ete test scenarios and verdicts
are computed apriori and before execution. Another apraaanline (on-the-fly) testinthat
combines test generation and execution: only a single tasitye is generated from the model
at a time which is then immediately executed onlth&. Then the produced output by théT

as well as its time of occurrence are checked against thefispéion, a new test primitive is
produced and so forth until it is decided to end the test, araor is detected. An observed test
run is a timed trace consisting of an alternating sequen¢mpfit or output) actions and time
delays.

There are several advantages of online testing: 1) testiag potentially continue for a
long time (hours or even days), and therefore long, inteicahd stressful test cases may be
executed; 2) the state-space-explosion problem exp&tidncmany offline test generation tools
is reduced because only a limited part of the state-spaaktod®e stored at any point in time;
3) online test generators often allow more expressive fipation languages, especially wrt.
allowed non-determinism in real-time models.

1.3 Related Work

Model based test generation for real-time specificatiosdlean investigated by others (see e.g.,
[23,18,5,11,9,7,25,22,15,10,17]), but remain relayiveimature.

A solid and widespread implementation relation used in rhbdsed conformance testing
of untimed systems is the input/output conformance ratabip Tretmans [27]. Informally, in-
put/output conformance requires for all traces in the dpation that the implementation never
produces an output not allowed by the specification, andithaver refuses to produce an
output (stays quiescent) when the specification requires on

As also noted in [15, 17] a timed input/output conformandatien can be obtained (assum-
ing input enabledness) as timed trace inclusion betweamiplementation and its specification.
Our work further extends this toralativizedconformance relation taking environment assump-
tions explicitly into account. In [27] the specification ismqmitted to be non-input enabled (thus
making the conformance relation non-transitive in gendrabrder to capture environmental
constraints. However, this requires explicit rewritingtbé specification when different envi-
ronments are to be used. Following the seminal work [16] ppr@ach is based on an separate
model of the environment. In particular, once conformaraztheen established with respect to
a particular environment we can automatically concluddamnance under more restricted en-
vironments. Also, when th&JT is to be used in different environments, it suffices to tashder
the most liberal environment assumptions. Furthermolatjvezed conformance is transitive.

Model basedffline testings often based on a coverage criterion of the model like in [12
10], on atest purpose as e.g. [14, 15], or a fault-model g®]1¥When specifications allow non-
determinism, the generated test cases cannot simply beiarses but take the form bkhavior
treesadaptive to implementation controlled actions, e.g déf¢routputs or timing. Therefore,
most offline test generation algorithms explicitly detariné the specification [8, 14, 22]. How-
ever, for expressive formalisms like timed automata thigragch is infeasible because in gen-
eral they cannot be determinized [2] and their unobsenadtiens cannot always (and when
they can it may be very costly) be removed [29]. Much work aretil test generation from timed
automata therefore restricts the amount and type of alloweeddeterminism. Some works [25,
9, 10] completely disallow non-determinism, whereas ath#b, 22] restrict the use of clocks,
guards or clock resets. However, in many cases it is impbttaallow non-determinism, be-
cause 1) specifications are often given as a parallel cotipogf model-components, 2) it
allows the implementor some freedom, and 3) the tester iallystoncerned with abstract re-
quirements rather than concrete details oflth€. Note that in particular for real-time systems
it may be crucial to allow specification of timing uncertgirg.g., that an output is expected in
some interval of time (e.g., between 1 and 5 time units from)nbut not exactly when. Timed
automata model this by a non-deterministic choice of Igttime pass or outputting an event.

In contrast, online testing is automatically adaptive anty amplicitly determinizes the
specification, and only partially up to the concrete tracgeoted so far. The (untimed) online
testing algorithm proposed by Tretmans et. al. in [31, 4]ticwrally computes the set of states
that the specification can possibly occupy after the obsiensamade so far. Based on this the
tester can at any time decide to either perform one of theténgrabled in the specification, or
wait for output from the implementation, and then check wbkethe output (or its absence) is
allowed in the state-set. Online testing from Promela [3t] BoTOSspecifications for untimed
systems have been implemented in the@rRX [30] tool, and practical application to real case
studies show promising results [28, 30, 4]. HowevepRK provides no support for real-time.

Our work generalize thedrX approach to timed systems and to the handling of expliait-en
ronment assumptions. We allow a quite generous (non-detestin) timed automata language.
In addition, we compute the state-set symbolically to trimk (potentially dense) timed state
space.

Online testing from unrestricted non-deterministic tineedlomata using symbolic state-set
computation [24] was first published by Krichen and Tripdkig]. We implement a similar ap-
proach by extending the RPAAL model-checker resulting in an integrated and mature ggstin
and verification tool. Our work (originating from [6, 21, 1¥n abstract appeared in [20]) is
different from [17] in that 1) the exact timed automata laage variant is different and includes
separable environment models, 2) we propose a relativieegsion of timed input/output con-
formance, 3) our algorithm (presented in much greater Bletanerate tests relevant only for
the specified environment, and 4) is shown to be sound andletenmder certain assumptions,
and finally 5) we provide experimental evidence of the falsilof the technique.

