
ARTIST 2 Summer School, Nässlingen, Schweden Foundations of Model-Driven Engineering

R Heckel, Univ. of Leicester, UK 1

Foundations of Model Transformations Foundations of Model Transformations
A “lambda calculus” for MDD ?A “lambda calculus” for MDD ?

Reiko HeckelReiko Heckel
University of Leicester, UKUniversity of Leicester, UK

MotivationMotivation

At the heart of modelAt the heart of model--
driven engineering are driven engineering are
activities like activities like

maintaining consistencymaintaining consistency
evolutionevolution
translationtranslation
executionexecution

of modelsof models

These are examples of These are examples of
model transformationsmodel transformations

A math. foundation is A math. foundation is
needed for studyingneeded for studying

Expressiveness and Expressiveness and
complexitycomplexity
Execution and Execution and
optimisationoptimisation
WellWell--definednessdefinedness
Semantic correctnessSemantic correctness

of transformations of transformations

This lecture is about This lecture is about
graph transformations graph transformations
as one such foundationas one such foundation

OutlineOutline

Graph transformationGraph transformation
why it is funwhy it is fun
how it workshow it works

Model transformationModel transformation
Theory and ToolsTheory and Tools

Why it is fun: Why it is fun:
Programming By ExampleProgramming By Example

StageCastStageCast ((www.stagecast.comwww.stagecast.com): a visual programming): a visual programming
environment for kids (from 8 years on), based on environment for kids (from 8 years on), based on

behavioral rules associated to graphical objectsbehavioral rules associated to graphical objects
visual pattern matchingvisual pattern matching
simple control structures (priorities, sequence, choice, ...)simple control structures (priorities, sequence, choice, ...)
external keyboard controlexternal keyboard control

intuitive ruleintuitive rule--based behavior based behavior modellingmodelling

Next:Next: abstract from concrete visual presentationabstract from concrete visual presentation

States of the PacMan Game:States of the PacMan Game:
GraphGraph--Based Presentation Based Presentation

:Ghost

:Field

:Field :Field

:Field

:Field

:Field

:PacMan
marbles=3

instance graph
(represents a
single state;
abstracts from
spatial layout)

type graph
(specifies legal
instance graphs

state space)

:Marble

cardinalities
(specify additional
constraints on well-typed
instance graphs)

typingtyping

Field
PacMan

marbles:int
Ghost

Marble

1

11 *

*

*

neighbor

Rules of the PacMan Game:Rules of the PacMan Game:
GraphGraph--Based Presentation, PacMan Based Presentation, PacMan

PacMan’sPacMan’s rules:rules:
collectcollect has priority over has priority over movePMmovePM

f1:Field f2:Field

pm:PacMan

f1:Field f2:Field

pm:PacManmovePM

pm:PacMan
marbles=m

f1:Field f2:Field

:Marble

f1:Field f2:Field

pm:PacMan
marbles=m+1collect

ARTIST 2 Summer School, Nässlingen, Schweden Foundations of Model-Driven Engineering

R Heckel, Univ. of Leicester, UK 2

Rules of the PacMan Game:Rules of the PacMan Game:
GraphGraph--Based Presentation, GhostBased Presentation, Ghost

Ghost’s rules:Ghost’s rules:
killkill has priority over has priority over moveGhostmoveGhost

f1:Field f2:Field

g:Ghost

f1:Field f2:Field

g:GhostmoveGhost

g:Ghost

f1:Field f2:Field

:PacMan

f1:Field f2:Field

g:Ghostkill

Graph TransformationGraph Transformation

:Ghost:Field

:Field :Field

:Field

:Field

:Field

:Marble

:PacMan
marbles=3
:PacMan

marbles=4

typingtyping

collect ;
kill

Field
PacMan

marbles:int
Ghost

Marble

1

11 *

*

*

How it works: Typed GraphsHow it works: Typed Graphs
Directed graphsDirected graphs as algebraic as algebraic

structures structures G = (V, E, G = (V, E, srcsrc, ,
tar)tar)
with with srcsrc, tar: E , tar: E VV

