& & University of
% Leicester

Foundations of Model Transformations
A “lambda calculus” for MDD ?

Reiko Heckel
University of Leicester, UK

Motivation
» At the heart of model- »* A math. foundation is
driven engineering are needed for studying
activities like » Expressiveness and
= maintaining consistency complexity
= evolution = Execution and
« translation optimisation
= execution = Well-definedness
of models = Semantic correctness

of transformations

% This lecture is about
graph transformations
as one such foundation

* These are examples of
model transformations

QOutline

% Graph transformation
= why it is fun
= how it works

% Model transformation

* Theory and Tools

Why it is fun:

Programming By Example

StageCast (www.stagecast.com): a visual programming
environment for kids (from 8 years on), based on
= behavioral rules associated to graphical objects
= visual pattern matching
= simple control structures (priorities, sequence, choice, ...)
= external keyboard control

< intuitive rule-based behavior modelling

Next: abstract from concrete visual presentation

States of the PacMan Game:
Graph-Based Presentation

instance graph
(represents a
single state;
abstracts from
spatial layout)
typing
neighbor
N *| PacMan
- Fild |& marbles:int type graph
cardinalities wn, . (specifies legal
(spectﬁ{ additional Instance graphs
constraints on well-typed > state space)

Instance graphs)

Rules of the PacMan Game:
Graph-Based Presentation, PacMan

pm:PacMan

pm:PacMan
marbles=m+1

collect

movePM

T

PacMan'’s rules:
collect has priority over movePM

Rules of the PacMan Game:
Graph-Based Presentation, Ghost

Ghost's rules:
kil has priority over moveGhost

Graph Transformation

%ﬁ:ﬂ; collect ;
kill

* Field 1 *| PacMan

marbles:int

*

How it works: Typed Graphs

Directed graphs as algebraic
structures G = (V, £, src,
tar,
with sr¢, tar: E> V

Graph homomorphism as
pair of mappings
h = (h,, he): G, 2 G, with
. MV,

s e E DE,
preserving src and tar

Typed graphs given by E 8 PacMan E
= fixed type graph 7G : fielg H

= instance graphs G
typed over 7G by

Rules

p: L 2 Rwith L n R well-defined, in different
presentations
= like above (cf. PacMan example)
= with £ n Rexplicit [DPO]: L € K 2 R

i [i [fL:Field [f2:Field |
Transformation Step: Operational
Rules
g Lo, R [
p: L > Rwith L A R well-defined, in different + > 1
presentations ittt e L T L ,,,

= like above (cf. PacMan example)
= with L n Rexplicit [DPO]: L € K2 R
= with £, Rintegrated [UML]:
L v R and marking
+ L - R as {destroyed}
+ R-L as{new}

movePM:

{destroyed} {new}

0—|m1:MarbIe G H [t1:Field m:PacMan
marbles=4

T

1. selectrule p:L 2 R; occurrence g, - L 2 G
2. remove from G the occurrence of L\ R
3. add to result a copy of R\ L

Semantic Questions: Dangling Edges

% conservative solution: application is forbidden
= invertible transformations, no side-effects

» radical solution: delete dangling edges
= more complex behavior, requires explicit control

Semantic Questions: Conflicts

% conservative solution: application is forbidden
= invertible transformations, no side-effects

» radical solution: give priority to deletion
= more complex behavior, requires explicit control

Advanced Features

/ Dealing with unknown context

= set-nodes (multi-objects): match all nodes with the required
connections

= explicit (negative) context conditions

(turns f1 into a trap by reversing all outgoing edges to Field
vertices, but only if there is no Ghost)

Control

Where it comes from
and what it is good for

Chomsky

Term Petri
Grammars

Rewriting Nets

| | |

Graph Transformation and Graph Grammars

| | |

Diagram Models of Behaviour
= priorities: movePM only if collect s not possible Languages Computation ~ Modelling and
= programmed transformation: IF NOT colfect THEN Visual Programming
movePnr;
Qutline

v Graph transformation
% Model transformation
» diagram languages
= execution
= translation

