
Fault Diagnosis for Timed Automata∗

Stavros Tripakis
VERIMAG (www-verimag.imag.fr)

1 Introduction

In this paper we study the problem of fault diagnosis in the context of dense-time automata. Our work
is inspired from [SSL+95, SSL+96], who have studied the problem in the context of discrete event systems
(DES) [RW87].

We stick to the terminology used in the above papers, although we find the term fault detection, rather
than diagnosis, more appropriate. Indeed, the objective is to design an observer for a given plant, such that
this observer can detects errors in the behavior of the plant. The method is model-based: it is assumed that
the plant behaves according to a known model. The observer will be based on this model. Essentially, the
observer will trace all possible states that the plant can be in, given the current sequence of observations.
More details follow.

In the DES framework, the fault diagnosis problem is as follows. We are given the description of the
behavior of a plant, in the form of a finite-state automaton. A behavior of the plant corresponds to a run
of the automaton, that is, a sequence of events. An event is either observable or unobservable. One or more
special unobservable events model faults that may occur during the operation of the plant. The objective
is to design a diagnoser. The diagnoser is just a function which takes sequences of observable events and
decides whether the original behavior contained a fault or not. The diagnoser should not announce a fault if
no fault has occurred. The diagnoser should announce a fault at most n steps after the fault occurred. Once
a fault is announced, the diagnoser cannot stop announcing it (i.e., on-line fault repairs are not modeled).

Not every plant is diagnosable. For example, a plant with two behaviors, a, f, b and a, u, b, is not
diagnosable if f, u are unobservable and f is the fault. Indeed, the diagnoser, observing only a, b, has no
way to know which of the two behaviors happened. On the other hand, a plant with behaviors a, f, b, c and
a, u, b, d is diagnosable: after seeing c or d, the diagnoser can distinguish what happened.

Our motivation has been to extend the above framework to dense-time automata [AD94]. Such an
extension is useful, since it permits us to model plants with timed behaviors, for example, “a followed by b
within a delay of 7 time units”. It also allows for diagnosers to base their decisions not only on the sequences
of events observed, but also on the time delays between these events. That is, the diagnoser not only observes
events, but can also measure the time elapsed between two successive events and, consequently, between any
two events.

For example, consider the plant modeled by the timed automaton of Figure 1. The plant has two sets
of behaviors: faulty behaviors (where f occurs) and non-faulty behaviors. If events a and b are observable,
then the plant is diagnosable. Indeed, in all behaviors, a and b occur, in that order. In every faulty behavior,
the delay between a and b is greater than 3 time units, while in every non-faulty behavior, the delay is at
most 3. Thus, a diagnoser observing a and b, and measuring their interarrival delay can tell whether a fault
occurred or not.

The contributions of this paper are as follows. First, we propose a notion of diagnosability for timed
automata and give necessary and sufficient conditions for a timed automaton to be diagnosable. Second,
we show how diagnosability can be algorithmically checked, by reducing the problem to checking whether a

∗This is a modified version of a paper that appeared in FTRTFT’02 [Tri02]. This work has been partially supported by the
European IST project “Next TTA” under project No IST-2001-32111.

1

���� ����

���� ����
����

���� �������:

XXXXXXXXz

-

-

-

-

b

x ≤ 3

bu

f

x ≤ 6 x ≤ 3
x := 0

a
x > 3

x ≤ 6

Figure 1: A diagnosable timed automaton.

certain timed automaton has a non-zeno run. It follows that diagnosability is in PSPACE. Third, we show
how to effectively build a diagnoser for a diagnosable timed automaton. Although the set of observations
is infinite (and in fact, non-enumerable), the diagnoser function is computable, using standard technology
used in many timed automata verification tools.

2 Timed automata with faults and unobservable events

Let X be a finite set of variables taking values in the set of non-negative rational numbers, denoted Q.1

We call these variables clocks. A valuation on X is a function v : X → Q which assigns a value to each
clock in X . Given a valuation v and a delay δ ∈ Q, v + δ denotes the valuation v′ such that for all x ∈ X ,
v′(x) = v(x)+ δ. Given a valuation v and a subset of clocks X ⊆ X , v[X := 0] denotes the valuation v′ such
that for all x ∈ X, v′(x) = 0 and for all y ∈ X −X, v′(y) = v(y).

A polyhedron on X is a set of valuations which can be represented as a boolean expression with atomic
constraints of the form x ≤ k or x− y ≤ k, where x, y ∈ X and k is an integer constant. For example, x =
0∧y > 3 is a polyhedron. By definition, polyhedra are closed by boolean operations ∧,∨,¬, which correspond
to set intersection, union and complementation. Polyhedra are also closed by existential quantification: for
x ∈ X , ∃x . ζ denotes the polyhedron {v | ∃v′ ∈ ζ,∀y ∈ X , y 6= x ⇒ v(y) = v′(y)}. For example,
∃x . (x ≤ 3 ∧ y ≤ x) is the polyhedron y ≤ 3. We use true to denote the polyhedron

∧
x∈X x ≥ 0 and false

to denote the empty polyhedron. We also use ~0 to denote the singleton
∧

x∈X x = 0.
A timed automaton [AD94, HNSY94] is a tuple A = (Q,X ,Σ, E, I), where:

• Q is a finite set of discrete states; q0 ∈ Q is the initial discrete state.

• X is a finite set of clocks.