Graph homomorphismGraph homomorphism as as
pair of mappingspair of mappings
h = (h = (hhVV , , hhEE): G): G11 GG22 withwith

hhVV : V: V1 1 VV22
hhEE : E: E11 EE22

preserving preserving srcsrc and and tartar
Typed graphsTyped graphs given bygiven by

fixed fixed type graphtype graph TGTG
instance graphsinstance graphs GG
typed over typed over TG by TG by
homomorphismhomomorphism
g: G g: G TGTG

:Ghostx:Field

y:Field :Field

:Field

:Field

:Field

gg

Field
PacMan

marbles:int
Ghost

Marble

G

TG

Rules Rules

p: L p: L RR with with L L ∩∩ RR wellwell--defined, in different defined, in different
presentationspresentations

like above (cf. PacMan example)like above (cf. PacMan example)
with with L L ∩∩ RR explicit [DPO]: explicit [DPO]: L L K K RR

f1:Field f2:Field

pm:PacManmovePM:

f1:Field f2:Field

pm:PacMan

Rules Rules

p: L p: L RR with with L L ∩∩ RR wellwell--defined, in different defined, in different
presentationspresentations

like above (cf. PacMan example)like above (cf. PacMan example)
with with L L ∩∩ RR explicit [DPO]: explicit [DPO]: L L K K RR
with with L, RL, R integrated [UML]: integrated [UML]:
L L ∪∪ RR and markingand marking

L L -- RR as {destroyed} as {destroyed}
R R -- LL as {new}as {new}

f1:Field f2:Field

pm:PacManmovePM:

{destroyed} {new}

Transformation Step: OperationalTransformation Step: Operational

1.1. select rule select rule p : L p : L RR ; occurrence ; occurrence ooLL : L : L GG
2.2. remove from remove from G G thethe occurrence of occurrence of LL \\ RR
3.3. add to result a copy of add to result a copy of RR \\ LL

f1:Field

f2:Field pm:PacMan
marbles=3

m2:Marble

oL

G

L Rp
pm:PacMan
marbles=m

f2:Field f1:Field

m1:Marble

f2:Field f1:Field

pm:PacMan
marbles=m+1

f3:Field

m1:Marble

oR

pm:PacMan
marbles=4

H f1:Field

f2:Field

m2:Marblef3:Field

ARTIST 2 Summer School, Nässlingen, Schweden Foundations of Model-Driven Engineering

R Heckel, Univ. of Leicester, UK 3

Semantic Questions: Dangling EdgesSemantic Questions: Dangling Edges

conservative solution: application is forbiddenconservative solution: application is forbidden
invertible transformations, no sideinvertible transformations, no side--effectseffects

radical solution: radical solution: delete dangling edgesdelete dangling edges
more complex behavior, requires explicit controlmore complex behavior, requires explicit control

a:A

a:A :B ??

Semantic Questions: ConflictsSemantic Questions: Conflicts

conservative solution: application is forbiddenconservative solution: application is forbidden
invertible transformations, no sideinvertible transformations, no side--effectseffects

radical solution: radical solution: give priority to deletiongive priority to deletion
more complex behavior, requires explicit controlmore complex behavior, requires explicit control

a1:A

a:A

a2:A a1:A

??

