
T C C


L A

BRICS, Department of Computer Science
Aalborg University, 9220 Aalborg Ø, Denmark

luca@cs.auc.dk, http://www.cs.auc.dk/~luca/BEATCS

It has become very common for conferences in theoretical computer science
to have a large number of satellite workshops, and CONCUR is no exception.
This trend has both negative and positive implications. On the positive side,
the number of participants to these events has grown considerably, and one
has a chance to meet many colleagues, and to listen to a varied and stimulat-
ing programme of talks. On the negative side, there is often so much going on
in parallel that one ends up missing some very interesting talks — including
invited addresses.

One of the talks I missed during CONCUR 2003 in Marseille was Eugene
Asarin’s invited address at the First International Workshop on Formal Mod-
eling and Analysis of Timed Systems (FORMATS 2003). I am therefore very
happy to make up for having missed that talk by devoting this issue of the Con-
currency Column to a piece by Eugene Asarin that is based upon that invited
address of his. This contribution reports on the author’s stimulating opinions
on the status of development of the theory of timed regular languages vis-a-vis
that of the time honoured theory of regular languages — whose classic status
and robustness are witnessed by the plethora of alternative characterizations
of the notion of “regular language”. There is much food for thought in this col-
umn, and I trust that the list of open problems it contains will stimulate some
research on this fascinating topic.

I take this opportunity for reminding the readers that CONCUR 2004, the
15th International Conference on Concurrency Theory, will be held in London
in the period 31 August–3 September 2004. The event has a wealth of satellite
workshops, and an interesting list of invited speakers. I have no doubt that the
list of contributed talks will be one of the best yet. I hope that many of you will
attend that event. See you in London!

http://www.cs.auc.dk/
http://www.auc.dk/
luca@cs.auc.dk
http://www.cs.auc.dk/~luca/BEATCS
http://concur03.univ-mrs.fr/
http://www.liafa.jussieu.fr/~asarin/
http://www.liafa.jussieu.fr/~asarin/
http://www.cmi.univ-mrs.fr/~niebert/FORMATS/
http://www.cmi.univ-mrs.fr/~niebert/FORMATS/
http://www.doc.ic.ac.uk/concur2004/

C  T L:
 A T  B T∗

Eugene Asarin
LIAFA – Université Paris 7, case 7014, 2 pl. Jussieu, 75251, Paris, France

asarin@liafa.jussieu.fr; www.liafa.jussieu.fr/~asarin

Abstract

Current state and perspectives of development of the theory of timed
languages are analyzed. A large list of open problems is suggested.

1 Why study timed systems?

In most cases computer science deals with sequences of events or actions (we will
call thembehaviors). Powerful formalisms have been developed to express sets or
trees of such sequences (various automata, grammars, expressions, process alge-
bras, Petri nets, logics). Some of them are more adapted for a human user, others
are excellent for machine treatment1; all of them are interesting research objects
and are tightly related. Formal languages and related techniques find numerous
applications in semantics, specification, verification – in all the situations where
we are interested in exploring sets ofbehaviors. Another important class of ap-
plications (and source of research problems) concernstexts– both in artificial and
natural languages. A text is rather a sequence of symbols and not a sequence of
events, but I don’t see a mathematical difference between the two of them.

However, one aspect is forgotten (or abstracted) in all of the abovementioned
approaches, namelytime. But in reality even for some texts timing is important
(a text transmitted via a communication channel can be considered as a timed se-
quence of characters, a spoken text as a timed sequence of phonemes, and a piece
of music can be also seen as a sequence of notes each of which has a duration and
starts at some moment of time). As for behaviors, in our physical world, they al-
ways happen in time. Sometimes the timing does not matter and it is often a good
idea to prove correctness of an algorithm without thinking how much time each

∗Partially based on the invited talk at FORMATS’03 workshop. Supported by the European
community project IST-2001-35304 A

1I first learned this idea from a talk by Amir Pnueli.

asarin@liafa.jussieu.fr
www.liafa.jussieu.fr/~asarin
http://ametist.cs.utwente.nl

operation takes; or to prove that each request is eventually granted, regardless of
when the granting actually takes place. However, there are many other situations
when one has to make sure that a reactive program always finishes processing a
task before the next one arrives, and that each request is granted within 10ms.
Also, many programs or protocols work because they use timing (e.g. using time-
outs) or because their inputs are subject to some timing constraints.