% Theory and Tools

Diagram Languages

% theory and tools like for textual languages

operational
semantics

Abstract
Syntax
Graph

| /\—/
parse

& | Abstract evolution
< 7| Syntax

layout

veedbackc) denotational

semantics

Spatial

Relationship Semantic
Domain
Graph

scan

& | Concrete
= Syntax
render

Graphical
Elements

Vector
graphics

Spatial
Relationship
Graph

receive order
check availabili

Concrete
Syntax

SRG
(Instance) Graph

SRG Metamodel
(typed graph)

Abstract
Syntax
Graph

-

arse
Concrete }\

Syntax

/1

Abstract
Syntax

SRG Graph

ASG

Activity
Metamodel

Semantics

» Operational semantics

operational
(execution) semantics
= concrete syntax: animation
rules —
= abstract syn_tax: graph e
transformation rules Syntax
» Denotational semantics a ;
R lenotational
(translation)) semantics
Semantic
Domain

operational

semantics
Asbstract
ry . ntax
% diagram syntax plus runtime state j"
% visual rules to model state transitions

O o, O

Operational Semantics

op(...)

Copli)) (op(...))

% produce sequences of states / labels,
visualized as animations

Extended Meta Model:
Original plus Runtime State

o S

operational
semantics

Abstract
Syntax

| I

operational
semantics

Abstract
Syntax

Operational Rules:
GT on Meta Model Instances

.

N | |

My

line

irTre TP o< an_yyuu

1

—
—

operational
semantics

Abstract
Syntax

Animation

placeOrder

Trace:

placeOrder;
calcBill;
placeOrder

placeOrder

Semantics

v Operational semantics

operational

(execution) semantics
» Denotational semantics
(translation) "
= analyse model Abstract
(compiler front-end) Sl
= generate semantic) denotational
representation semantics
(compiler back-end)
Semantic
Domain

Ana |YSiS : Abstract
Context-Free Graph Grammar E

Concrete Syntax of Well-Formed Activity Diagrams T

s Pair Grammar
yntax

denotational

Source: well-structured
activity diagrams

Semantic
Domain

Start Graph: Act Target: CSP Proc(A)
Productions in EBNF-like notation: é in in n
. in 1
1 | et |
1
A | u= -
1
out out o ProcA1)> if [c] then Proc(A1) :
out Procth) E= - pocaz) else Proqaz) | 40 something
Generation . Good Enough for
i 2
Proc(A) o it = 1 Model Transformations?
% e o>
Proc(Al) > Proc(A2) T v Visual x Expressive ?
4 = abstract syntax or = Context-free graph
Proc(A3) > check availability concrete syntax languages
Proc (A4) > templates x Traceable ?
if [product available v Bi-di i . . .
hpen Proc(A5) ! [product not _ [product available] 2 B_ (;ll:’]GCt Oln al Naming conventions
else Proc(A8) available] 3 T inherently symmetry x Efficient ?
@ ° ¥ Declarative = NP complete parsing
problem

receive order = . 8 T
check availability 2 @@
if [product available] send receipt 7
then calculate prize
-> send receipt

else notify client

% Incremental ?

Cf. OMG’s QVT requirements

A Non-Well-Structured Example

Actions
Place_order, Pay_bill

Processes
A = Place_order > B
B = if ‘non-empty’
then C else STOP
C= Pay_bill > £
E=if ‘paid’

then A else STOP

Correspondence Rules:
Initial, Action, and Final Nodes

% Rule pairs, in
condensed
presentation
= Green/bf >

{new}

% No restriction to
context-freeness

» Correspondence
via common
names

A=STOP

Correspondence Rules:
Choice and Join

A
A =if cond [else]
then B else C <:> C
B=... [cond]] B
C—

Negative
application
condition

Correspondence Rules:
Connection to Existing Nodes

s

Either alternative is
consistent with left side

-

Formally: Triple Graph Grammars

% Meta model for correspondence

« traceability
Target Source
Metamodel S<use>> <<use>>, Mzt
Corresp.
Metamodel

% Symmetric rule triplets (left, corr, right),
generating directed rules
« Declarative > operational