• Σ is a finite set of events. Σ is the union of two disjoint sets Σ = Σo∪Σu, and f ∈ Σu is a distinguished
event, called the fault event. An event in Σo is called observable, otherwise, it is called unobservable.

• E is a finite set of transitions. Each transition is a tuple e = (q, q′, a, ζ,X), where q, q′ ∈ Q, a ∈ Σ, ζ
is a polyhedron on X and X ⊆ X . We use source(e) to denote q, dest(e) for q′, event(e) for a, guard(e)
for ζ, and reset(e) for X. Given an event a ∈ Σ, E(a) denotes the set of all transitions e ∈ E such that
event(e) = a.

• I is the invariant function which associates with each discrete state q ∈ Q a polyhedron on X , I(q).
We require that ~0 ∈ I(q0).

A state of A is a pair s = (q, v), where q ∈ Q and v is a valuation on X , such that v ∈ I(q). We denote
q by discrete(s). The initial state of A is s0 = (q0,~0). Each delay δ ∈ Q defines a partial function on the
states of A: if s = (q, v) is a state of A, and ∀δ′ ≤ δ, v + δ′ ∈ I(q), then δ(s) = (q, v + δ), otherwise, δ(s) is

1We consider a rational time domain instead of a real time domain, because we are interested in implementing diagnosers
that take as input delay values, and real numbers cannot be finitely represented in computers.

2

undefined. Each transition e = (q, q′, a, ζ,X) ∈ E defines a partial function on the states of A: if s = (q, v) is
a state of A such that v ∈ ζ and v[X := 0] ∈ I(q′), then e(s) = (q′, v[X := 0]), otherwise, e(s) is undefined.

A timed sequence over a set of events Σ is a finite or infinite sequence γ1, γ2, · · ·, where each γi is either an
event in Σ or a delay in Q. We require that between any two events in ρ there is exactly one delay (possibly
0). For example, if a and b are events, a, 0, b, 3, c and a, 1, 1, 1, ... are valid timed sequences, while a, b and
a, 1, 2, b are not.

If ρ is a finite timed sequence, time(ρ) denotes the sum of all delays in ρ. If ρ is infinite, then time(ρ)
denotes the limit of the sum (possibly ∞). We say that ρ is non-zeno if time(ρ) = ∞. Note that a non-zeno
timed sequence is necessarily infinite, although it might contain only a finite number of events.

We define a projection operator P as follows. Given a (finite or infinite) timed sequence ρ and a set of
events Σ′ ⊆ Σ, P (ρ,Σ′) is the timed sequence obtained by erasing from ρ all events in Σ′ and summing the
delays between successive events in the resulting sequence. For example, if ρ = 1, a, 4, b, 1, c, 0, d, 3, e, then
P (ρ, {b, d}) = 1, a, 5, c, 3, e. Note that, in the definition of P (ρ,Σ′), Σ′ is the set of events to be erased. Also
notice that, time(ρ) = time(P (ρ,Σ′)), for any ρ and Σ′.

Given a state s of A, a run of A starting at s (or simply a run of A, if s = s0) is a (finite or infinite) timed
sequence ρ = γ1, γ2, · · ·, for which there exists a sequence of states s0, s1, s2, · · ·, such that s0 = s and for
each i = 1, 2, ..., if γi is a delay δ ∈ Q then si = δ(si−1), whereas if γi is an event a ∈ Σ, then si = e(si−1),
for some e ∈ E(a). If ρ is a finite run γ1, γ2, · · · , γn starting from s, we say that sn is reachable from s via
ρ. A finite run ρ defines a function on the states of A as follows. If s is a state of A, ρ(s) is the set of all
states reachable from s via ρ (note that ρ(s) might be empty). The set of all states of A reachable from s0

via some run is denoted RA.
A is well-timed if for all s ∈ RA, there is a non-zeno run of A starting at s.

Definition 1 (Faulty and δ-faulty runs) A run ρ = γ1, γ2, · · · is called faulty if for some i = 1, 2, ...,
γi = f . Let j be the smallest i such that γi = f , and let ρ′ = γj , γj+1, · · ·. Given δ ∈ Q, if time(ρ′) ≥ δ, then
we say that at least δ time units pass after the first occurrence of f in ρ, or, in short, that ρ is δ-faulty.

The following lemma states an important property of the model, which will be used in the sequel.

Lemma 2 If for all ∆ ∈ N, A has a ∆-faulty run, then A has a non-zeno faulty run.

Proof Our proof relies on the region graph [AD94] of A, call it G. G is a finite quotient graph with respect
to a time-abstracting bisimulation [TY01]. Each node of G (called a region) contains a set of bisimilar states
of A. The edges of G correspond either to transitions of A or to symbolic passage of time. We refer the
reader to timed-automata papers for more details on the region graph. What is important for our proof is
that every run of A is inscribed in a path of G and, vice-versa, every path of G contains a set of runs of A.

Let Rf be the set of regions of G which are reachable by a faulty path. Note that for every r ∈ Rf ,
all successors of r are also in Rf . Let Gf be the restriction of G to Rf . We claim that Gf has a strongly-
connected component (SCC) Λ, such that for every clock x, x is either reset and can grow strictly greater
than zero in Λ, or remains unbounded in Λ: this implies the existence of a faulty non-zeno run [Alu91].
Suppose our claim is false, that is, for every SCC Λ in Gf , there is a clock x which remains upper bounded
in Λ and is never reset or never grows above zero. In both cases, x never grows in Λ above some constant ΓΛ

(in the last case, ΓΛ = 0). Then, for every run ρ inscribed in Λ, time(ρ) ≤ ΓΛ. Since there is a finite number
of SCCs in a finite graph, the time spent in any faulty run is bounded by some Γ (obtained as the maxi-
mum of Γx

Λ, plus the times spent in the finite paths linking the SCCs). But this contradicts the hypothesis.

