
Timed Controller Synthesis
and

Implementability Issues

J.-F. Raskin
Université Libre de Bruxelles

Belgian Federated Center for Verification (CFV)

ARTIST 2 Summer School
September 2005

Timed Controller Synthesis
and

Implementability Issues

J.-F. Raskin
Université Libre de Bruxelles

Belgian Federated Center for Verification (CFV)

ARTIST 2 Summer School
September 2005

Basics of

Goals of the talk

• Introduction to basic game technics to solve the
controller synthesis problem

• Timed games and symbolic technics (sketches)

• Show that the implementability of controller
models is an important issue

Goals of the talk

• Introduction to basic game technics to solve the
controller synthesis problem

• Timed games and symbolic technics (sketches)

• Show that the implementability of controller
models is an important issue

Give relevant pointers to literature

• Make a model of the environment
Environment

• Make clear the control objective:
Bad

• Make a model of your control strategy:
ControllerMod

• Verify :
Does Environment ControllerMod avoid Bad ?

Context

• Make a model of the environment
Environment

• Make clear the control objective:
Bad

• Make a model of your control strategy:
ControllerMod

• Verify :
Does Environment ControllerMod avoid Bad ?

• Good, but after ?

Make the synthesis

Is my controller
implementable ?

Context

The synthesis problem

The synthesis problem

? || Env |= φ

The synthesis problem

? || Env |= φ

Cont

The synthesis problem

? || Env |= φ

Cont Using algorithmic
methods

The synthesis problem

Specialize process A into C such that

So, C must refine A and
control B to enforce

A ≥ C and C || B |= φ

φ

Basic technics:
finite state case

• For the verification problem, the semantics of
processes is usually given by transition systems

• When we consider the transition system for ,
we loose the information about the components

A || B

Are transition systems
adequate for synthesis ?

• For the verification problem, the semantics of
processes is usually given by transition systems

• When we consider the transition system for ,
we loose the information about the components

A || B

So, we need richer models where identities
of processes are explicit:

two-player game structures

Are transition systems
adequate for synthesis ?

Two-player
game structures

0000

0101

1010

0100

1000

1101

1110

1111

0000

0101

1010

0100

1000

1101

1110

1111

Rounded
positions belong

to Player I

0000

0101

1010

0100

1000

1101

1110

1111

Rounded
positions belong

to Player I

Square positions
belong to Player 2

A game is played as follows: in each round, the game is in a position, if
the game is in a rounded position, Player I resolves the choice for the next
state, if the game is in a square position, Play 2 resolves the choice. The
game is played for an infinite number of rounds.

0000

0101

1010

0100

1000

1101

1110

1111

Rounded positions belong to Player I
Square positions belong to Player 2

0000

0101

1010

0100

1000

1101

1110

1111

Play : 0000

0000

0101

1010

0100

1000

1101

1110

1111

Play : 0000 0100

0000

0101

1010

0100

1000

1101

1110

1111

Play : 0000 0100 0101

0000

0101

1010

0100

1000

1101

1110

1111

Play : 0000 0100 0101 1101

0000

0101

1010

0100

1000

1101

1110

1111

Play : 0000 0100 0101 1101 ...

Two-player Game Structure

A two-player game structure is a tuple
where:

Q1 and Q2 are two (finite and) disjoint sets
of positions

ι ∈ Q1 ∪ Q2 is the initial position of the game

δ ⊆ (Q1 ∪ Q2) × (Q1 ∪ Q2) is the transition
relation of the game

We assume that

G = 〈Q1, Q2, ι, δ〉

∀q ∈ Q1 ∪ Q2 : ∃q′ ∈ Q1 ∪ Q2 : δ(q, q′)

Plays, Prefixes of Plays
Let G = 〈Q1, Q2, ι, δ〉

is a play in G if
,

w = q0q1 . . . qn . . .

Plays, Prefixes of Plays
Let G = 〈Q1, Q2, ι, δ〉

is a play in G if
,

w = q0q1 . . . qn . . .

∀i ≥ 0 : qi ∈ Q1 ∪ Q2

Plays, Prefixes of Plays
Let G = 〈Q1, Q2, ι, δ〉

is a play in G if
,

w = q0q1 . . . qn . . .

G Plays(G)

Notations

w(i)

Let :
denotes position i

w(0, i) denotes the prefix
up to position i

last(w(0, i)) = w(i)

w = q0q1 . . . qn . . .

Plays, Prefixes of Plays
Let G = 〈Q1, Q2, ι, δ〉

is a play in G if
,

w = q0q1 . . . qn . . .

w(0) = ι1)
2) ∀i ≥ 0 : δ(w(i), w(i + 1))

We denote the set of plays in by :G Plays(G)

PrefPlays(G) = {q0q1 . . . qn | ∃w ∈ Plays(G) ∧ ∀1 ≤ i ≤ n : w(i) = qi}

and

PrefPlaysk(G) = {w ∈ PrefPlays(G) ∧ last(w) ∈ Qk}

0000

0101

1010

0100

1000

1101

1110

1111

Play : 0000 0100 0101 1101 ...

Who is winning ?

0000

0101

1010

0100

1000

1101

1110

1111

Play : 0000 0100 0101 1101 ...

Is this a good or a bad play for Player k ?

Who is winning ?

0000

0101

1010

0100

1000

1101

1110

1111

Who is winning ?

A winning condition (for Player k)
is a set of plays
W ⊆ (Q1 ∪ Q2)

ω

Game
=

Two-player game structure
+

Winning condition for Player k

Strategies

Players are playing according to strategies.