Advanced FeaturesAdvanced Features
Dealing with unknown contextDealing with unknown context

setset--nodes (multinodes (multi--objects): match all nodes with the required objects): match all nodes with the required
connections connections
explicit (negative) context conditionsexplicit (negative) context conditions

(turns f1 into a trap by reversing all outgoing edges to Field (turns f1 into a trap by reversing all outgoing edges to Field
vertices, but only if there is no Ghost)vertices, but only if there is no Ghost)

ControlControl
priorities:priorities: movePMmovePM only if only if collectcollect is not possibleis not possible
programmed transformation: IF NOT programmed transformation: IF NOT collectcollect THEN THEN
movePmmovePm;;

:Field:Fieldf1:Field :Field f1:Field :Field:Ghost

Where it comes fromWhere it comes from
and what it is good forand what it is good for

Chomsky
Grammars

Term
Rewriting

Petri
Nets

Graph Transformation and Graph Grammars

Diagram
Languages

Behaviour
Modelling and

Visual Programming

Models of
Computation

OutlineOutline

Graph transformationGraph transformation
Model transformationModel transformation

diagram languagesdiagram languages
execution execution
translationtranslation

Theory and ToolsTheory and Tools

Diagram LanguagesDiagram Languages

theory and tools like for textual languagestheory and tools like for textual languages

Graphical
Elements

Concrete
Syntax

scan

layout

parse

render

Abstract
Syntax

Semantic
Domain

denotational
semanticsfeedback

operational
semantics

Vector
graphics

Spatial
Relationship

Graph

Abstract
Syntax
Graph

evolution

ARTIST 2 Summer School, Nässlingen, Schweden Foundations of Model-Driven Engineering

R Heckel, Univ. of Leicester, UK 4

has

:Polyline

:Rect

:Text

:Text

:Line :Line

:Line :Line

:Rect

:Polyline

has

has

has
in

in

has
from

has

from

fromfrom

:Ellipse

has

has
toto

to to

:Polygon

:Line :Line

:Polyline

has

toto

has

:Line

:Line
has

from

to

:Polyline

has

has hashas :Polyline hashashas

:Line :Line

:Polyline

toto

has

:Line

:Line

has

from

from

has

:Polygonhas
to

has

from

toto

from

has has has

has

:Line :Line

:Polyline

has

has
from

has

fromto to

:Rect

:Text

:Text

:Line :Line

:Rect

:Polyline

has

has
in

in

has
from

has

fromto to

:Text :Rectin

:Ellipse:Ellipse
in

:Polyline

:Line :Line
has

fromfrom
has

toto

has

fromfrom

has

has

from

SRG Metamodel
(typed graph)

SRG
(Instance) Graph

check availability

receive order

notify client

calculate prize

send receipt

[product not
available]

[product available]

Concrete
Syntax

Spatial
Relationship

Graph

has

:Polyline

:Rect

:Text

:Text

:Line :Line

:Line :Line

:Rect

:Polyline

has

has

has
in

in

has
from

has

from

fromfrom

:Ellipse

has

has
toto

to to

:Polygon

:Line :Line

:Polyline

has

toto

has

:Line

:Line
has

from

to

:Polyline

has

has hashas :Polyline hashashas

:Line :Line

:Polyline

toto

has

:Line

:Line

has

from

from

has

:Polygonhas
to

has

from

toto

from

has has has

has

:Line :Line

:Polyline

has

has
from

has

fromto to

:Rect

:Text

:Text

:Line :Line

:Rect

:Polyline

has

has
in

in

has
from

has

fromto to

:Text :Rectin

:Ellipse:Ellipse
in

:Polyline

:Line :Line
has

fromfrom
has

toto

has

fromfrom

has

has

from

Activity
Metamodel

SRG Graph
ASG

Concrete
Syntax

parse
Abstract
Syntax

Abstract
Syntax
Graph

SemanticsSemantics

Operational semantics Operational semantics
(execution)(execution)

concrete syntax: animation concrete syntax: animation
rulesrules
abstract syntax: graph abstract syntax: graph
transformation rulestransformation rules

DenotationalDenotational semantics semantics
(translation)(translation)

Abstract
Syntax

Semantic
Domain

denotational
semantics

operational
semantics

Operational SemanticsOperational Semantics

diagram syntax plus diagram syntax plus runtime stateruntime state
visual rules to model state transitionsvisual rules to model state transitions

produce sequences of states / labels, produce sequences of states / labels,
visualized as animationsvisualized as animations

op(…) op(…)

op(…)