3 Diagnosers and diagnosability

In this section we define diagnosability as the existence of diagnosers for a given plant. Informally, a diagnoser
is a function that, given an observation, detects whether the original behavior of the plant was faulty or
not. As we illustrated in the introduction, not all plants are diagnosable. We given necessary and sufficient

3

conditions for diagnosability. Informally, a plant is diagnosable iff any pair of faulty/non-faulty behaviors
can be distinguished by their projections to observable behaviors.

Let FT SΣ denote the set of all finite timed sequences over Σ.

Definition 3 (Diagnosers) Given a TA A over Σ with sets of observable/unobservable events Σo,Σu ⊆ Σ,
and ∆ ∈ N, a ∆-diagnoser for A is a function

D : FT SΣo
→ {0, 1}

such that

1. For any non-faulty finite run ρ of A, D(P (ρ,Σu)) = 0.

2. For any ∆-faulty finite run ρ of A, D(P (ρ,Σu)) = 1.

If a ∆-diagnoser exists for A then we say that A is ∆-diagnosable. We say that A is diagnosable if there
exists some ∆ ∈ N such that A is ∆-diagnosable.

Lemma 4 (Necessary and sufficient conditions for ∆-diagnosability) Let A be a TA over Σ with
sets of observable/unobservable events Σo,Σu ⊆ Σ. For any ∆ ∈ N, A is ∆-diagnosable iff for any two finite
runs ρ1, ρ2 of A, if ρ1 is ∆-faulty and ρ2 is non-faulty, then P (ρ1,Σu) 6= P (ρ2,Σu).

Proof Assume A is ∆-diagnosable and D is a diagnoser for A. Suppose ρ1 is ∆-faulty and ρ2 is non-faulty.
Then, D(P (ρ1,Σu)) = 1 and D(P (ρ1,Σu)) = 0. Since D is a function, it must be that P (ρ1,Σu) 6= P (ρ2,Σu).

In the opposite direction, assume the condition holds. We define function D as follows

D(π) =
{

1, if there exists ρ s.t. P (ρ,Σu) = π and ρ is ∆-faulty,
0, otherwise. (1)

Then, by definition, if ρ is a ∆-faulty finite run of A, D(P (ρ,Σu)) = 1. Now, suppose ρ is a non-faulty finite
run of A and let π = P (ρ,Σu). If D(π) = 1 then there must exist some ∆-faulty finite run ρ′ of A such that
π = P (ρ′,Σu). But this would contradict the condition. Thus, D(π) = 0.

Example 5 Assuming that events a and b are observable, f and u are unobservable and f is the fault, the
timed automaton of Figure 1 is 3-diagnosable. On the other hand, the slightly modified automaton shown in
Figure 2 is not diagnosable. Indeed, the two runs a, 2.5, f, 0.1, b and a, 2.5, u, 0.1, b have the same projection
a, 2.6, b, but only the first one is faulty. Moreover, an arbitrary amount of time can elapse after b in both
runs, and their projections will remain identical.

���� ����

���� ����
����

���� �������:

XXXXXXXXz

-

-

-

-

b

x ≤ 3

bu

f

x ≤ 6 x ≤ 3
x := 0

a
x > 2

x ≤ 6

Figure 2: A non-diagnosable timed automaton.

We make some remarks about Definition 3.
For the sake of simplicity, we consider only one type of fault. The framework can be extended to k different

faults, f1, ..., fk, in various ways. For instance, the diagnoser could be a function D : FT SΣo
→ {0, 1, ..., k}

4

and we could require that it yields 0 for non-faulty runs and i if the first fault was fi. We could also require
that the diagnoser catches all faults. Then the range of D would have to be something like 2k, that is, D
yields a vector of k bits and the i-th bit is set iff fi has occurred. We could require the same detection delay
∆ for all faults or a separate delay ∆i for each i = 1, ..., k. Lemma 4 can be extended to deal with k faults
easily: it suffices to check the condition individually for each fault.

Another remark: we do not model on-line “repairs” of faults, that is, we assume that faults cannot be
“undone”. This means that, once a fault has occurred, we consider the behavior erroneous and we would
like to detect the fault, no matter what the plant does afterwards.

A final remark: we define diagnosability with respect to a natural constant ∆, rather than, say, a real
number. This allows us to speak of ∆min in the lemma that follows. If ∆ is taken to be real, we can find
plants which are diagnosable for all ∆ > 3, say, but not for ∆ = 3. Assuming ∆ natural also gives a simple
enumerative procedure to find ∆min, as we show in Proposition 10.

The following is a direct corollary of Lemma 4 and the fact that a (∆ + 1)-faulty run is also ∆-faulty.

Lemma 6 Let A be ∆-diagnosable. Then, for any ∆′ > ∆, A is ∆′-diagnosable. Also, there exists ∆min

such that A is ∆min-diagnosable and for all ∆′ < ∆min, A is not ∆′-diagnosable.

4 Checking diagnosability

Checking diagnosability and building diagnosers are well-known problems for finite-state models. Diagnos-
ability can be decided in polynomial time, whereas building a diagnoser relies on a subset construction and
is exponential in the worst case [Tsi89].