A Player k strategy in G is a function:

λ : PrefPlaysk(G) → Q1 ∪ Q2

with the restriction that:

∀w ∈ PrefPlaysk(G) : δ(last(w), λ(w))

Outcome of a strategy

 is a possible outcome of the Player k
strategy if
w

λ

∀i ≥ 0 : w(i) ∈ Qk : w(i + 1) = λ(w(0, i))

w is a play where Player k plays
according to strategy λ

Outcome of a strategy

 is a possible outcome of the Player k
strategy if
w

λ

∀i ≥ 0 : w(i) ∈ Qk : w(i + 1) = λ(w(0, i))

Outcomek(G, λ)

The set of plays that have this property is denoted

Winning strategy

• Given a pair

• We say that Player k wins the game
if and only if:

(G, W)

(G, W)

∃λ : Outcomek(G, λ) ⊆ W

Winning strategy

• Given a pair

• We say that Player k wins the game
if and only if:

(G, W)

(G, W)

∃λ : Outcomek(G, λ) ⊆ W

That is, no matter how the other player resolves his choices, when player
k plays according to , the resulting play belongs to W. Player k can
force the play to be in W.

λ

Winning strategy

• Given a pair

• We say that Player k wins the game
if and only if:

(G, W)

(G, W)

∃λ : Outcomek(G, λ) ⊆ W

We say that is a winning strategy for
player k in the game (G, W)

λ

Winning strategies

=

Controllers that enforce
winning plays

Winning conditions

• Not all winning conditions are reasonable

• One often assumes that the set of winning
plays is a regular set

• We show here how to solve reachability
and safety games

Reachability Games

Reachability Game

is a reachability game if

∃Q ⊆ Q1 ∪ Q2 : W = {w ∈ Plays(G) | ∃i : w(i) ∈ Q}

(G, W)

That is W is a set of plays that reaches
the set of locations Q.

Reach(G, Q)

0000

0101

1010

0100

1000

1101

1110

1111

A Reachability Game

Does Player I, who owns the rounded positions, have a
strategy (against any choices of Player II) to reach the set

of states{1101, 1111} ?

Safety Games

Safety Game

is a safety game if(G, W)

That is W is the set of plays that stay
within given set of positions Q.

∃Q ⊆ Q1 ∪ Q2 : W = {w ∈ Plays(G) | ∀i ≥ 0 : w(i) ∈ Q}

Safe(G, Q)

0000

0101

1010

0100

1000

1101

1110

1111

A Safety Game

Does Player I, who owns the rounded positions, have a strategy
(against any choices of Player II) to stay within the set of states

 ?Q \ {1111}

Symbolic algorithms to
solve games

Player k Controllable
Predecessors

Set of Player I positions where he has
a choice of successor that lies in X

Set of Player II positions where all
her choices for successors lie in X

1CPreG(X) = {q ∈ Q1 | ∃q′ : δ(q, q′)∧ q′ ∈ X}∪{q ∈ Q2 | ∀q′ : δ(q, q′) : q′ ∈ X}

X is a set of positions

Player k Controllable
Predecessors

1CPreG(X) = {q ∈ Q1 | ∃q′ : δ(q, q′)∧ q′ ∈ X}∪{q ∈ Q2 | ∀q′ : δ(q, q′) : q′ ∈ X}

2CPreG(X) = {q ∈ Q2 | ∃q′ : δ(q, q′)∧ q′ ∈ X}∪{q ∈ Q1 | ∀q′ : δ(q, q′) : q′ ∈ X}

Symmetrically

Player k Controllable
Predecessors

1CPreG(X) = {q ∈ Q1 | ∃q′ : δ(q, q′)∧ q′ ∈ X}∪{q ∈ Q2 | ∀q′ : δ(q, q′) : q′ ∈ X}

2CPreG(X) = {q ∈ Q2 | ∃q′ : δ(q, q′)∧ q′ ∈ X}∪{q ∈ Q1 | ∀q′ : δ(q, q′) : q′ ∈ X}

SymmetricallyMonotonic functions over 〈2Q1∪Q2
,⊆〉

0000

0101

1010

0100

1000

1101

1110

1111

X = {1000, 0101, 1111}

0000

0101

1010

0100

1000

1101

1110

1111

X = {1000, 0101, 1111}

1CPre(X) = {0000} ∪ {0100, 1101}

Rounded positions,
there exists a red successor

0000

0101

1010

0100

1000

1101

1110

1111

X = {1000, 0101, 1111}

1CPre(X) = {0000} ∪ {0100, 1101}

Rounded positions,
there exists a red successor

Squared positions,
all successors are red

Fixpoints to Solve Games

µX · Q ∪ 1CPre(X)

νX · Q ∩ 1CPre(X)

Reachability game for set Q

Safety game for set Q

0000

0101

1010

0100

1000

1101

1110

1111

Fixpoint for a safety game

Does Player I, who owns the rounded positions, have a
strategy to stay within the set of states

 ?Q \ {1111}

0000

0101

1010

0100

1000

1101

1110

1111

Fixpoint for a safety game

We must compute

νX · (Q \ {1111}) ∩ 1CPre(X)

To do that, we use the Tarski fixpoint theorem.