1.4 Contributions

In this paper we describe a tool for online testing of realetisystems. Our main contributions
are the notion ofelativized timed input/output conformanaad an implementation based on
UPRAAL of a symbolic algorithnthat performs online testing based on a (possibly densely
timed and potentially non-deterministic) timed automataded of thelUT and its assumed
environment. We prove under a certain testing hypothesisdbr algorithm is sound and (in

a precise probabilistic sense) complete. Furthermore,ppé/a-UPPAAL to a medium sized
case that demonstrates good error detection potentialemydencouraging performance.

2 Test Specification

This section formally presents our semantic framework,iatitdduces TIOTS, timed automata,
and our relativized input/output conformance relation.

2.1 Timed I/O Transition Systems

We assume a given set of actiodspartitioned into two disjoint sets of output actiods,,;
and input actionsi;,,. In addition we assume that there is a distinguished unaabkr action
T ¢ A. We denote by, the setd U {7}.

Definition 1. A timed I/O transition system (TIOTS)is a tuple(S, so, Ain, Aout, —), Where
S'is a set of statesyy € S, and— C S x (A- UR>() x S is a transition relation satisfying the

usual constraints dfme determinisnif s 4 ¢ ands L ¢ thens' = s") andtime additivity

. d d di+d .
(if s 2 s ands’ =2 s thens 22, ¢), d € R>o, whereR>, denotes non-negative real

numbers.

Notation for TIOTS. Leta,a1.., € A, a € A; UR>q, andd, d; .. ,, € R>(. We writes =, iff

s = s for somes’. We useﬁ to denote the-- abstracted transmon relation such tha s’

iff s & 45" s', ands 4 giff s 7L, T LT T o whered = dy +da +
--d,. We extend=- to sequences of actions and delays in the usual manner.

We assume that the TIOTSis stronglyinput enabledandnon-blockingS is strongly input

enabled iffs - for all statess and for all input actions. S is non-blocking iff for any state and
anyt € R there is a timed output trace = d; 01 . . . o,dp+1 Such thats = and) . d; > t.
ThusS will not block time in any input enabled environment.

To model potential implementations it is usefull to define groperties ofsolated outputs
anddeterminismWe say thatS has isolated outputs if whenever’: for some output action,

thens /£ ands 7i> for all d > 0 and wheneves <, theno’ = o. Finally, S is deterministic if
for all delays or actiona and all states, wheneves s s’ ands —~ s” thens’ = s”.

An observabldimed traces € (AUR>()* is of the formo = dyai1ds . . . ardiy1. We define
the observable timed trac@3r(s) of a states as:

TTr(s) ={oc € (AUR>q)"|s §>} Q)

For a states (and subsef’ C S) and a timed trace, s After o is the set of states that can
be reached after:

sAftero={s'|s> s}, S Aftero= U s After o ()
ses’
The selOut(s) of observable outputs or delays that can occur @S’ C S is defined as:
Out(s) ={a € At UR>o | s =1}, Out(S’) = U Out(s), 3)
ses’

Timed Automata [2] is an expressive and popular formalisnmfodelling real-time systems.
Let X be a set ofR>(-valued variables calledlocks Let G(X') denote the set ajuardson
clocks being conjunctions of simple constraints of the farmi ¢, and lett/(X) denote the set
of updatef clocks corresponding to sequences of statements of threifo= ¢, wherex € X,
ceN,andx € {<, <,=,>,>}. Atimed automatoover(A, X) is atuple(L, ¢y, I, E), where
Lisasetoflocationd,, € Lis aninitial location/ : L — G(X) assigns invariants to locations,
andF is a set of edges such thB&tC L x G(X) x A, x U(X) x L. We write/ =%, ¢/ iff
(4, g,a,u,l') € E.

The semantics of a timed automaton is defined in terms of a $I@er states of the form
s = (¢,v), where/ is a location and' € RZ is a clock valuation satisfying the invariant &f
Intuitively, there are two kinds of transitions: delay ts#ions and discrete transitions. In delay

transitions (¢, o) 4, (4,7 + d), the values of all clocks of the automaton are incrementetidy
amount of the delay]. Discrete transition§(,v) = (¢',%') correspond to execution of edges
(¢, g, o, u, £') for which the guard is satisfied byo. The clock valuation’ of the target state is
obtained by modifying according to updatesand satisfies the invariants éh

Figure 1(b) shows a timed automaton specifying the requérdgato a coffee machine. It has
a facility that allows the user, after paying, to indicate éagerness to get coffee by pushing a
request button on the machine forcing it to output coffeavelger, allowing insufficient brewing
time results in a weak coffee. Waiting less then 30 time whéfinitely results in weak coffee,
and waiting more than 50 definitely in strong coffee. Betw86rand 50 time units the choice
is non-deterministic, meaning that theT/implementor may decide what to produce. After
the request, it takes the machine an additional (non-détéstic) 10 to 30 (30 to 50) time
units to produce weak coffee (strong coffee). The timed rmaton in Figure 1(c) models a
potential (nice) user of the machine that pays before raogpesoffee and wants strong coffee
thus requesting only after 60 time units.