In this section, we show how to effectively check diagnosability in the dense-time case. We will assume
that the plant is modeled as a well-timed automaton A. This is a reasonable assumption, since real time
advances without upper bound and a faithful model must capture this fact.

Informally, the algorithm works as follows. We first build a special parallel product of A with itself. This
product generates all pairs of runs of A that yield the same observations, yet one is faulty while the other
one is not. Then, we will show that A is diagnosable iff the product cannot generate a non-zeno pair of
runs. Indeed, this would mean that for any ∆ we can find prefixes of the non-zeno pair which contradict the
necessary condition for ∆-diagnosability.

The product, denoted (A‖Σo
A)−f2 , is obtained in two phases. First, we build a product A‖Σo

A as follows:

1. We make two “copies” of A, A1 and A2, by renaming unobservable events, discrete states and clocks
of A:

• Each discrete state q of A is renamed q1 in A1 and q2 in A2. The initial state q0 is copied into q0
1

and q0
2 .

• Each clock x of A is renamed x1 in A1 and x2 in A2.

• Each unobservable event u of A is renamed u1 in A1 and u2 in A2. Let Σ1
u and Σ2

u denote the
corresponding sets of renamed unobservable events. Observable events are not renamed.

• The transitions are copied and renamed accordingly. For example, e = (q, q′, u, x ≤ 3, {y})
becomes e1 = (q1, q

′
1, u1, x1 ≤ 3, {y1}) in A1 (assuming the event u is unobservable, otherwise it

would not be renamed).

2. A‖ΣoA is obtained as the usual parallel composition of A1 and A2, where transitions of A1 and A2

labeled with the same (observable) event are forced to synchronize. For example, if ei = (qi, q
′
i, a, ζi, Xi)

are transitions of Ai, for i = 1, 2, and a is an observable event, then e = ((q1, q2), (q′1, q
′
2), a, ζ1∧ζ2, X1∪

X2) is the synchronized transition of A‖Σo
A. All other transitions interleave. The invariant of a product

state (q1, q2) is I(q1) ∧ I(q2).

Now, let (A‖Σo
A)−f2 be the timed automaton obtained from A‖Σo

A by removing all transitions labeled f2

from the latter. An example is shown in Figure 3.

5

�
�� �
��
-b

�
�� �
��
-b

∧
x2 ≤ 6

x1 ≤ 6

∧
x2 ≤ 6

x1 ≤ 3

∧
x2 ≤ 6

x1 ≤ 6 ∧
x2 ≤ 3

x1 ≤ 6

∧
x2 ≤ 3

x1 ≤ 3

∧
x2 ≤ 3

x1 ≤ 6�
�� �
�� �
��
�
��

�
��
--

�
�

�
�

�
�

�3

-
HH

HHH
HHHj

PPPPPPPPq

��������:

PPPPPPPPq

��������:

f1

x1 > 3

u2

f1

x1 > 3
x2 ≤ 3

u1

x1 ≤ 3

x2 ≤ 3
u2

x1 ≤ 3
u1

x2 ≤ 3
u2

x1 := 0
x2 := 0

a

Figure 3: The product (A‖Σo
A)−f2 for the timed automaton of Figure 1.

The intuition is that every run of (A‖Σo
A)−f2 corresponds to two runs of A which yield the same

observation, that is, the same projection to observable events. We obtain this property by synchronizing the
two copies in all observable events. (Note that time advances synchronously in both copies.)

To prove this, we need some notation. Let ρ be a run of (A‖Σo
A)−f2 . ρ is called faulty if f1 appears in it.

We denote by ρ1 (resp., ρ2) the timed sequence obtained by taking the projection P (ρ,Σ2
u) (resp., P (ρ,Σ1

u))
and then renaming each event u1 ∈ Σ1

u (resp., u2 ∈ Σ2
u) back into u. That is, ρ1 and ρ2 are timed sequences

over Σ. For example, if ρ = a, 1, u2, 3, u1, then ρ1 = a, 4, u and ρ2 = a, 1, u, 3.

Lemma 7 ρ is a run of (A‖Σo
A)−f2 iff ρ1 and ρ2 are runs of A, ρ2 is not faulty and P (ρ1,Σu) = P (ρ2,Σu).

For such ρ, ρ1, ρ2, the following also hold:

1. ρ is faulty iff ρ1 is faulty.

2. time(ρ) = time(ρ1) = time(ρ2).

Proposition 8 (Checking diagnosability) A is diagnosable iff every faulty run of (A‖ΣoA)−f2 is zeno.

Proof Let ρ be a non-zeno faulty run of (A‖Σo
A)−f2 . Pick some ∆ ∈ N. Let ρ∆ be a ∆-faulty finite

prefix of ρ: since ρ is non-zeno and faulty, such a ρ∆ exists and it is clearly a run of (A‖Σo
A)−f2 . Thus,

by Lemma 7, ρ1
∆ and ρ2

∆ are both runs of A, ρ2
∆ is not faulty, and P (ρ1

∆,Σu) = P (ρ2
∆,Σu). Moreover, ρ1

∆

is ∆-faulty: this is because the time elapsing after f1 in ρ∆ is equal to the time elapsing after f in ρ1
∆. By

Lemma 4, A is not ∆-diagnosable. Since such runs can be found for any ∆, A is not diagnosable.
In the opposite direction, suppose A is not diagnosable. By Lemma 4, this means that for any ∆ ∈ N, there

exist two finite runs ρ1
∆ and ρ2

∆ of A, such that ρ1
∆ is ∆-faulty, ρ2

∆ is non-faulty and P (ρ1
∆,Σu) = P (ρ2

∆,Σu).
Therefore, by Lemma 7, for any ∆ ∈ N, there exists a run ρ∆ of (A‖Σo

A)−f2 such that ρ∆ is ∆-faulty. By
Lemma 2, A has a non-zeno faulty run.