Abstract
Syntax

operational
semantics

Extended Meta Model: Extended Meta Model:
Original plus Original plus Runtime StateRuntime State

Abstract
Syntax

operational
semantics Operational Rules: Operational Rules:

GT on Meta Model InstancesGT on Meta Model Instances
Abstract
Syntax

operational
semantics

ARTIST 2 Summer School, Nässlingen, Schweden Foundations of Model-Driven Engineering

R Heckel, Univ. of Leicester, UK 5

AnimationAnimation

Trace:Trace:

placeOrderplaceOrder;;
calcBillcalcBill;;
placeOrderplaceOrder

placeOrder

calcBill

placeOrder

placeOrder

calcBill

placeOrder

Abstract
Syntax

operational
semantics

SemanticsSemantics

Operational semantics Operational semantics
(execution)(execution)
DenotationalDenotational semantics semantics
(translation)(translation)

analyseanalyse model model
(compiler front(compiler front--end)end)
generate semantic generate semantic
representation representation
(compiler back(compiler back--end)end)

Abstract
Syntax

Semantic
Domain

denotational
semantics

operational
semantics

Analysis:Analysis:
ContextContext--FreeFree Graph GrammarGraph Grammar

do something

out

in

ActStart Graph:

Act

in

out

Act

Act

in

out

::=

Productions in EBNF-like notation:

Act

in

out

Act

[c] [not c]

Concrete Syntax of Well-Formed Activity Diagrams

Abstract
Syntax

Pair GrammarPair Grammar

A:Act

in

out

A1:Act

in

out

A2:Act

do something

out

in

::=

A:Act

A1:Act

in

out

A2:Act

[c] [not c]

Proc(A) ::= Proc(A1)
Proc(A2)

if [c] then Proc(A1)
else Proc(A2) do something

Source: well-structured
activity diagrams

Proc(A)Target: CSP

Abstract
Syntax

Semantic
Domain

denotational
semantics

GenerationGeneration
Proc(A0)Proc(A0)

Proc(A1Proc(A1)) Proc(A2)Proc(A2)
……

Proc(A3) Proc(A3)
Proc (A4) Proc (A4)
ifif [product available][product available]

thenthen Proc(A5)Proc(A5)
elseelse Proc(A8)Proc(A8)

……
receive order receive order
check availability check availability
ifif [product available][product available]

thenthen calculate prizecalculate prize
send receiptsend receipt

elseelse notify clientnotify client

check availability

receive order

notify client

calculate prize

send receipt

[product not
available]

[product available]

0 1

2

3

4

56

7

8

Good Enough for Good Enough for
Model Transformations?Model Transformations?

VisualVisual
abstract syntax or abstract syntax or
concrete syntax concrete syntax
templatestemplates

BiBi--directionaldirectional
inherently symmetryinherently symmetry

DeclarativeDeclarative

Expressive Expressive ??
ContextContext--free graph free graph
languageslanguages

Traceable Traceable ??
Naming conventionsNaming conventions

Efficient Efficient ??
NP complete parsing NP complete parsing
problemproblem

Incremental Incremental ??

Cf. OMG’s QVT requirements

ARTIST 2 Summer School, Nässlingen, Schweden Foundations of Model-Driven Engineering

R Heckel, Univ. of Leicester, UK 6

A NonA Non--WellWell--Structured ExampleStructured Example

ActionsActions
Place_orderPlace_order, , Pay_billPay_bill

ProcessesProcesses
AA = = Place_orderPlace_order BB
BB = if = if ‘‘nonnon--emptyempty’’

then then CC else STOPelse STOP
CC = = Pay_billPay_bill EE
E E == if if ‘‘paidpaid’’

then then AA else STOPelse STOP

[else]

[non-empty]

[paid]

[else]