TIOTS Composition. Let S = (.5, so, Ain, Aout, —) be an input enabled, non-blocking
TIOTS. Anenvironment for S is itself an input enabled, non-blocking, TIOES= (E, e,,
Aout, Ain, —). HereE is the set of environment states and the set of input (ougatigns ofE
is identical to the output (input) actions8f The parallel composition & and€ forms aclosed
systens || £ whose observable behavior is defined by the TIQFS E, (so, €0), Ain, Aout, —)
where— is defined as

/ T d ad
S e — € S — S e — €

(s'se) (s,e) = (s,¢) (s,€) 4, (s',¢€)
The timed automat&,. and &, respectively shown in Figure 1(b) and 1(c) can be composed

in parallel on actionsd;,, = {req, coin} and A,,; = {weakCoffee, strongCoffee} forming a
closed network

a / a
s — S e — e S

(s,e) = (s, ¢) (s,e)

(4)

IR

2.2 Relativized Timed Conformance

In this section we define our notion of conformance betwe&iTHs. Our notion derives from
the input/output conformance relaticiedo) of Tretmans and de Vries [27, 31] by taking time
and environment constraints into account. Under assumgptid input enabledness our rela-
tivized timed conformance relation coincides with relegid timed trace inclusion. Likeco,
this relation ensures that the implementation only hasiehallowed by the specification.
In particular, 1) it is not allowed to produce an output atraeti(too late or too early) when
one is not allowed by the specification, 2) it is not alloweaitoit producing an output when
one is required by the specification by delaying more thaowadt. Thus, timed trace inclu-
sion offers the notion of time-bounded quiescence that-eirast taoco’s conceptual eternal
guiescence—can be observed in a real-time system.

Definition 2. Given an environment € E the e-relativized timed input/output conformance
relation rtioco. between system states € S is defined as:

srtioco. t iff Vo € TTr(e). Out((s,e) After o) C Out((¢,e) After o)

Whenevers rtioco, t we will say thats is a correct implementation (or refinement) of the spec-
ification ¢ under the environmental constraints expresseed. tiynder the assumption of input-
enabledness of boil and£ we may characterize relativized conformance in terms afetra
inclusion as follows:

Lemma 1. LetS and€ be input-enabled with statest € S ande € E respectively. Then
srtioco. t iff TTr(s)NTTr(e) C TTr(¢t) N TTr(e)

Thus if s rtioco, ¢t does not hold then there exists a tracef e such that = butt . Given
the notion of relativized conformance it is natural to cdesithe preorder on environments
based on their discriminating power, i.e. for two enviromtse and f:

eC f iff rtiocos C rtioco, (5)

! To avoid cluttering the figures we have not made them expliciput enabled:; for the unspecified inputs
there is an undrawn self looping edge that merely consungeis flut without changing the location.

(to be readf is more discriminating tham). It follows from the definition of rtioco that

e C fiff TTr(e) C TTr(f). In particular there is a most (least) discriminating input
abled and non-blocking environmefit (O) given by TTr(U) = (A U Rxq)* (TTr(O) =
(Aout UREO)*) . The corresponding conformance relatiaivcoy; (rtiocop) specializes to sim-
ple timed trace inclusion (timed output trace inclusionjeen system states. In Figure 2(a) and
Figure 2(b) the most-discriminating and the least-disorating environments are given when
A;n = {req, coin} and A,,; = {weakCoffee, strongCoffee}.

=T @
Q
Qs £
o
e o
= =3
s S
a,) 8|3 =]
(\cz?‘ 0,]
o ©
NS 0
& 2 S x <40
N

(a) mostE environment€y . (b) least environment€o. (©)IUT: Z(Ds, Dw).

Fig. 2. Implementation of coffee machine

2.3 Examples

The specification maching,. and environment, were described in Section 2.1. The (de-
terministic) implementatiof (Dg, Dy) in Figure 2(c) produces weak coffee (strong coffee)
after less than 40 time units (more than 41 time units) and dditianal brewing time of
Dg (resp.Dyw) time units. Observe that any trace of the implementafi¢t0, 20) (in any
environment) can be matched by the specification; héfdé, 20) rtiocog,, S. Thus also
7(40,20) rtiocog, S.. In contrastZ(70,5) rtiécog,, S. for two reasons: 1) it has the timed
tracecoin - 30 - req - 5 - weakCoffee thatS,. does not, i.e., it may produce weak coffee too soon
(no time to insert a cup); 2) it has the trageén - 50 - req - 70 not in S, meaning that it produces
strong coffee too slowly. Assume now that the strong coffeerés fixed, and that the machine
7(40,5) is used in the restricted environment of nice ugkrdere, despite the remaining weak
coffee error infy, Z(40,5) rtiocog, S, becaus&. never requests weak coffee.

3 Test Generation and Execution

We present the main algorithm, its soundness and compkstgmeof, and how to implement it.

3.1 The Main Algorithm

The input to Algorithm 1 is two TIOTSS || £ respectively modelling th&J T and environment.
It maintains the current reachable state ZeC S x E that the test specification can possibly

occupy after the timed trace observed so far. Knowing thagesestimate allows it to choose
appropriate test primitives and to validatérl outputs.