From Proposition 8, it follows that checking diagnosability for timed automata is decidable. Indeed,
(A‖ΣoA)−f2 can be automatically generated from A using simple copying and renaming operations, and the
standard syntactic parallel composition of timed automata. Finding non-zeno runs of a timed automaton was
first shown to be decidable (PSPACE-complete) in [Alu91] using the region graph construction. Since the
size of (A‖Σo

A)−f2 is polynomial in the size of A, it follows that checking diagnosability is also in PSPACE.
Timed automata reachability can be reduced to diagnosability.2 which implies that checking diagnosability
is also PSPACE-hard.

2Given timed automaton A and target discrete state qf , add two transitions from qf , one labeled by a fault event f and
another by an unobservable event u. Call the new automaton A′. All other events of A′ (the original events of A) are observable.
Then, it can be seen that if qf is reachable in A then A′ is not diagnosable, whereas if qf is not reachable in A then A′ is
diagnosable (A′ never performs f).

6

Proposition 9 (Complexity) Diagnosability for timed-automata is PSPACE-complete.

In practice, non-zeno runs can be found more efficiently, using the algorithms proposed in [BTY97]. These
algorithms work on the simulation graph, which is a much coarser graph than the region graph, and can be
constructed on-the-fly using, for instance, a depth-first search. The above algorithms have been implemented
in the model-checking tool Kronos [Tri98, BDM+98].

Checking whether A is diagnosable is not enough. We would also like to find a ∆ such that A is ∆-
diagnosable. Even better, we would like to find the minimum such ∆, ∆min, which exists, as we know from
Lemma 6. We will find ∆min by trying out different values for ∆, using a binary search. This is based on
the fact that, for a given ∆, we can effectively check whether A is ∆-diagnosable, using the construction
explained below.

���� ���� ����g- - -
�
�A

AUf1

z := 0 z ≥ ∆

f1

u

Figure 4: Observer automaton Obs(∆).

Consider the observer automaton shown in Figure 4. The automaton is parameterized by the constant
∆ ∈ N, that is, for each given ∆, there is a different automaton, which will be denoted Obs(∆). The clock z
of Obs(∆) is a new clock, different from all clocks in A or (A‖Σo

A)−f2 . The event u is a new unobservable
event, different from all events in A or (A‖Σo

A)−f2 . The rightmost discrete state of Obs(∆) (drawn with two
concentric circles) is its accepting state. Let (A‖ΣoA)−f2‖f1Obs(∆) be the parallel product of (A‖ΣoA)−f2

and Obs(∆), where the two automata synchronize only on the transitions labeled f1. Then, we have the
following result.

Proposition 10 (Checking ∆-diagnosability) For any timed automaton A and any ∆ ∈ N , A is ∆-
diagnosable iff the accepting state of (A‖Σo

A)−f2‖f1Obs(∆) is unreachable.

If we know that a given automaton A is diagnosable, then we can use Proposition 10 in the following way.
We check repeatedly, for ∆ = 0, 1, 2, ..., whether the accepting state of (A‖Σo

A)−f2‖f1Obs(∆) is reachable.
Since A is diagnosable, reachability will eventually fail. This will happen for the first time when ∆ = ∆min.

The above method is simple, but not very efficient (especially when ∆min is large), since it requires ∆min+
1 reachability tests. An alternative way is to use the well-known binary search technique, which involves
O(log ∆min) reachability tests. The binary search starts by performing the reachability test repeatedly for
∆ = 0, 1, 2, 4, 8, ..., until the first time the test fails. Assume this happens for ∆ = 2k. Then, we know that
A is 2k-diagnosable but not 2k−1-diagnosable, so, ∆min must lie in the interval [2k−1 + 1, 2k]. We search
this interval by “splitting” it in two, [2k−1 + 1,M] and [M, 2k], checking reachability for the middle value
M , and repeating the procedure recursively, for [2k−1 + 1,M], if the test fails, and for [M, 2k], if it succeeds.

5 Building diagnosers

In this section we show how to effectively construct a diagnoser. Since the domain of a diagnoser D is infinite
(the set of all observations, FT SΣo

) we must find a way to finitely represent a diagnoser. The idea is to
represent D as an algorithm, which takes as input an observation π and produces the diagnosis decision
D(π). That is, although the domain of D is infinite, D itself is computable.

In the rest of the section, we fix a timed automaton A which is ∆-diagnosable. Moreover, we will assume
that the set of discrete states Q of A is partitioned in two disjoint sets: Q = Qf ∪ (Q−Qf), such that, for
every run ρ of A, discrete(ρ(s0)) ∈ Qf iff ρ is faulty. In other words, once a fault occurs, A moves to Qf

7

and never exits this set of discrete states, and while no fault occurs, A moves inside Q − Qf . It is easy to
transform any automaton to an automaton satisfying the above condition, possibly by having to duplicate
some discrete states and transitions (the transformed automaton will have at most twice as many discrete
states as the original automaton). An example of such a transformation is shown in Figure 5. The motivation
for the transformation is to reduce the fault detection problem into a state estimation problem: a fault has
been detected once the diagnoser is certain that the plant is in some state with discrete part in Qf .

m
mm m

m
m
m���1

-
PPPPq

-

-

-

-

�
�

�
�

f

a
c

b

d

d

Qf

m
mm m m���1 PPPq-

PPPPq ����1
-

f

a

b

c

d

afterbefore

Figure 5: Transforming an automaton.