0000

0101

1010

0100

1000

1101

1110

1111

Fixpoint for a safety game

X0 = (Q \ {1111}) ∩ 1CPre(Q)

0000

0101

1010

0100

1000

1101

1110

1111

Fixpoint for a safety game

X0 = (Q \ {1111}) ∩ 1CPre(Q)

0000

0101

1010

0100

1000

1101

1110

1111

Fixpoint for a safety game

X0 = (Q \ {1111}) ∩ 1CPre(Q)

0000

0101

1010

0100

1000

1101

1110

1111

Fixpoint for a safety game

X0 = (Q \ {1111}) ∩ 1CPre(Q)

0000

0101

1010

0100

1000

1101

1110

1111

Fixpoint for a safety game

X0 = (Q \ {1111}) ∩ 1CPre(Q)

X1 = (Q \ {1111}) ∩ 1CPre(X0)

0000

0101

1010

0100

1000

1101

1110

1111

Fixpoint for a safety game

X0 = (Q \ {1111}) ∩ 1CPre(Q)

X1 = (Q \ {1111}) ∩ 1CPre(X0)

0000

0101

1010

0100

1000

1101

1110

1111

Fixpoint for a safety game

X0 = (Q \ {1111}) ∩ 1CPre(Q)

X1 = (Q \ {1111}) ∩ 1CPre(X0)

0000

0101

1010

0100

1000

1101

1110

1111

Fixpoint for a safety game

X0 = (Q \ {1111}) ∩ 1CPre(Q)

X1 = (Q \ {1111}) ∩ 1CPre(X0)

0000

0101

1010

0100

1000

1101

1110

1111

Fixpoint for a safety game

X0 = (Q \ {1111}) ∩ 1CPre(Q)

X1 = (Q \ {1111}) ∩ 1CPre(X0)

0000

0101

1010

0100

1000

1101

1110

1111

Fixpoint for a safety game

X0 = (Q \ {1111}) ∩ 1CPre(Q)

X1 = (Q \ {1111}) ∩ 1CPre(X0)

X2 = (Q \ {1111}) ∩ 1CPre(X1)

0000

0101

1010

0100

1000

1101

1110

1111

Fixpoint for a safety game

X0 = (Q \ {1111}) ∩ 1CPre(Q)

X1 = (Q \ {1111}) ∩ 1CPre(X0)

X2 = (Q \ {1111}) ∩ 1CPre(X1)

0000

0101

1010

0100

1000

1101

1110

1111

Fixpoint for a safety game

X0 = (Q \ {1111}) ∩ 1CPre(Q)

X1 = (Q \ {1111}) ∩ 1CPre(X0)

X2 = (Q \ {1111}) ∩ 1CPre(X1)

0000

0101

1010

0100

1000

1101

1110

1111

Fixpoint for a safety game

X0 = (Q \ {1111}) ∩ 1CPre(Q)

X1 = (Q \ {1111}) ∩ 1CPre(X0)

X2 = (Q \ {1111}) ∩ 1CPre(X1)

0000

0101

1010

0100

1000

1101

1110

1111

Fixpoint for a safety game

X0 = (Q \ {1111}) ∩ 1CPre(Q)

X1 = (Q \ {1111}) ∩ 1CPre(X0)

X2 = (Q \ {1111}) ∩ 1CPre(X1)

0000

0101

1010

0100

1000

1101

1110

1111

Fixpoint for a safety game

X0 = (Q \ {1111}) ∩ 1CPre(Q)

X1 = (Q \ {1111}) ∩ 1CPre(X0)

X2 = (Q \ {1111}) ∩ 1CPre(X1) = X1

This is the
greatest
fixpoint

0000

0101

1010

0100

1000

1101

1110

1111

Fixpoint for a safety game

X0 = (Q \ {1111}) ∩ 1CPre(Q)

X1 = (Q \ {1111}) ∩ 1CPre(X0)

X2 = (Q \ {1111}) ∩ 1CPre(X1) = X1

This is the
greatest
fixpoint

X2 is exactly the set of positions
from which Player I can avoid
entering {1111}, no matter how
Player II behaves.

µX · Q ∪ 1CPre(X)

νX · Q ∩ 1CPre(X)

Safety game for set Q

Let be a TGS, let
 be a reachability game
defined on G, Player I has a winning
strategy for this game iff

G = 〈Q1, Q2, ι, δ〉

Reach(G, Q)

ι ∈ µX · Q ∪ 1CPre(X)

Theorem

µX · Q ∪ 1CPre(X)

Reachability game for set Q

Let be a TGS, let
 be a safety game defined
on G, Player I has a winning strategy
for this game iff

G = 〈Q1, Q2, ι, δ〉

Theorem

Safe(G, Q)

ι ∈ νX · Q ∩ 1CPre(X)

Some more results
Any finite state game with regular objective can be solved.

Some more results

Strategies for safety and reachability games are
positional (no need for memory).

Any finite state game with regular objective can be solved.

0000

0101

1010

0100

1000

1101

1110

1111

Some more results

Strategies for safety and reachability games are
positional (no need for memory).

For more complicated games, like LTL games, finite
memory is needed.

Any finite state game with regular objective can be solved.

Some more results

Determinacy theorem: In positional games (where a
position is owned by a player), games are determinate in
the following sense :

For any regular set of plays W,

Player I has a strategy to win
iff

Player II does not have a strategy to win

(G, W)

(G, W)

Strategies for safety and reachability games are
positional (no need for memory).

For more complicated games, like LTL games, finite
memory is needed.

Any finite state game with regular objective can be solved.

0000

0101

1010

0100

1000

1101

1110

1111

From the red states, and only from
those states, Player II has a strategy

to reach the state 1111

Timed Controller
Synthesis

Timed Automata [AD94]

1 42

3

x<=2

x>=1,d

x=1, x:=0, a x>1,d

y=1,z:=0,b

x>=1;z>0,d

z>0, y:=0,c

y<=1

0

x<1

y:=0, i

e

x<=2

Timed Automata [AD94]

TA=Finite State Automata+Clocks

1 42

3

x<=2

x>=1,d

x=1, x:=0, a x>1,d

y=1,z:=0,b

x>=1;z>0,d

z>0, y:=0,c

y<=1

0

x<1

y:=0, i

e

x<=2

Clock reset Invariant

Guard

State of a TA: (l,v) where l is a location and v is a
valuation of the clocks.

Timed Automata [AD94]

TA=Finite State Automata+Clocks

1 42

3

x<=2

x>=1,d

x=1, x:=0, a x>1,d

y=1,z:=0,b

x>=1;z>0,d

z>0, y:=0,c

y<=1

0

x<1

y:=0, i

e

x<=2

Clock reset Invariant

Guard

State of a TA: (l,v) where l is a location and v is a
valuation of the clocks.