Place order

Pay bill

A

B

C

E

Correspondence Rules:Correspondence Rules:
Initial, Action, and Final NodesInitial, Action, and Final Nodes

A A = …= …

AA == act act BB
B B = = ……

AA == STOPSTOP

act

A

B

A

A

Rule pairs, in Rule pairs, in
condensed condensed
presentationpresentation

Green/bfGreen/bf
{new}{new}

No restriction to No restriction to
contextcontext--freenessfreeness

Correspondence Correspondence
via common via common
names names

Correspondence Rules:Correspondence Rules:
Choice and JoinChoice and Join

A =A = if if condcond
then then BB else else CC

B B = = ……
C C = = ……

AA == BB
B B = = ……

B

[else]

C
[cond]

B

[cond]

A

A

Negative
application
condition

Correspondence Rules:Correspondence Rules:
Connection to Existing NodesConnection to Existing Nodes

AA == BB

A

A

act

A

B

B

B

Either alternative is
consistent with left side

Formally: Triple Graph GrammarsFormally: Triple Graph Grammars

Meta model for correspondenceMeta model for correspondence
traceabilitytraceability

Symmetric rule triplets (left, Symmetric rule triplets (left, corrcorr, right), , right),
generating directed rulesgenerating directed rules

Declarative Declarative operationaloperational

Target
Metamodel

Corresp.
Metamodel

Source
Metamodel<<use>> <<use>>

Example TGG RuleExample TGG Rule

:ActivityEdge

:Node
label = act

:ProcEdge:Proc
name = A

:Prefix
name = act

target

{new}

exp

{new}

act

A

B

AA == act act BB
B B = = ……

:ActivityEdge

source

{new}
:ProcEdge:Proc

name = B
{new}{new}

:Var
name = B

{new}

succ

left corr right

ARTIST 2 Summer School, Nässlingen, Schweden Foundations of Model-Driven Engineering

R Heckel, Univ. of Leicester, UK 7

Derived Operational GT Rule: Derived Operational GT Rule:
right right leftleft

Alternatively: Alternatively:
left left rightright
(left, right) (left, right) corrcorr

:ActivityEdge

:Node
label = act

:ProcEdge:Proc
name = A

:Prefix
name = act

targetexp

{new}

:ActivityEdge

source

:ProcEdge:Proc
name = B

{new}{new}

:Var
name = B

{new}

succ

left corr right

OutlineOutline

Graph transformationGraph transformation
Model transformationModel transformation
Theory and ToolsTheory and Tools

Theory: Sources of InspirationsTheory: Sources of Inspirations
Chomsky
Grammars

Term
Rewriting

Petri
Nets

Graph Transformation and Graph Grammars

Formal language
theory of graphs;

Diagram compiler
generators

Concurrency theory
Causality and conflict
Processes, unfoldings
Event-structures

Well-definedness
Termination
Confluence

Semantics of
process calculi

OutlineOutline

Graph transformationGraph transformation
Model transformationModel transformation
Theory and Theory and ToolsTools

General purpose modeling environmentsGeneral purpose modeling environments
PROGRES, AGG, PROGRES, AGG, FujabaFujaba, …, …

Environments for specifying visual notationsEnvironments for specifying visual notations
DIAGEN, DIAGEN, GENGEdGENGEd, …, …

Analysis toolsAnalysis tools
Groove, …Groove, …

PROGRESPROGRES
((PROgrammedPROgrammed Graph Rewriting Systems)Graph Rewriting Systems)

Graphical/textual language Graphical/textual language
to specify graph to specify graph
transformationstransformations

Graph rewrite rules with Graph rewrite rules with
complex and negative complex and negative
conditionsconditions

Embedded in programming Embedded in programming
notation for OO data base notation for OO data base
transactionstransactions

Cross compilation in Modula Cross compilation in Modula
2, C and Java2, C and Java

AGGAGG
(The Attributed Graph Grammar System)(The Attributed Graph Grammar System)