5.1 Defining the diagnoser

Recall that RA is the set of reachable states of A. Also, for a given event a ∈ Σ, E(a) denotes the set of
transitions of A labeled by a. Given a set of events Σ′ ⊆ Σ, let Runs(A,Σ′) be the set of finite runs of A
containing only events in Σ′.

Let Ro : 2RA × Σo → 2RA be the function defined as follows:

Ro(S, a) = {e(s) | s ∈ S, e ∈ E(a)} (2)

That is, Ro(S, a) contains all states that can be reached from a state in S by taking a discrete transition
labeled a.

Let Ru : 2RA ×Q → 2RA be the function defined as follows:

Ru(S, δ) = {ρ(s) | s ∈ S, ρ ∈ Runs(A,Σu), time(ρ) = δ}. (3)

That is, Ru(S, δ) contains all states that can be reached from a state in S in exactly δ time units by following
only unobservable transitions.

Let s0 be the initial state of A and S0 = Ru({s0}, 0). That is, S0 contains all states that can be reached
from the initial state of A in zero time by following only unobservable transitions.

Now, let FD : 2RA ×FT SΣo
→ 2RA be the function defined recursively as follows:

FD(S, ε) = S, (4)
FD(S, aπ) = FD(Ro(S, a), π), (5)
FD(S, δπ) = FD(Ru(S, δ), π). (6)

The following lemma states that the function FD(S0, ·) : FT SΣo
→ 2RA acts as a state estimator for A.

Lemma 11 (1) Let ρ be a finite run of A and π = P (ρ,Σu). Then, if s ∈ ρ(s0) then s ∈ FD(S0, π).
(2) If s ∈ FD(S0, π) then there exists a finite run ρ of A such that s ∈ ρ(s0) and π = P (ρ,Σu).

Finally, let HD : 2RA → {0, 1} the function defined as follows:

HD(S) =
{

1, if ∀s ∈ S, discrete(s) ∈ Qf

0, otherwise. (7)

Then, the diagnoser D : FT SΣo → {0, 1} is defined as follows:

D(π) = HD(FD(S0, π)). (8)

8

Proposition 12 If A is ∆-diagnosable then D defined as above is a ∆-diagnoser for A.

Proof Let ρ be a finite run of A and let π = P (ρ,Σu). Also let s ∈ ρ(s0) (ρ(s0) is non-empty because ρ is
a run of A). By part (1) of Lemma 11, s ∈ FD(S0, π).

Assume first that ρ is non-faulty. From the assumption about the structure of A, it must be that
discrete(s) 6∈ Qf . Thus, by definition of HD, HD(FD(S0, π)) = D(π) = 0.

Now, assume that ρ is ∆-faulty. From the assumption about the structure of A, it must be that
discrete(s) ∈ Qf . Suppose that HD(FD(S0, π)) = 0. This means that there exists s′ ∈ FD(S0, π) such
that discrete(s′) 6∈ Qf . By part (2) of Lemma 11, s′ ∈ ρ′(s0), where ρ′ is a finite run of A such that
π = P (ρ′,Σu). From the assumption about the structure of A, ρ′ must be non-faulty. But this contradicts
the fact that A is ∆-diagnosable. Thus, HD(FD(S0, π)) = D(π) = 1.

5.2 Diagnoser implementation and run-time considerations

In this section, we show how a diagnoser defined as above can be effectively computed. In fact, we will use
technology not much different from that used in timed-automata model-checkers such as Kronos [BDM+98]
or Uppaal [Upp].

To be able to compute D(π), given a finite observation π, we need to be able to compute functions
HD, FD,Ro,Ru. These functions take as inputs discrete events in Σo, delays in Q, and subsets of states of
A in 2RA . Thus, we first need to be able to represent these inputs effectively. This can be easily done for
discrete events, since Σo is finite. It can also be done for delays, although their granularity will be restricted
by the numerical accuracy of our computer.

states can be represented using finitary data structures and how the decision and transition functions
can be effectively computed on these structures.

A set S ⊆ RA can sometimes be represented as a list [(q1, ζ1), ..., (qk, ζk)], where qi ∈ Q and ζi is a
polyhedron on X , the set of clocks of A. Note that not all subsets of RA can be represented this way. However,
it can be shown that we need not exit the class of subsets of RA that admit indeed such a representation. A
polyhedron ζi can be effectively represented using well-known data structures called difference bound matrices
(DBMs) [Dil89]. Set-theoretic operations on such polyhedra, such as union, intersection, test for emptiness,
and so on, can be conducted on the corresponding DBMs. The initial state s0 of A can be represented by
the list [(q0,

∧
x∈X x = 0)].

The decision function HD(S) can be easily computed by scanning the list [(q1, ζ1), ..., (qk, ζk)] representing
S: if the list contains some pair (qi, ζi) such that qi 6∈ Qf , then HD(S) = 0, otherwise HD(S) = 1.