We need a game version

1 42

3

x<=2

x>=1,d

x=1, x:=0, a x>1,d

y=1,z:=0,b

x>=1;z>0,d

z>0, y:=0,c

y<=1

0

x<1

y:=0, i

e

〈L1, L2, l0, X, E, Inv〉 where:

L1 and L2 are locations where Player I, respectively
Player II, makes choices.

l0 is the initial location.

➣

➣

Simple Timed Game Automata

Simple Timed Game Automata

1 42

3

x<=2

x>=1,d

x=1, x:=0, a x>1,d

y=1,z:=0,b

x>=1;z>0,d

z>0, y:=0,c

y<=1

0

x<1

y:=0, i

e

〈L1, L2, l0, X, E, Inv〉 where:

X

➣

➣

➣

is a finite set of clocks
, a set of edges

Inv : L1 ∪ L2 → 2
R

n

, the invariants labeling locations
E ⊆ L1 ∪ L2 × 2

X × 2
R

n

× L1 ∪ L2

Simple Timed Games
As before, the positions of the games are partitioned
into positions that belong to Player I and positions that
belong to Player II.

Games on STGA are played as follows:

In a Player’s k position, Player k proposes a time t and an
action a to be played. This choice must be valid in the
sense that it must not violate the invariant and the
action a must be enabled after t time units. The game
then proceeds to the next position.

1 42

3

x<=2

x>=1,d

x=1, x:=0, a x>1,d

y=1,z:=0,b

x>=1;z>0,d

z>0, y:=0,c

y<=1

0

x<1

y:=0, i

e

Timed Play

Timed Play :

(l0, 〈0, 0, 0〉) →0.5

i (l1, 〈0.5, 0, 0.5〉)

Player II chooses to wait 0.5 and then to play i

1 42

3

x<=2

x>=1,d

x=1, x:=0, a x>1,d

y=1,z:=0,b

x>=1;z>0,d

z>0, y:=0,c

y<=1

0

x<1

y:=0, i

e

Timed Play

Timed Play :

(l0, 〈0, 0, 0〉) →0.5

i (l1, 〈0.5, 0, 0.5〉)

Player I chooses to wait 0.5 and then to play a

→0.5

a
(l2, 〈0, 0.5, 1〉)

Timed Two-player Game Structure

A timed two-player game structure is a tuple
where:

Q1 and Q2 are two disjoint sets of
positions

ι ∈ Q1 ∪ Q2 is the initial position

is the timed transition relation

We assume that

δt ⊆ (Q1 ∪ Q2) × RR × (Q1 ∪ Q2)

G = 〈Q1, Q2, ι, δt〉

∀q ∈ Q1 ∪ Q2 : ∃t ∈ RR : ∃q′ ∈ Q1 ∪ Q2 : δt(q, t, q
′)

From STGA to TTGS
〈L1, L2, l0, X, E, Inv〉 G = 〈Q1, Q2, ι, δt〉

Q1 = {(l, v) | l ∈ L1 ∧ v |= Inv(l)}

Q2 = {(l, v) | l ∈ L2 ∧ v |= Inv(l)}

ι = (l0, 0
|X|)

δ((l, v), t, (l′, v′)) iff ∃〈l, r, g, l′〉 ∈ E :

∀t′ : 0 ≤ t′ ≤ t : v + t |= Inv(l) ∧ v + t |= g ∧ v′ = v + t[r := 0]

Timed Play
Let

is a timed play in G if

,

w(0) = ι1)
2)

G = 〈Q1, Q2, ι, δt〉

w = q0 →
t0 q1 →

t1 q2 . . . qn →
tn . . .

Plays(G)

PrefPlaysk(G) = {w ∈ PrefPlays(G) ∧ last(w) ∈ Qk}

The set of timed plays of G is noted

∀i ≥ 0 : δt(w(i)(q), w(i)(t), w(i + 1)(q))

PrefPlays(G) = {q0 →t0 . . . →tn−1 qn | ∃w ∈ Plays(G)∧∀0 ≤ i ≤ n : w(i)(q) = qi∧w(i)(t) = ti}

Timed Strategy

Players are playing according to timed strategies.

A Player k strategy in G is a function:

with the restriction that:

λ : PrefPlaysk(G) → RR × Q1 ∪ Q2

∀w ∈ PrefPlaysk(G) : δ(last(w), λ(w)(t), λ(w)(q))

Outcome of a timed strategy

is a possible outcome of the Player k timed
strategy ifλ

Outcomek(G, λ)

The set of timed plays that have this property is
denoted

w = q0 →
t0 q1 →

t1 q2 . . . qn →
tn . . .

∀i ≥ 0 : qi ∈ Qk → ti = λ(w(0, i))(t) ∧ qi+1 = λ(w(0, i))(q)

Symbolic algorithms to
solve timed games

Player k timed controllable
predecessors

Set of Player I positions where he has
a choice of successor that lies in X

Set of Player II positions where all
her choices for successors lie in X

1CPreG(X) = {q ∈ Q1 | ∃t ∈ RR, q′ : δt(q, t, q
′)∧q′ ∈ X}∪{q ∈ Q2 | ∀t ∈ RR, q′ : δt(q, t, q

′) → q′ ∈ X}

Player k timed controllable
predecessors

1CPreG(X) = {q ∈ Q1 | ∃t ∈ RR, q′ : δt(q, t, q
′)∧q′ ∈ X}∪{q ∈ Q2 | ∀t ∈ RR, q′ : δt(q, t, q