Algebraic approach to Algebraic approach to
graph transformationgraph transformation

Attribute computations in Attribute computations in
JavaJava

Efficient graph parsingEfficient graph parsing

Analysis facilities for Analysis facilities for
critical pairs, consistency critical pairs, consistency
of rules and invariantsof rules and invariants

ARTIST 2 Summer School, Nässlingen, Schweden Foundations of Model-Driven Engineering

R Heckel, Univ. of Leicester, UK 8

FujabaFujaba
(From UML to Java and Back Again)(From UML to Java and Back Again)

Round trip engineering with Round trip engineering with
UML, Java, and design UML, Java, and design
patternspatterns

Class and activity diagrams; Class and activity diagrams;
GT rules as collaborationsGT rules as collaborations

Generates standalone Java Generates standalone Java
classesclasses

Various Various pluginsplugins, including , including
triple graph grammarstriple graph grammars

DiaGenDiaGen
(The Diagram Editor Generator)(The Diagram Editor Generator)

VL concrete / abstract VL concrete / abstract
syntax specified as CF syntax specified as CF
hypergraphhypergraph grammarsgrammars

Generation of diagram Generation of diagram
editors, parsers, editors, parsers,
simulatorssimulators

GenGEDGenGED
(Generation of Graphical (Generation of Graphical Env.sEnv.s for Design)for Design)

Roughly similar to the Roughly similar to the
above, based on AGGabove, based on AGG

GRaphsGRaphs for Objectfor Object--Oriented Oriented
VErificationVErification (GROOVE)(GROOVE)

(bounded) generation (bounded) generation
of LTS from GT of LTS from GT
systemssystems

edgeedge--labelled labelled
graphsgraphs
application application
conditionsconditions
rule prioritiesrule priorities

http://http://wwwhome.cs.utwente.nlwwwhome.cs.utwente.nl/~groove/groove/~groove/groove--indexindex

Graph TransformationGraph Transformation
A “lambda calculus” for MDD ?A “lambda calculus” for MDD ?

Expressiveness and Expressiveness and
complexitycomplexity

CF graph grammars: CF graph grammars:
RozenbergRozenberg; ; HabelHabel
Relation with MSO logic: Relation with MSO logic:
CourcelleCourcelle

Execution and optimisationExecution and optimisation
Various toolsVarious tools
Graph matching: Graph matching:
ZuendorfZuendorf 96; 96;
VarroVarro et al 05 et al 05

WellWell--definednessdefinedness
Term graph rewriting: PlumpTerm graph rewriting: Plump
Confluence, termination of Confluence, termination of
attributed GT: attributed GT: EhrigEhrig et al 04et al 04

Semantic correctnessSemantic correctness
Requires formal semantics of Requires formal semantics of
the languages involvedthe languages involved

operational: operational: HausmannHausmann et al et al
denotationaldenotational: : KuesterKuester et alet al

Verification throughVerification through
proofs: several authorsproofs: several authors
model checking: model checking: VarroVarro; ; RensinkRensink
testing: Koenig et al 04testing: Koenig et al 04

Inspired? Inspired?
Join us in Vienna!Join us in Vienna!

GTGT--VMT* 2006VMT* 2006

Paper submission:Paper submission:
12 December 200512 December 2005

: 5: 5thth Intl Workshop on Graph Intl Workshop on Graph
Transformation and Visual Transformation and Visual
Modelling TechniquesModelling Techniques

ETAPS 2006ETAPS 2006

The event: The event:
25 March 25 March -- 2 April 20062 April 2006

Abstract submission: Abstract submission:
Friday 7 October 2005Friday 7 October 2005

Paper submission:Paper submission:
Friday 14 October 2005Friday 14 October 2005

ARTIST 2 Summer School, Nässlingen, Schweden Foundations of Model-Driven Engineering

R Heckel, Univ. of Leicester, UK 9

Questions ?Questions ?