These practical issues, and especially a need for tools for specification and
verification of protocols relying on timing led in the early 90s to the creation of
a timed systems theory, which takes into account not only the order of events but
also their position in time. The creation of this domain (at least if we consider
only automata-based approach) was related with the invention of timed automata
by Alur and Dill together with basic decidability results for language emptiness
and model-checking problems, and with implementation of these results in veri-
fication tools such as K and U. Nowadays timed systems theory and
applications are a well-established area with several thesis defenses every year, a
bunch of papers in each CAV, ICALP and CONCUR conference, and a couple of
specialized workshops.

So we arrive at our first result.

Result 1. Sequences of events “embedded” in the time are a ubiquitous reality. It
is practically useful and theoretically challenging to study them using approaches
of computer science2. This is done by the timed systems community.

In the sequel I will try to analyze what has been done in the domain (without
being exhaustive) and, more importantly, what hasnot been done and whatshould
be done.

2 Historical strength and historical weakness

Let me start with a comparison. The classical theory of finite automata and regu-
lar languages (together with technologies based upon this theory) can be seen as
a chef d’œuvre of computer science. This beautiful castle (see Figure 1) is based
on a solid basement of finite automata theory. A deeper understanding is obtained
thanks to the algebraic theory of automata based on monoids. The next floor of
the castle is a well-established theory of regular languages (of finite words) and
their alternative logical characterizations (Monadic second order logic etc.). A
theory of languages of infinite words relies on the theory of finitary languages
and allows to express properties of infinite behaviors. For all these formalisms

2The author is aware of one well-established theory describing such sequences in a proba-
bilistic setting: the theory of continuous time Markov chains (and its generalizations to point
processes).

Finite Automata

Automata

Finite languages
Logics

ω-languages

Monoids

Algorithms,
Complexity

Model-checkingBounded
model-checking

Lex

Timed Automata

Timed automata

Algorithms

Undecidability

KRONOS
UPPAAL

Model-checking

ω-languages

Figure 1: Two theories

various algorithmic problems have been studied, complexity bounds and effective
algorithms are known and implemented in tools. All this impressive collection
of theories finds numerous applications, some of them are related to analysis of
texts (), others to algorithmic methods of verification (and testing). This cas-
tle was built without plan but certainly bottom-up, and each subsequent floor was
constructed after the previous one had been more or less achieved. Also, its con-
struction certainly moved from theory to practice, from basic theory giving a deep
understanding of things to algorithms, from algorithms to concepts of applica-
tions, from concepts to more and more efficient tools.

Look now at the next picture in Figure 1 representing the actual (or maybe the
recent) state of the timed theory. The aim of constructing this strange skyscraper
was certainly to build verification tools for timed systems (such as the two con-
structions on its roof). All the rest was subordinated to this task, and only the
necessary parts – a solid and nice basement of timed automata, some theory of
infinite words, useful algorithms, undecidability results (to avoid useless efforts)
– have been constructed. Such an approach allowed the research community to
construct the building (at least its roof) incredibly fast. However, if we want to
have a full understanding of timed languages and systems, we should either add
missing parts to the skyscraper (both to fill the empty space and to build a new
class of applications), or to rebuild it completely.

We can hence formulate the following two challenges. The first one is closely
related to and partly inspired by B. Trakhtenbrot’s ideas on pushing the “trinity”
Logic-Nets-Automata from finite-state systems to timed and hybrid ones [25].

Challenge 1.To complete or to rebuild a theory of timed systems and timed lan-
guages.

The second challenge concerns the forgotten class of applications

Challenge 2.Apply the theory to problems of timed text analysis, e.g. speech or
music.

In the sequel I will discuss some approaches, results and perspectives related
only to the first challenge.