′) → q′ ∈ X}

2CPreG(X) = {q ∈ Q2 | ∃t ∈ RR, q′ : δt(q, t, q
′)∧q′ ∈ X}∪{q ∈ Q1 | ∀t ∈ RR, q′ : δt(q, t, q

′) → q′ ∈ X}

Symmetrically

Player k timed controllable
predecessors

1CPreG(X) = {q ∈ Q1 | ∃t ∈ RR, q′ : δt(q, t, q
′)∧q′ ∈ X}∪{q ∈ Q2 | ∀t ∈ RR, q′ : δt(q, t, q

′) → q′ ∈ X}

2CPreG(X) = {q ∈ Q2 | ∃t ∈ RR, q′ : δt(q, t, q
′)∧q′ ∈ X}∪{q ∈ Q1 | ∀t ∈ RR, q′ : δt(q, t, q

′) → q′ ∈ X}

Symmetrically

Difficulty : here X ranges over the
subsets of an infinite set

Region equivalence

x

y

0
0

1

2

1

3

2 3 4

Region equivalence

Finite number of equivalence classes

x

y

0
0

1

2

1

3

2 3 4

Region equivalence

All valuations of a region satisfies the same guards and invariants

x

y

0
0

1

2

1

3

2 3 4

Region equivalence

Time elapsing and time predecessors preserve regions

x

y

0
0

1

2

1

3

2 3 4

Region equivalence

Reset and inverse reset operations preserve regions

1CPre preserves regions

Theorem. If X is a union of regions then 1CPre(X)
is a union of regions.

Corollary. Safety, Reachability and more generally
LTL games are decidable on timed game structures
generated by timed automata.

Zenoness

Not all timed strategies are reasonable

A timed play w = q0 →
t0 q1 →

t1 q2 . . . qn →
tn . . .

is Zeno if: ∃t ∈ RR :

∞∑

i=0

ti ≤ t

Time does not diverge

Not all timed strategies are reasonable

0 1 2

x=0

a

b, x<1

x<=1

x=1

c

x<=1

Does Player I have a timed strategy to avoid
entering location l2 ?

Not all timed strategies are reasonable

0 1 2

x=0

a

b, x<1

x<=1

x=1

c

x<=1

Consider the following timed strategy for Player I:

Let w ∈ PrefPlay1(G) :

if last(w) = (l0, v) then let t = 1 −

1 − v(x)

2
and λ(w) = (t, (l1, v(x) + t))

if last(w) = (l1, v) then let t = 1 −

1 − v(x)

2
and λ(w) = (t, (l0, v(x) + t))

Not all timed strategies are reasonable

0 1 2

x=0

a

b, x<1

x<=1

x=1

c

x<=1

When Player I plays this strategy, the only outcome
of the games is:

(l0, 0) →
1

2 (l1,
1

2
) →

1

4 (l0,
3

4
) →

1

8 (l1,
7

8
) . . .

Not all timed strategies are reasonable

0 1 2

x=0

a

b, x<1

x<=1

x=1

c

x<=1

When Player I plays this strategy, the only outcome
of the games is:

(l0, 0) →
1

2 (l1,
1

2
) →

1

4 (l0,
3

4
) →

1

8 (l1,
7

8
) . . .Clearly, such a

strategy can
not be implemented

Not all timed strategies are reasonable

They are algorithmic solutions to avoid the
synthesis of zeno strategies. The correctness
of those solutions can be explained using the
region graph.

Not all timed strategies are reasonable

They are algorithmic solutions to avoid the
synthesis of zeno strategies. The correctness
of those solutions can be explained using the
region graph.

But Zenoness is not the only problem

Implementability issues
for timed models

Model-based Development

• Make a model of the environment
Environment

• Make clear the control objective:
Bad

• Make a model of your control strategy:
ControllerMod

• Verify :
Does Environment ControllerMod avoid Bad ?

• Good, but after ?

Text

From Correct Models
to Correct Implementations

• Should we verify code ?
– this may be difficult (too much details)

• Can we translate model into code ?
... there are tools for that ...

• ... and preserve properties ?
... good question...

Problem

• Timed automata are (in general) not
implementable (in a formal sense)...

Why ?
– Zenoness : 0, 0.5, 0.75, 0.875, ...
– No minimal bound between two transitions :

0,0.5,1,1.75,2,2.875,3,...
– And more ... (robustness)

No Minimal Bound
between Two Transitions

It can be controlled

More...

• One can specify instantaneous responses
but not implement them.

Not implementable

More...

• Instantaneous synchronisations between
environment and controller are not
implementable.

EnvironmentEnvironment

Classical controller
Not implementable

More...

• Models use continuous clocks and
implementations use digital clocks with
finite precision

Classical controller
Not implementable

V.S

Problems : Summary

• My controller stragegy may be correct
because of
– ... it is zeno...
– ... it acts faster and faster?
– ... it reacts instanteously to events,

timeouts,...? (synchrony hypothesis)
– ... it uses infinitely precise clocks?

Text

t

A possible solution...

• Give an alternative semantics to timed
automata : Almost ASAP semantics.
– enabled transitions of the controller become

urgent only after Δ time units;
– events from the environment are received by

the controller within Δ time units;
– truth values of guards are enlarged by f(Δ).

where Δ is a parameter

Definition of
the AASAP semantics

Intuition...

One can specify instantaneous responses
but not implement them.

Not implementable Solution : allow some delay

Intuition...

Instantaneous synchronisations between
environment and controller are not
implementable.

EnvironmentEnvironment

Classical controller
Not implementable

Solution :
Uncouple event from
perception by the controller

Intuition...

Models use continuous clocks and
implementations use digital clocks with
finite precision

Classical controller
Not implementable

Solution :
Slightly relax the constraints

V.S

Verification

• The question that we ask when we make
verification is no more:

Does Environment ControllerMod avoid Bad ?