Algorithm 1 Test generation and executidfestGenExe(S, E,IUT, T). Z := {(so,€0)}-

while Z # () A fiterations < T do switch@ction, delay, restar) randomly:
action /1 offer an input
if EnvOutput(Z) # 0
randomly choose € EnvOutput(Z)
senda to IUT
Z .= Z After a
delay. /1 wait for an output
randomly choosé € Delays(Z2)
sleep ford time units and wake up on outpait
if o occurs ab’ < § then
Z := Z After ¢’
if o ¢ ImpOutput(Z) then return fail
elseZ := Z After o

else /1 no output within § del ay
Z = Z After §
restart //reset and restart
Z :={(s0,€0)}
resetlUT

if Z = () then return fail
else returnpass

The tester can perform three basic actions: either sengpaih(enabled environment output)
to thelUT, wait for an output for some time, or reset théTl and restart. If the tester observes
an output or a time delay it checks whether this is legal atingrto the state set. The state set
is updated whenever an input is offered, or an output or dislaypserved. lllegal occurrence
or absence of an output is detected if the state set becomaty &hich is the result if the
observed trace is not in the specification. The functionsl useAlgorithm 1 are defined as:
EnvOutput(2) = {a € Ay, | 3(s,e) € Z.e 5, ImpOutput(2) = {a € Ayus | I(s,e) €
Z.s 5}, andDelays(2) = {d | 3(s,e) € Z.e :d‘>}. Note thatEnvOutput is empty if the
environment has no outputs to offer. Similaf¥elays cannot pick at random from the entire
domain of real-numbers if the environment must produce autito thelUT model before
a certain moment in time. We use the efficient reachabiliggoathm implementation [3] to
compute the operatdXfter. It operates on bounded symbolic states, checks for irartgsind
thus always terminates even if the model contaiagtion loops.

3.2 Soundness and Completeness

Algorithm 1 constitutes a randomized algorithm for promglistimuli to (in terms of input and
delays) and observing resulting reactions from (in termsutput) a giverdUT. Assuming the
behavior of thdUT is a non-blocking, input enabled, deterministic TIOTS wdthlated outputs
the reaction to any given timed input trage= d;i; .. . dpird;+1 IS completely deterministic.
More precisely, given the stimudi there is a unique € TTr(IUT) such thatp 1 A;, = o,
wherep 1 A, is the natural projection of the timed tragé¢o the set of input actions.

Under a certain (theoretically necessary) testing hysithebout the behaviour d T and
given that the TIOTSS and& satisfy certain assumptions, the randomization used i-Alg

rithm 1 may be chosen such that the algorithm is both completiesound in the sense that it

(eventually with probability one) gives the verdict “faili all cases of non-conformance and
the verdict “pass” in cases of conformance. The hypothegissssumptions are based on the
results on digitization techniques in [28)hich allow the dense-time trace inclusion problem
between two sets of timed traces to be reduced to discrete imparticular it suffices to choose

unit delays in Algorithm 1 (assuming that the models #d share the same magnitude of a
time unit).

Theorem 1. Assume that the behaviour T may be modelletdas an input enabled, non-
blocking, deterministic TIOTS with isolated outputs. Rerimore assume thatTr(IUT) and
TTr(E) areclosed under digitizatioand thatT Tr(S) is closed under inverse digitizatiofihen
Algorithm 1 with only unit delays is sound and complete infdllewing senses:

1. WheneveflestGenEze(S,E,IUT, T) = fail thenlUT rtidcos S.

2. WhenevelUT rtidcog S thenProb (TestGenEre(S, €, IUT, T) = fail) ~—= 1
whereT is the maximum number of iterations of the while-loop beéoiting.

Proof. (SketchBoundness follows from an easy induction|phthat when starting each itera-
tion of the while-loop the timed trage observed since the last restart satisfies TTr(IUT),
p € TTr(€) andp € TTr(S) and that any chosen extensiodm still lies in TTr(IUT) N TTr(E).
As for completeness assume thatithig does not conformté relative tof. ThenT Tr(IUT)N
TTr(E) € TTr(S). However due to the assumed properties of closure with ce$peligitiza-
tion respectively inverse digitization this failing timédhce inclusion is equivalent to the ex-
istence of a timed trace = diaidqas . .. dardi11 With all delays being integral such that
p € TTr(IlUT) N TTr(E) butp & TTr(S). Now lete = p 1 A;p; that iso is the input-delay
stimuli allowed by which when given tdUT will result in the timed trace. Now assume that
the random choice of input action, unit delay and restartaderusing a fixed discrete and finite
probability distribution (withp being the smallest probability used) it is clear that:

Prob(c is generated between two given consecutive restartp’ -
where K respectivelyD is the number of input actions respectively accumulatedydil o.
Now lete = pX+P2 it follows that

Prob(o is generated before K'th restar 1 — (1 — ¢)*~*

Obviously there will in general be several input stimulitthéll reveal the lack of conformance.
Hence the above probability just provides a lower bound flgofithm 1 yielding the verdict
“fail” before the k'th restart. Obviously, @8 — oo also the number of restarts diverges and
hence we see th&rob(c is generated= 1. O

From [26, 13] it follows that the closure properties reqdine Theorem 1 are satisfied if the
behaviour oflUT and€& are TIOTSs induced by closed timed automata (i.e. whereualtds
and invariants are non-strict) atis a TIOTS induced by an open timed automaton (i.e. with
guards and invariants being strict). In practice theseirements are not restrictive, e.g. for
strict guards one can always scale the clock constants snodatbitrary high precision.