The function Ro(S, a) can be computed as follows. If S is represented by [(q1, ζ1), ..., (qk, ζk)], start with
a new empty list for Ro(S, a). Then, for each (qi, ζi) and for each e ∈ E(a) such that source(e) = qi, if
ζi ∩ guard(e) 6= ∅, then (dest(e), ζ ′) is added to the new list, where ζ ′ is the polyhedron(

(∃x ∈ reset(e) . ζi) ∩ (
∧

x∈reset(e)

x = 0)
)
∩ I(dest(e)).

The function Ru(S, δ) can be computed using a reachability procedure, similar to standard procedures
using in the timed automata verification tools mentioned above. There are two differences between the
standard procedure and the one for computing Ru. First, for Ru, reachability is restricted only to unobservable
transitions of A (i.e., transitions labeled with events in Σu). Second, standard reachability computes the
set of states reachable at any time, whereas reachability for Ru must compute the set of states reachable in
exactly δ time units. This condition can be satisfied as follows.

First, compute the set of states reachable from S in at most δ time units. Call this set S≤δ. S≤δ can
be computed by adding to A a new clock z initialized to 0 and exploring during reachability only the states
satisfying z ≤ δ. Once S≤δ is computed, take the intersection S≤δ ∩ (z = δ): this set contains all states
reachable from S in exactly δ time units. Finally, the clock z is eliminated by existential quantification:

Ru(S, δ) = ∃z .
(
S≤δ ∩ (z = δ)

)
. (9)

9

initialize diagnoser state S = S0 ;
set a timer T = 0 and an alarm for T = TO ;
loop

if (HD(S) = 1) then
announce fault ;

end if ;
await event or alarm interrupt ;
if (event a interrupt) then

read the current value of T , call it δ ;
set S to Ro(Ru(S, δ), a) ;

else
set S to Ru(S, TO) ;

end if ;
set timer T = 0 and an alarm for T = TO ;

end loop.

Figure 6: Diagnoser implementation loop.

Figure 6 shows how the implementation of a diagnoser might look like in pseudo-code. Notice the use
of a timeout parameter TO. The timeout “wakes up” the diagnoser after TO time, assuming no observable
event has occurred meanwhile. Thus, the diagnoser can detect errors even if no observable event occurs for
a long time.

An implementation like the one shown in Figure 6 requires an execution platform which provides event
interrupts and one timer which can be set to 0, read, and send an alarm when it reaches a specified value.
Such an implementation will function correctly, provided the loop can be executed sufficiently fast. In
practice, this means that the maximum time to compute the loop should not be greater than the minimum
delay between two observable events (nor greater than TO, of course). This requirement is similar to the
synchrony hypothesis, which implies the correct execution of programs written in synchronous languages such
as Esterel [Est] or Lustre [HCRP91].

6 Related work and discussion

Fault diagnosis has been studied by different communities and in different contexts, e.g., see [RM92, SSL+95,
SM96, BLPZ99, BBBSV02], and citations therein. We restrict our discussion to work closely related to timed
systems.

[CP97, ZKW99] study fault-diagnosis on a discrete-time model, called timed discrete-event systems
(TDES). In TDES, time passing is modeled by a special (observable) event “tick” and the problem of
diagnosis can be easily reduced to the untimed case and solved using untimed techniques. Discretization of
time is also used in [SCM93], to reduce the problem into a finite-state diagnosis problem.

[HC94] use a timed automaton model without clocks, but where time intervals are associated with discrete
states. They propose template monitoring as a technique for distributed fault diagnosis, where templates
are sets of constraints on the occurrence times of events.

Fault diagnosis is closely related to observation and state estimation problems. Such problems are
considered in the context of hybrid automata in [BBBSV02, NB02]. These methods rely on an observable
part of (or function of) the plant’s continuous variables. Based on the observable continuous variables (and
possibly discrete observations as well), the dynamics of the unobservable variables must be determined. This
approach cannot be used to solve our problem, because we assume that no clock of the timed automaton is
directly observable. Instead, the diagnoser must infer the values of clocks based only on the events it observes.
This is a reasonable assumption, since the plant model is often an abstraction of a physical process, which
has no clocks anyway.

10

Fault-diagnosis is also related to the controller-synthesis problem, introduced for discrete-event systems
in [RW87]. The problem has been studied for timed and hybrid models as well (e.g., see [WTH91, BW94,
CG96, AMPS98, RO96, WT97, TLS98]). Some of these works are restricted to a discrete-time framework, for
example [BW94, RO96]. The rest make a major assumption, namely, that the state of the plant (including the
values of all clocks) is fully observable. This is unrealistic, except for the case where the plant is deterministic
and all its events are observable.3

[WT97] discusses how partial observability of plant states can be taken into account, by assuming the
existence of a function vis(·) from the state space of the plant to a domain of possible observations: when
the plant is at state s, the controller observes vis(s). Then, [WT97] shows how to synthesize memoryless
controllers in the above framework. The controllers are memoryless in the sense that their decision depends
only on the current observation and not past ones. This is why the algorithm is incomplete: it might fail to
synthesize a controller, even though one exists. Another drawback is that the function vis(·) is not always
easy to come up with, for example, when starting with an observation framework based on events, as we do
here.

Acknowledgements. I would like to thank Eugene Asarin, Oded Maler and Peter Niebert.

References

[AD94] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science, 126:183–235,
1994.