• But:

for which values of Δ,
does Environment ControllerMod(Δ) avoid Bad ?

Three variations

• Fixed (you know your target platform) :

Given Δ>0,
does Environment ControllerMod(Δ) avoid Bad ?

• Existence (is my system implementable ?) :

does there exist Δ>0 such that
Environment ControllerMod(Δ) avoid Bad ?

• Max (how fast must my controller be ?) :

Max Δ such that
Environment ControllerMod(Δ) avoid Bad ?

Implementability of
the AASAP semantics

Intuition

• AASAP semantics defines a “tube” of strategies instead
of a unique strategy in the ASAP semantics.

• This tube can be refined into an implementation while
preserving safety properties verified on the AASAP-sem

ASAP semantics
Implementation
AASAP semantics

↑f(Δ)

Proof of “implementability” ?

• We define an “implementation
semantics” based on:

• The timed behaviour of this scheme is
determined by two values :
– Time length of a loop : ΔL
– Time between two clock ticks : ΔP

Read System Clock
Update Sensor Values
Check all transitions and fire one if possible

Program semantics

Proof of “implementability” ?

 For any timed controller, its AASAP semantics
simulates (in the formal sense) its
implementation semantics, provided that :

Δ>3ΔL+4ΔP

Theorem :

 In this case, the implementation is
guaranteed to preserve verified properties
of the model, that is:

Environment ControllerMod(Δ) avoid Bad

implies

Environment ControllerImpl(ΔL,ΔP) avoid Bad

Properties of the AASAP Semantics

• Faster is better !

For any Δ1, Δ2 such that Δ1<Δ2:
if

Environment ControllerMod(Δ2) avoid Bad
then

Environment ControllerMod(Δ1) avoid Bad

Properties of the AASAP Semantics

• If Δ>0, we get for free a proof that strategies:
• are nonzeno
• are such that transitions does not need to be

taken faster and faster
• If only Δ=0 guarantees some reachability

property, then the control strategy is not
implementable

An example

Text

If α=1 then the system is safe if and only if Δ=0
If α=2 then the system is safe if and only if Δ<0.25

In practice ?

• The AASAP semantics can be coded into a
parametric timed automata with only one clock
compared to the parameter Δ ∈ Q.

• Unfortunately, the reachability problem for
that class of timed automata is undecidable...
Direct corollary of [CHR02].

• Hytech implements a semi-decision procedure
for that problem.

• Does there exist Δ>0 such that
Environment || ControllerMod(Δ) avoid Bad ?

is decidable [DDMR04]

Tool Set

Methodology to develop
controllers

Models using synchrony hypothesis
Environment ControllerMod

Check
Does Environment ControllerMod(0) avoid Bad ?

Compute the largest Δ1 such that
Environment ControllerMod(Δ1) avoid Bad

if Δ1 > 3 ΔL + 4 ΔP

Generate code
This code will enforce the safety property

❶

❷

❹

❸

❶

❷

❸

❹

❺

Conclusion

• Two player games are natural theoretical
model to study the synthesis problem

• There exist elegant algorithms to solve
general games

• The step to go from a model to a correct
implementation needs more
investigations

Bibliography

General references on games and synthesis

decidable. The work reported in [FLM02] handles a sub-class of TCTL which can be

transformed to automata where clock-resets are in fact deterministic.

There are several variants of the problem studied in this paper which are interest-

ing. First, the assumption that the plant is deterministic is not really a restriction in the

partial-observation setting, as one can always make a nondeterministic plant determin-

istic by adding extra labels to distinguish nondeterministic transitions, and hiding this

away from the controller by making it unobservable.

Secondly, we could ask whether we need to control all the resources of the plant.

For example, we could ask whether we would still get decidability if we demand that

only the number of clocks is fixed, but the granularity of observation of clocks is not

fixed. We can show that this still does not suffice and the problem remains undecidable.

References

[AD94] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,

126(2):183–235, 1994.

[AMPS98] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timed au-

tomata. In Proc. IFAC Symp. System Structure and Control, pages 469–474. Elsevier,

1998.

[BDMP02] P. Bouyer, D. D’Souza, P. Madhusudan, and A. Petit. Timed control with partial

observability. Research Report LSV-02-5, LSV, ENS de Cachan, France, 2002.

[CHR02] F. Cassez, T.A. Henzinger, and J.-F. Raskin. A comparison of control problems for

timed and hybrid systems. In Proc. 5th Int. Works. Hybrid Systems: Computation and

Control (HSCC’02), volume 2289 of LNCS, pages 134–148. Springer, 2002.

[DM02] D. D’Souza and P. Madhusudan. Timed control synthesis for external specifications.

In Proc. 19th Int. Symp. Theoretical Aspects of Computer Science (STACS’02), vol-

ume 2285 of LNCS, pages 571–582. Springer, 2002.

[FLM02] M. Faella, S. La Torre, and A. Murano. Dense real-time games. In Proc. 17th Symp.

Logic in Computer Science (LICS’02), pages 167–176. IEEE Comp. Soc. Press, 2002.

[KG95] R. Kumar and V.K. Garg. Modeling and Control of Logical Discrete Event Systems.

Kluwer Academic Publishers, 1995.

[KV97] O. Kupferman and M.Y. Vardi. Synthesis with incomplete information. In Proc. 2nd

Int. Conf. Temporal Logic (ICTL’97), pages 91–106. Kluwer, 1997.

[LW95] F. Lin and W.M. Wonham. Supervisory control of timed discrete-event systems under

partial observation. IEEE Trans. Automatic Control, 40(3):558–562, 1995.

[McN93] R. McNaughton. Infinite games played on finite graphs. Annals of Pure and Applied

Logic, 65(2):149–184, 1993.

[Rei84] J.H. Reif. The complexity of two-player games of incomplete information. Journal

of Computer and System Sciences, 29(2):274–301, 1984.