2 We refer the reader to [26] for the precise definition of digition and inverse digitization.

% The assumption that tH&) T can be modelled by a formal object in a given class is commuefsred
to as thetest hypothesiOnly its existence is assumed, not a known instance. Iricpéat it may be
extremely large, and structurally totally unrelated tospecification.

3.3 Symbolic State-set Computation

We now discuss the concrete realization of Algorithm 1. We (vgell established) symbolic
constraint solving techniques to represent sets of clotlati@ns compactly. A zone over a set
of clocks X is a conjunction of clock inequations of the form — =; < ¢; ;, z; < ¢4, and
cit < xz;, Where<e {<, <}, ¢; j, cii, ¢iy, @re integer constants includidgpo, andz;, z; € X.

A symbolic statés a pair(, Z) consisting of a vectof of locations for each parallel automaton
and the zoneZ. Z denotes a set of clock valuations, i.e., a symbolic stateesgmts a set of
concrete states?, Z) = {({,v) | v € Z}. Henceforthz = {({1,Z;) ... (., Z,)} denotes the
set of concrete states represented by the union of the sjadtates ofZ.

We use the following operations on zones: conjunction Z’, future Z' = {t + 6 | v €
Z,0 € Rx>p}, clockz assignment te value Z,.—. = {v[c/z] | v € Z}, Z, the (successive)
assignment of all clock assignmentsrincontainment check C Z’, and check for emptiness
Z = (). The symbolic transition relation- between symbolic states denotes the possibility of
taking a transition from a (concrete) state in the sourcebgjim state to one in the destination.
It is computed as follows:

(0,2) 5 (0 (Z N g)y NI(T)) if T 225 7 wherey € A, (6)

The required symbolic algorithms are similar to those usednfodel checking [3, 1] except
that only states up to a certain time limit needs to be contpiteis is most easily accomplished
by introducing an auxiliary clockthat is set to zero whenever an observable action occurs.

Algorithm 2 computes the functioGlosures, (2, d) = |Jy< 4 <, Z After d’ that collects the
reachable symbolic state set within a delayi.6fhe predicat€ontains(Z, (¢, Z)) tests whether
a symbolic staté/, Z) is covered by some symbolic statezn

Algorithm 2 Closures, (Z,d) pass := 0, wait := Z

while wait # () do
wait := wait\{{¢, Z)} /1 pick a symbolic state
Z:=Z"AN@Et<d)NI() /1 limted del ay
pass := pass U{{l, Z)}
for each symbolic transitionZ, Z) ~ (¢, Z')
if not Contains(pass, (¢', Z')) then wait := wait U {{¢', Z')}
return pass.

The functionClosure.(Z) = Closures,(Z,0) that collects the reachable symbolic state
set after all possible internal transitions in zero delay lba computed similarly. Given these
functions, the actual algorithms for computiggAfter 6 and Z After a become trivial:

Z Aftera = CIosureT({(ff’7 Z'Y | (1, Z) € Closure,(Z), (€, Z) — (, Z’)}) ()

Z After § = {(e’, 2’y | (I, Z) € Closures(2,6), Z' = (Z A (t == 5))t::0} 8)

3.4 Choice of Delays

The environment model restricts the possible actions #abe chosen by the tester. It bounds
the delays before an input must be given or output expeatediraits the possible input actions.

In particular it is important for the correctness of Algarit 1 to choose delays not exceeding the
time bound within which the environment is required to off@rinput (environment invariant
condition may force inputs). Thu3elays(Z) must not contain delays exceeding forced inputs.

To cheaply compute a safe delay given a symbolic stateZset propose the following
technique: Pick a random symbolic stéfeZ) € Z, compute its timed future &' = (Z At =
0)" A I(¢), and pick randomly € [0, max.(Z’)), wheremax,(Z) extracts the maximum value
of the auxillary clock in Z. Note that this procedure will not compute the exact longessible
delay because it does not follow internal transitions fiee¢onjuncted invariant may force an
internal transition rather than an observable input). Wtherchosen delay has been performed,
the state-set will be updated for the next iteration of tigoathm. Computing the exact delays
is possible but would involve computing the more expen§ivsure;, (£, 00).

Furthermore, it is desirable to compute intervals of timemhinput transitions are enabled
for two reasons: 1) to optimize the algorithm to avoid too gnanperflous attempts to offer
inputs (conditiorEnvOutput(Z) # () in Algorithm 1), and 2) to guide the algorithm to cover the
structure (transitions and locations) of the specifica@®j. This optimization can be performed
using the presented techniques, but we omit the detailsadsiegice limitations.