[Alu91] R. Alur. Techniques for Automatic Verification of Real-Time Systems. PhD thesis, Department
of Computer Science, Stanford University, 1991.

[AMPS98] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timed automata. In
Proc. IFAC Symposium on System Structure and Control. Elsevier, 1998.

[BBBSV02] A. Balluchi, L. Benvenuti, M. Di Benedetto, and A. Sangiovanni-Vincentelli. Design of observers
for hybrid systems. In Hybrid Systems: Computation and Control, 2002.

[BDM+98] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kronos: a model-checking
tool for real-time systems. In 10th Conference on Computer-Aided Verification (CAV’98), vol-
ume 1427 of LNCS. Springer, 1998.

[BLPZ99] P. Baroni, G. Lamperti, P. Pogliano, and M. Zanella. Diagnosis of large active systems. Artificial
Intelligence, 110, 1999.

[BTY97] A. Bouajjani, S. Tripakis, and S. Yovine. On-the-fly symbolic model checking for real-time sys-
tems. In 18th IEEE Real-Time Systems Symposium (RTSS’97), pages 25–34. IEEE, December
1997.

[BW94] B.A. Brandin and W. Wonham. Supervisory control of timed discrete-event systems. IEEE
Transactions on Automatic Control, 39(2), 1994.

[CG96] D.D. Cofer and V.K. Garg. On controlling timed discrete event systems. In Hybrid Systems III:
Verification and Control. LNCS 1066, Springer-Verlag, 1996.

[CP97] Yi-Liang Chen and Gregory Provan. Modeling and diagnosis of timed discrete event systems –
a factory automation example. In ACC, 1997.

3In this case, the controller can replicate the clocks of the plant and reset them whenever it sees the corresponding observable
event.

11

[Dil89] D. Dill. Timing assumptions and verification of finite-state concurrent systems. In J. Sifakis,
editor, Automatic Verification Methods for Finite State Systems, volume 407 of LNCS, pages
197–212. Springer–Verlag, 1989.

[Est] Esterel web-site: http://www-sop.inria.fr/esterel.org/.

[HC94] L.E. Holloway and S. Chand. Time templates for discrete event fault monitoring in manufac-
turing systems. In Proc. of the 1994 American Control Conference, 1994.

[HCRP91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow programming
language Lustre. Proceedings of the IEEE, 79(9), September 1991.

[HNSY94] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for real-time
systems. Information and Computation, 111(2):193–244, 1994.

[NB02] S. Narasimhan and G. Biswas. An approach to model-based diagnosis of hybrid systems. In
Hybrid Systems: Computation and Control, 2002.

[RM92] Amit Kumar Ray and R. B. Misra. Real-time fault diagnosis - using occupancy grids and
neural network techniques. In Industrial and Engineering Applications of Artificial Intelligence
and Expert Systems, IEA/AIE. LNCS 604, Springer-Verlag, 1992.

[RO96] J. Raisch and S. O’Young. A DES approach to control of hybrid dynamical systems. In Hybrid
Systems III: Verification and Control. LNCS 1066, Springer-Verlag, 1996.

[RW87] P. Ramadge and W. Wonham. Supervisory control of a class of discrete event processes. SIAM
J. Control Optim., 25(1), January 1987.

[SCM93] J. Sztipanovits, R. Carnes, and A. Misra. Finite state temporal automata modeling for fault
diagnosis. In 9th AIAA Conference on Computing in Aerospace, 1993.

[SM96] J. Sztipanovits and A. Misra. Diagnosis of discrete event systems using ordered binary decision
diagrams. In 7th Intl. Workshop on Principles of Diagnosis, 1996.

[SSL+95] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis. Diagnosability
of discrete event systems. IEEE Transactions on Automatic Control, 40(9), September 1995.

[SSL+96] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis. Failure diagnosis
using discrete event models. IEEE Transactions on Control Systems Technology, 4(2), March
1996.

[TLS98] C. Tomlin, J. Lygeros, and S. Sastry. Synthesizing controllers for nonlinear hybrid systems. In
Hybrid Systems: Computation and Control. LNCS 1386, Springer-Verlag, 1998.

[Tri98] S. Tripakis. The formal analysis of timed systems in practice. PhD thesis, Université Joseph
Fourrier de Grenoble, 1998.

[Tri02] S. Tripakis. Fault diagnosis for timed automata. In Formal Techniques in Real Time and Fault
Tolerant Systems (FTRTFT’02), volume 2469 of LNCS. Springer, 2002.

[Tsi89] J.N. Tsitsiklis. On the control of discrete event dynamical systems. Mathematics of Control,
Signals and Systems, 2(2), 1989.

[TY01] S. Tripakis and S. Yovine. Analysis of timed systems using time-abstracting bisimulations.
Formal Methods in System Design, 18(1):25–68, January 2001.

[Upp] Uppaal web-site: www.docs.uu.se/docs/rtmv/uppaal/.

12

[WT97] H. Wong-Toi. The synthesis of controllers for linear hybrid automata. In Proc. of IEEE Con-
ference on Decision and Control, 1997.

[WTH91] H. Wong-Toi and G. Hoffmann. The control of dense real-time discrete event systems. In Proc.
of the 30th IEEE Conference on Decision and Control, 1991.

[ZKW99] S. Hashtrudi Zad, R. Kwong, and W. Wonham. Fault diagnosis in finite-state automata and
timed discrete-event systems. In 38th IEEE Conference on Decision and Control, 1999.

13