[Tho95] W. Thomas. On the synthesis of strategies in infinite games. In Proc. 12th Int. Symp.

Theoretical Aspects of Computer Science (STACS’95), volume 900 of LNCS, pages

1–13. Springer, 1995.

[Tho02] W. Thomas. Infinite games and verification. In Proc. 14th Int. Conf. Computer Aided

Verification (CAV’02), volume 2404 of LNCS, pages 58–64. Springer, 2002.

[WT97] H. Wong-Toi. The synthesis of controllers for linear hybrid automata. In Proc. 36th

Conf. Decision and Control, pages 4607–4612. IEEE Comp. Soc. Press, 1997.

[WTH91] H.Wong-Toi and G. Hoffmann. The control of dense real-time discrete event systems.

In Proc. 30th Conf. Decision and Control, pages 1527–1528. IEEE Comp. Soc. Press,

1991.

decidable. The work reported in [FLM02] handles a sub-class of TCTL which can be

transformed to automata where clock-resets are in fact deterministic.

There are several variants of the problem studied in this paper which are interest-

ing. First, the assumption that the plant is deterministic is not really a restriction in the

partial-observation setting, as one can always make a nondeterministic plant determin-

istic by adding extra labels to distinguish nondeterministic transitions, and hiding this

away from the controller by making it unobservable.

Secondly, we could ask whether we need to control all the resources of the plant.

For example, we could ask whether we would still get decidability if we demand that

only the number of clocks is fixed, but the granularity of observation of clocks is not

fixed. We can show that this still does not suffice and the problem remains undecidable.

References

[AD94] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,

126(2):183–235, 1994.

[AMPS98] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timed au-

tomata. In Proc. IFAC Symp. System Structure and Control, pages 469–474. Elsevier,

1998.

[BDMP02] P. Bouyer, D. D’Souza, P. Madhusudan, and A. Petit. Timed control with partial

observability. Research Report LSV-02-5, LSV, ENS de Cachan, France, 2002.

[CHR02] F. Cassez, T.A. Henzinger, and J.-F. Raskin. A comparison of control problems for

timed and hybrid systems. In Proc. 5th Int. Works. Hybrid Systems: Computation and

Control (HSCC’02), volume 2289 of LNCS, pages 134–148. Springer, 2002.

[DM02] D. D’Souza and P. Madhusudan. Timed control synthesis for external specifications.

In Proc. 19th Int. Symp. Theoretical Aspects of Computer Science (STACS’02), vol-

ume 2285 of LNCS, pages 571–582. Springer, 2002.

[FLM02] M. Faella, S. La Torre, and A. Murano. Dense real-time games. In Proc. 17th Symp.

Logic in Computer Science (LICS’02), pages 167–176. IEEE Comp. Soc. Press, 2002.

[KG95] R. Kumar and V.K. Garg. Modeling and Control of Logical Discrete Event Systems.

Kluwer Academic Publishers, 1995.

[KV97] O. Kupferman and M.Y. Vardi. Synthesis with incomplete information. In Proc. 2nd

Int. Conf. Temporal Logic (ICTL’97), pages 91–106. Kluwer, 1997.

[LW95] F. Lin and W.M. Wonham. Supervisory control of timed discrete-event systems under

partial observation. IEEE Trans. Automatic Control, 40(3):558–562, 1995.

[McN93] R. McNaughton. Infinite games played on finite graphs. Annals of Pure and Applied

Logic, 65(2):149–184, 1993.

[Rei84] J.H. Reif. The complexity of two-player games of incomplete information. Journal

of Computer and System Sciences, 29(2):274–301, 1984.

[Tho95] W. Thomas. On the synthesis of strategies in infinite games. In Proc. 12th Int. Symp.

Theoretical Aspects of Computer Science (STACS’95), volume 900 of LNCS, pages

1–13. Springer, 1995.

[Tho02] W. Thomas. Infinite games and verification. In Proc. 14th Int. Conf. Computer Aided

Verification (CAV’02), volume 2404 of LNCS, pages 58–64. Springer, 2002.

[WT97] H. Wong-Toi. The synthesis of controllers for linear hybrid automata. In Proc. 36th

Conf. Decision and Control, pages 4607–4612. IEEE Comp. Soc. Press, 1997.

[WTH91] H.Wong-Toi and G. Hoffmann. The control of dense real-time discrete event systems.

In Proc. 30th Conf. Decision and Control, pages 1527–1528. IEEE Comp. Soc. Press,

1991.

References on timed and hybrid games

decidable. The work reported in [FLM02] handles a sub-class of TCTL which can be

transformed to automata where clock-resets are in fact deterministic.

There are several variants of the problem studied in this paper which are interest-

ing. First, the assumption that the plant is deterministic is not really a restriction in the

partial-observation setting, as one can always make a nondeterministic plant determin-

istic by adding extra labels to distinguish nondeterministic transitions, and hiding this

away from the controller by making it unobservable.

Secondly, we could ask whether we need to control all the resources of the plant.

For example, we could ask whether we would still get decidability if we demand that

only the number of clocks is fixed, but the granularity of observation of clocks is not

fixed. We can show that this still does not suffice and the problem remains undecidable.

References

[AD94] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,

126(2):183–235, 1994.

[AMPS98] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timed au-

tomata. In Proc. IFAC Symp. System Structure and Control, pages 469–474. Elsevier,

1998.

[BDMP02] P. Bouyer, D. D’Souza, P. Madhusudan, and A. Petit. Timed control with partial

observability. Research Report LSV-02-5, LSV, ENS de Cachan, France, 2002.

[CHR02] F. Cassez, T.A. Henzinger, and J.-F. Raskin. A comparison of control problems for

timed and hybrid systems. In Proc. 5th Int. Works. Hybrid Systems: Computation and

Control (HSCC’02), volume 2289 of LNCS, pages 134–148. Springer, 2002.