4 Experiments

We implemented our algorithm by extending the maturePAlaL model-checker tool to the
testing tool T-WPPAAL. Besides a graphical timed automata editorPAAL provides an ef-
ficient implementation of the needed basic symbolic openati Unlike LPPAAL, T-UPPAAL
does not store the reached state space, but only the cuyrebbtic state set. We allow the
full UPPAAL timed automata language, including non-deterministitigacand timing) speci-
fications and discrete variables. THET is connected to T-BRAAL via an adapter component
translating abstract I/O actions into their real represon, and sends (receives) them to (from)
thelUT.

This section presents the results of the first set of expetisngsing our implementation.
The purpose is to give an indication of the feasibility of technique in terms of applicability,
error detection capability, and performance in terms déssat size and computation time.

4.1 Test Specification

A rail-road intersection controller monitors trains on & eérail-road tracks with a shared
track segment, e.g. a train-station. Its main objective isrisure that only one train occupies
the shared segment at a time, and to grant access in arridd@l. dn this setup we assume 4
tracks, and for simplicity 1 train per track at a time. Traimstrack: signal the controller when
they approach and leave the station using sigaps; and leave; respectively. When traim
approaches an occupied station the controller is requirésstie astop; within 5mtu (model
time units), and is similarly required to issge; within 5Smtuafter the station becomes free.
The environment assumption model consists of 4 concurirapttautomata each modeling
the assumed behavior of a train. The model for train 1 is shiowkigure 3(a); the remaining
trains are identical except for the train-id. The model of ldT requirements consists of 4
concurrent train control automata (Figure 3(b)) trackihg position of each potential train,
and one queue automaton tracking their arrival order (Bi@{c):list is an array of integers,

x>=3

Safe leave_1!

Station

appr_1!
x:=0

App)

x<=10
stop_17?
x:=0

(a) Train 1 of 4.

Fri
ee rem! Remove

leave_17?
e=1

@ itForLeave

go_1!

naIGreen

e==1
release?
x:=0

HoldingTrain

(b) Controller 1 of 4.

len>=1,
e==list[0]
rem?
len--,
i=0
Shiftdown
list[i]:=0,
e:=list[0]
list[i]:=list[i+1],

i++

(c) Queue

Fig. 3. Test specification for train controller: trains as envir@mt controller and queue as implementation.

andi is an index into the array). We usePBAAL syntax to illustrate timed automata. Initial
locations are marked using a double circle. Edges are byertion labeled by the triple: guard,
action, and assignment in that order. The internattion is indicated by an absent action label.
Committed locations are indicated by a location with an eted “C”. A committed location
must be left immediately as the next transition taken by tretesn. Finally, bold-faced clock
conditions placed under locations are location invariants

The complete test specification is a reasonably large anttiviahfirst experiment: it con-
sists of 9 concurrent timed automata, 8 clocks, and a seiqligneue data structure.

4.2 Implementation Under Test

ThelUT isimplemented as an approximately 100 line C++ prograno¥atig the basic structure
of the specification. It uses POSIX Threads and POSIX lockscandition variables for multi-
threading and synchronization. It consists of one threatraim, and queue data structure whose
access is guarded by mutual exclusion and condition vasabh the experiment, tH&JT runs
in the same address space as thePPAAL tool, and input and output actions are communicated
to and from the driver/adapter via two single place boundgfibs.

In addition we have created a number of erroneous mutatiasesdon thassumedorrect
implementation0):

M1:
M2:
M3:
M4:

Thestops signal is issuedrhtutoo late.

The controller issuestop; instead oftops.

The controller never issuasops

The controller uses a bounded queue limited to 3 trains. ,Thesfourth train overwrites the third
train in the queue.
M5: The controller uses LIFO queue instead of FIFO.
M6: The controller ignoreapprs signals if a train arrives beforenu after entering the locatioRree.

4.3 Error Detection Capability

The experiments are run on a 8x900 MHZ Sun Sparc Fire v880Rstation with 32 GB
memory running Sun Solaris 9 (SunOS 5.9). PAAL runs on one CPU whereas thél may

Table 4. Error detection and performance measures:

Error detection capability State-set size Execution timeus

Mu-| Input actions | Duration,mtu ||After(delay)After(action)After(delay)After(action
tant| Min| Avg| Max|Min| Avg| Max||Avg| Max |Avg| Max |Avg| Max |Avg| Max
M1 2| 4.8 16/ 0| 68.§ 318(2.3| 18 |2.7| 28 |1113 3128|141 787

M2 2| 46 13 1| 66.4 389(2.3| 22 |2.8] 30 |1118 3311|147 791
M3 2| 47 14 0| 66.4 398|2.2| 22 |27 30 |1112 3392|141 834
M4 6| 8.5 18 28 165.q 532|2.8] 24 |3.1| 48 |1113 3469|125 936
M5 4 5.6 12| 14| 89.8§ 364|2.8| 24 |3.3| 48 |1131 3222|146 919
M6 2| 143 921 0/299.2077|2.7| 27 |2.9| 36 (1098 3531|110 861

MO0 [35653751.43964 10°| 10°| 10°[|2.7] 31 [2.9] 46 [1085 3591|101 950

run on one or more of the remaining. TPEAAL itself does not require these extreme amount
of resources, and it runs well on a standard PC, but a muttizsor allows T-BPAAL and the
IUT to run in parallel as they would normally do in a black-boxteys level test.