Example TGG Rule

A

A=act> B
- G— [oct]
B
:Proc —
pr—— [':ProcEdge |——] :ActivityEdge |
| exp target
:Prefix succ :Var
pame = o pome =2 [Tabel = act |
{new} {new} source
:Proc —
name = B I :ProcEdge |——| :ActivityEdge |
{new} {new} {new}
left corr right

Derived Operational GT Rule:
_right > left

:Proc

name = A I :ProcEdge |——| :ActivityEdge |

exp
:Prefix succ) :var

name = act name = B
{new} {new} source

na;:;oi B [:ProcEdge] :ActivityEdge |

{new} {new}

left corr right

Alternatively:
= left > right
u (left, right) > corr

Qutline

v Graph transformation
v Model transformation
% Theory and Tools

Theory: Sources of Inspirations

Chomsky Term Petri
Grammars Rewriting Nets

| | |

Graph Transformation and Graph Grammars

|]]

= Formal language = Well-definedness = Concurrency theory
theory of graphs; = Termination = Causality and conflict
= Confluence = Processes, unfoldings
= Diagram compiler = Semantics of = Event-structures
generators process calculi

Outline

v Graph transformation
v Model transformation

% Theory and 7ools
= General purpose modeling environments
+ PROGRES, AGG, Fujaba, ...
= Environments for specifying visual notations
+ DIAGEN, GENGEJ, ...
= Analysis tools
+ Groove, ...

PROGRES
(PROgrammed Graph Rewriting Systems)

" % Graphical/textual language
to specify graph
transformations

% Graph rewrite rules with
complex and negative
conditions

* Embedded in programming
notation for OO data base
transactions

* Cross compilation in Modula
] 2, Cand Java

AGG

(The Attributed Graph Grammar System)

% Algebraic approach to
graph transformation

% Attribute computationsin | * =
Java !

» Efficient graph parsing

* Analysis facilities for
critical pairs, consistency "
of rules and invariants

Fujaba
(From UML to Java and Back Again)
»* Round trip engineering with

o s UML, Java, and design
patterns

% Class and activity diagrams;
GT rules as collaborations

* Generates standalone Java
classes

2% Various plugins, including
triple graph grammars

DiaGen
~(The Diagram Editor Generator)

1ae Apse o2

LS00t 2i . = VL concrete / abstract
{ = syntax specified as CF
T hypergraph grammars

= * Generation of diagram
editors, parsers,
simulators

GenGED
(Generation of Graphical Env.s for Design)

S

7

% Roughly similar to the
above, based on AGG

GRaphs for Object-Oriented
VErification (GROOVE)

| % (bounded) generation
of LTS from GT s g
systems =
= edge-labelled
graphs
= application
conditions
= rule priorities

http://wwwhome.cs.utwente.nl/~groove/groove-index

Graph Transformation
A “lambda calculus” for MDD ?

* Expressiveness and * Well-definedness

complexity = Term graph rewriting: Plump
= CF graph grammars: = Confluence, termination of
Rozenberg; Habel attributed GT: Ehrig et al 04
= Relation with MSO logic:
Courcelle

* Semantic correctness
= Requires formal semantics of
the languages involved

* Execution and optimisation * operational: Hausmann et al

= Various tools + denotational: Kuester et al
= Graph matching: = Verification through
Zuendorf 96; + proofs: several authors
Varro et al 05 + model checking: Varro; Rensink

+ testing: Koenig et al 04

Inspired?
Join us in Vienna! Fundamental %

Approachesto | A «
Software -
ETAPS 2006 Endineering &
% The event: Vierwra (Ausira | March F7-20. 2006

25 March - 2 April 2006
GT-VMT* 2006

% Abstract submission:
Friday 7 October 2005 * Paper submission:
12 December 2005

» Paper submission:

Friday 14 October 2005 ~ *: " Intl Workshop on Graph
Transformation and Visual

Modelling Techniques

TQuestions ?