[DM02] D. D’Souza and P. Madhusudan. Timed control synthesis for external specifications.

In Proc. 19th Int. Symp. Theoretical Aspects of Computer Science (STACS’02), vol-

ume 2285 of LNCS, pages 571–582. Springer, 2002.

[FLM02] M. Faella, S. La Torre, and A. Murano. Dense real-time games. In Proc. 17th Symp.

Logic in Computer Science (LICS’02), pages 167–176. IEEE Comp. Soc. Press, 2002.

[KG95] R. Kumar and V.K. Garg. Modeling and Control of Logical Discrete Event Systems.

Kluwer Academic Publishers, 1995.

[KV97] O. Kupferman and M.Y. Vardi. Synthesis with incomplete information. In Proc. 2nd

Int. Conf. Temporal Logic (ICTL’97), pages 91–106. Kluwer, 1997.

[LW95] F. Lin and W.M. Wonham. Supervisory control of timed discrete-event systems under

partial observation. IEEE Trans. Automatic Control, 40(3):558–562, 1995.

[McN93] R. McNaughton. Infinite games played on finite graphs. Annals of Pure and Applied

Logic, 65(2):149–184, 1993.

[Rei84] J.H. Reif. The complexity of two-player games of incomplete information. Journal

of Computer and System Sciences, 29(2):274–301, 1984.

[Tho95] W. Thomas. On the synthesis of strategies in infinite games. In Proc. 12th Int. Symp.

Theoretical Aspects of Computer Science (STACS’95), volume 900 of LNCS, pages

1–13. Springer, 1995.

[Tho02] W. Thomas. Infinite games and verification. In Proc. 14th Int. Conf. Computer Aided

Verification (CAV’02), volume 2404 of LNCS, pages 58–64. Springer, 2002.

[WT97] H. Wong-Toi. The synthesis of controllers for linear hybrid automata. In Proc. 36th

Conf. Decision and Control, pages 4607–4612. IEEE Comp. Soc. Press, 1997.

[WTH91] H.Wong-Toi and G. Hoffmann. The control of dense real-time discrete event systems.

In Proc. 30th Conf. Decision and Control, pages 1527–1528. IEEE Comp. Soc. Press,

1991.

References on implementability issues and robustness

of the sequence goes to infinity, is around 2.84 bits per seconds. This may look
quite low and we could think that far better throughput could be obtained by a
hand-made implementation. But this is not the case. Indeed, we can show using
the results of Ho and Wong-Toi [HWT95] and by taking into account only the
imprecision due to reading on digital clocks every time slice, that the throughput
of the protocol on Lego MindstormsTM is bounded from above by around 4.16
bits per seconds. So, the price in term of performance loss to obtain automati-
cally generated and correct code is not too high in our opinion. Let us also note
that we were only able to find error by testing when the throughput was set
around 7 bits per seconds. That shows the limit of testing at least when done in
a naive way.

References

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

[BPV94] D. Bosscher, I. Polak, and F. Vaandrager. Verification of an Audio Control
Protocol. In H. Langmaack, W.-P. de Roever, and J. Vytopil, editors,
Formal Techniques in Real-Time and Fault-Tolerant Systems, volume 863,
pages 170–192, Lübeck, Germany, 1994. Springer-Verlag.

[CHR02] F. Cassez, T.A. Henzinger, and J.-F. Raskin. A comparison of control
problems for timed and hybrid systems. In HSCC 02: Hybrid Systems—
Computation and Control, Lecture Notes in Computer Science 2289, pages
134–148. Springer-Verlag, 2002.

[DDR04] M. De Wulf, L. Doyen, and J.-F. Raskin. Almost ASAP semantics: From
timed models to timed implementations. In HSCC 04: Hybrid Systems—
Computation and Control, Lecture Notes in Computer Science 2993, pages
296–310. Springer-Verlag, 2004.

[DDR05] M. De Wulf, L. Doyen, and J.-F. Raskin. Systematic implementation of
real-time models (extended version). Technical Report 543, U.L.B., 2005.
http://www.ulb.ac.be/di/publications/.

[Doy03] Laurent Doyen. A systematic implementation of simple timed controllers.
Technical Report 504, U.L.B., 2003.

[HHWT95] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. Hytech: The
next generation. In 16th Annual Real-Time Systems Symposium (RTSS),
pages 56–65. IEEE Computer Society Press, 1995.

[HWT95] P.-H. Ho and H. Wong-Toi. Automated analysis of an audio control proto-
col. In P. Wolper, editor, Proceedings of the 7th International Conference
On Computer Aided Verification, volume 939, pages 381–394, Liege, Bel-
gium, 1995. Springer Verlag.

[LT87] N. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed
algorithms. In 6th ACM Symp. on Principles of Distributed Computing,
pages 137–151, 1987.

[PL00] Paul Pettersson and Kim G. Larsen. Uppaal2k. Bulletin of the European
Association for Theoretical Computer Science, 70:40–44, February 2000.

18

Martin De Wulf, Laurent Doyen, Nicolas Markey, and Jean-François Raskin.
Robustness and Implementability of Timed Automata. In FORMATS'04, Lecture Notes
in Computer Science, 3253, pp. 118-133, Springer Verlag, 2004.

Martin De Wulf, Laurent Doyen, Jean-François Raskin. Systematic Implementations of
Timed Models. In Formal Methods Europe'05, LNCS 3582, pp. 139-156, Springer
Verlag, 2005.

K. Altisen and S. Tripakis. Implementation of timed automata: an issue of semantics or
modeling?. In FORMATS'05 (to appear). A previous version of this paper is available
as VERIMAG Technical Report TR-2005-12.