To allow for faster and more experiments and reduce potgrtalems with real-time clock
synchronization between the engine d0d, the experiments are run using a simulated clock
progressing when both TRPAAL and thelUT needs to let time pass. Each mutant is tested
1100 times each with an upper time limit of 2000&@. All runs of M1-6 mutants failed and
all runs of MO passed with timeout for testing. The minimum, maximum, aretage running
time and number of used input actions are summarized onfihe&de of Table 4.

The results show that all erroneous mutants are killed ®ingty quickly using less than
100 input actions and less than 2@ In contrast the assumed correct implementakitth
was not killed and was subjected to at least 3500 inputs &tamd survived for more than
300 times longer than other mutants in average. In conalusie results indicate that online
real-time testing may be a highly effective technique.

4.4 Performance

Based on the same setup from Section 4.3 we instrumented-AL to record the number
of symbolic states in the state-set, and the amount of CP¥ tised to compute the next state-
set after a delay and an observable action. The right sidald&® summarizes the results. The
state-set size is in average only 2-3 symbolic states pterséd, but it varies a lot, up to 48 states.
In average, the state-set sizes reached after performielgga appear larger than after an action.
In average it costs only.1ms to compute the successor state-set after a delay, and bass th
0.2ms after an action. Thus it seems feasible to generate testsrfroch larger specifications,
obviously depending on the scale of time units.

In conclusion, the performance of our technique looks veoyrpsing and appears to be fast
enough for many real-time systems. Obviously, more expenision varying size and complex-
ity models are needed to find the firm limitations of the teqhei

5 Conclusions and Future Work

We have presented the TPBAAL tool and approach to testing of embedded systems using
real-time online testing from non-deterministic timed@uhta specifications. Based on an ex-
periment with a non-trivial specification we conclude that notion of relativized input/output

conformance and our sound and complete randomized onbtiedealgorithm appear correct
and feasible. We further conclude that our algorithm is Enpéntable, and T-RRAAL tool
implementation shows encouraging results both in termsrof eletection capability and per-
formance of the symbolic state-set computation algoritAowever, further work and real-life
applications are needed to evaluate the algorithm and thétdetail.

Besides practical application, we plan to improve the toaléveral directions. For instance,
to estimate model coverage of the trace and use it to guideatidlom choices made by the
algorithm and investigate their impact on the error detectiapability. Also we plan to include
observation uncertainty into our algorithm (i.e., outparid given stimuli classified in an interval
of time rather than a time instance), to improve clock syonftmation between T-BRPAAL and
the implementation, and a value passing mechanism to makedsier to adopt.

Acknowledgments.We would like to thank anonymous reviewer for a valuableghsito our
relativized timed input/output conformance relation.

References

1. T. Henzinger and X. Nicollin and J. Sifakis and S. Yovingin®olic model checking for real-time
systemslInformation and Computatiqril11(2):193—-244, June 1994.

2. R. Alurand D.L. Dill. A Theory of Timed Automatd.heoretical Computer SciencE26(2):183—-235,
April 1994,

3. G. Behrmann, J. Bengtsson, A. David, K.G. Larsen, P. Bstta, and W. Yi. Uppaal implementation
secrets. IfFormal Techniques in Real-Time and Fault-Tolerant Syst&thdnternational Symposium,
FTRTFT 2002pages 3—-22, September 2002.

4. A. Belinfante, J. Feenstra, R.G. de Vries, J. Tretmans;dda, L. Feijs, S. Mauw, and L. Heerink.
Formal test automation: A simple experiment. 12f" Int. Workshop on Testing of Communicating
Systemspages 179-196, 1999.

5. V. Braberman, M. Felder, and M. Marré. Testing Timing Bébrs of Real Time Software. IQuality
Week 1997. San Francisco, USpages 143-155, April-May 1997 1997.

6. E. Brinksma, K.G. Larsen, B. Nielsen, and J. Tretmans.teéByatic Testing of Realtime Embedded
Software Systems (STRESS), March 2002. Research propgsalitted and accepted by the Dutch
Research Council.

7. R. Cardell-Oliver. Conformance Testing of Real-Timet8yss with Timed Automatézormal Aspects
of Computing 12(5):350-371, 2000.

8. R. Cleaveland and M. Hennessy. Testing Equivalence asim@ation EquivalenceFormal Aspects
of Computing5:1-20, 1993.

9. A. En-Nouaary, R. Dssouli, F. Khendek, and A. Elgortobim@&d Test Cases Generation Based on
State Characterization Technique. 18th IEEE Real-Time Systems Symposium (RTSS)88es
220-229, December 2—4 1998.

10. A. Hessel, K.G. Larsen, B. Nielsen, P. Pettersson, arskdu. Time-Optimal Test Cases for Real-
Time Systems. 118rd International Workshop on Formal approaches to Testh@oftware (FATES
2003) Montréal, Québec, Canada, October 2003.

11. T. Higashino, A. Nakata, K. Taniguchi, and A R. Cavaller@rating test cases for a timed i/o automa-
ton model. InIFIP Int'l Work. Test. Communicat. Syst. (IWTCBages 197-214, 1999.

12. H.S. Hong, I. Lee, O. Sokolsky, and H. Ural. A temporalitdgased theory of test coverage and
generation. IrProceedings of the 8th International Conference on Toots Algorithms for the Con-
struction and Analysis of Systenpages 327-341. Springer-Verlag, 2002.

13

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

J. Ouaknine and J. Worrell. Revisiting digitizatiorhustness, and decidability for timed automata. In
18th IEEE Symposium on Logic in Computer Science (LICS 20@3wa, Canadapages 198-207.
IEEE Computer Society, june 2003.

T. Jéron and P. Morel. Test generation derived from frodecking. In N. Halbwachs and D. Peled,
editors,CAV’99, Trento, Italyvolume 1633 oL NCS pages 108-122. Springer-Verlag, July 1999.
A. Khoumsi, T. Jéron, and H. Marchand. Test cases geoefar nondeterministic real-time systems.
In 3rd International Workshop on Formal Approaches to Testih§oftware (FATES’03). LNCS 2931
Montreal, Canada, 2003.

K.G. Larsen. A Context Dependent Equivalence Betweend3sesTheoretical Computer Science
49:185-215, 1987.

M. Krichen and S. Tripakis. Black-box Conformance Tegtfor Real-Time Systems. INlodel
Checking Software: 11th International SPIN Workshagume LNCS 2989. Springer, april 2004.

D. Mandrioli, S. Morasca, and A. Morzenti. Generatingtkeases for Real-Time Systems from Logic
SpecificationsACM Transactions on Computer Systett3(4):365-398, 1995.

M. Mikucionis, K.G. Larsen, and B. Nielsen. Online or-ty testing of real-time systems. Technical
Report RS-03-49, Basic Research In Computer Science (BR&ember 2003.

M. Mikucionis, B. Nielsen, and K.G. Larsen. Real-timstgyn testing on-the-fly. Ithe 15th Nordic
Workshop on Programming Theongumber 34 in B, pages 36—38, Turku, Finland, October 29-31
2003.Abo Akademi, Department of Computer Science, Finland. Fetuss.

M. Mikucionis and E. Sasnauskaite. On-the-fly testiniggi¥JPPAAL. Master’s thesis, Department
of Computer Science, Aalborg University, Denmark, June3200

B. Nielsen and A. Skou. Automated Test Generation frometi Automata. IMTACAS 2001 - Tools
and Algorithms for the Construction and Analysis of Systgrages 343—-357, April 2001.

J. Peleska, P. Amthor, S. Dick, O. Meyer, M. Siegel, and#hlten. Testing Reactive Real-Time
Systems. IMaterial for the School — 5th International School and Sysipm on Formal Techniques
in Real-Time and Fault-Tolerant Systems (FTRTFTXH#8. Lyngby, Denmark.

S. Tripakis. Fault Diagnosis for Timed Automata. Hormal Techniques in Real-Time and Fault
Tolerant Systems (FTRTFT'Q2)olume LNCS 2469. Springer, 2002.

J. Springintveld, F. Vaandrager, and P.R. D’'Argenicstifigg Timed AutomataTheoretical Computer
Science254(1-2):225-257, March 2001.

T.A. Henzinger and Z. Manna and A. Pnueli. What good agiadiclocks? In Werner Kuich, editor,
Automata, Languages and Programming, 19th Internatior@ldguium, ICALP92, Vienna, Austria
volume 623 ofLNCS pages 545-558. Springer, july 1992.

J. Tretmans. Testing concurrent systems: A formal agbro In J.C.M Baeten and S. Mauw, edi-
tors, CONCUR’99 —10*" Int. Conference on Concurrency Thepwlume 1664 oLecture Notes in
Computer Sciencgages 46—65. Springer-Verlag, 1999.

J. Tretmans and A. Belinfante. Automatic testing wittnfal methods. IfEuroSTAR'99:7¢" Eu-
ropean Int. Conference on Software Testing, Analysis & &eBarcelona, Spain, November 8-12,
1999. EuroStar Conferences, Galway, Ireland.

V. Diekert, P. Gastin, A. Petit. Removing epsilon-Titass in Timed Automata. 1d14th Annual Sym-
posium on Theoretical Aspects of Computer Science, STAZZSH&es 583-594, Liibeck, Germany,
February 1997. LNCS, Vol. 1200, Springer.

R. de Vries, J. Tretmans, A. Belinfante, J. FeenstragljsFS. Mauw, N. Goga, L. Heerink, and A. de
Heer. Cote de resyste inRBGRESS In STW Technology Foundation, editorRBGRESS2000 —
Workshop on Embedded Systepegyes 141148, Utrecht, The Netherlands, October 2000.

R.G. de Vries and J. Tretmans. On-the-fly conformandagessing $IN. Software Tools for Tech-
nology Transfer2(4):382—-393, March 2000.