3 Re-considering foundations

Let me focus first on the foundations and address the notion of a timed regular
language (and of a timed automaton). I will adopt the algebraic approach, and
will try to follow the classical path, that is first define “timed” monoids and next
consider recognizable and rational subsets of these monoids. The result will be
rather instructive.

The reader is referred to [23] for another original approach to building a theory
of timed languages and automata from first principles in the framework of [25].

3.1 Timed Monoids

We have introduced timed monoids in [5]. The definitions are quite natural, but
differently to the discrete case (where variants of construction, like Moore or
Mealy automata, lead to the same free monoids) there are several inequivalent
opportunities.

Time-event sequences. Let Σ be an alphabet of actions. Atime-event sequence
(or TES) overΣ has a form

t0a1t1a2t2 . . . antn

where theti ∈ R+ represent time lapses between events and theai ∈ Σ represent
events. The concatenation of such sequences can be defined in a natural way, for
example:

(1.5a2b4.2) · (3b3.141b0.8) = 1.5a2b7.2b3.141b0.8

TES with concatenation form a monoidTΣ (the subscript will be omitted in most
cases), which can be seen as a direct sum (co-product) of the free monoidΣ∗ and
the additive monoidR+. This monoid truthfully represents sequences of events
“immersed” in the time axes.

Signals. Another kind of timed monoid is needed to describe a system switching
from time to time among several discrete states. A typical example is a logical gate
with voltage switching from logical 0 to logical 1. AsignaloverΣ has the form:

at1
1 at2

2 . . . a
tn
n

whereai ∈ Σ represent signal values andti ∈ R+ represent their durations. Notice,
that if the same value is taken during two adjacent time intervals, than these in-
tervals can be merged, e.g.a5a3.2 = a8.2. Concatenation of signals is done in the
natural way, e.g.

(a2b3.1) · (b4a1.8) = a2b7.1a1.8

Algebraically this monoidSΣ is the co-product of|Σ| copies ofR+ (each copy
corresponds to an element ofΣ).

Notice, that similarly one can build a monoid of “sigacts”3 allowing signals
mixed with discrete actions.

MonoidsS andT are probably not isomorphic, but some encodings of signals
by TES are known (e.g. representation of a boolean signal by a sequence of raising
and falling edges).

Open question 1.Explore algebraic relations (natural morphisms etc.) between
S andT and maybe the monoid of “sigacts”.

This exercise should neither be very hard nor very interesting, but it should be
done for completeness. It would be a typical chapter 2 of a Ph.D. thesis.

A more general, more important, and less concrete question is

Open question 2.Explore algebraic properties of timed monoids.

The bad news is that timed monoids do not have most of the good properties
described e.g. in [17]. In spite of that, it is still possible to define rational and
recognizable subsets (and to understand the meaning of these classes). Let me
proceed with this exercise.

Applying classical recipes. Let us focus on the TES monoidT .
We recall that a subset (language)L of a monoidM is called recognizable

if the set of distinct left quotientsx\L is finite (such a quotient is, by definition,
{y | xy ∈ L}).

Consider for example the singleton language{5} in the monoidR+ (or, if the
reader prefers, in the monoidT). For anyx ∈ [0; 5] the quotient is the singleton
setx\{5} = {5− x}, all these singleton sets are different, hence even such a simple
language is not recognizable.

3Term of C̆at̆alin Dima.

The following result [14] characterizes recognizable languages in the monoids
R+ andT .

Result 2. 1. There are four recognizable subsets inR+, namely∅, {0}, (0;∞)
and the wholeR+.

2. Recognizable subsets inT are those that can be represented by regular
expressions with the following atoms: a for all a∈ Σ, 0, and(0;∞).

3. Recognizable subsets inT are those that can be recognized by “qualita-
tively timed” automata described below.

The qualitatively timed automata cannot measure time, but they have three
categories of states:

transient states the automaton can spend 0 time there, that is after entering a
transient state it should leave it immediately;

non-transient states each time the automaton enters such a state, it should stay
and may stay any positive amount of time;

liberal states no restrictions apply.

In [23] one can find a logical characterization of similar classes of languages.
The good news is that we have a complete and simple description of recog-

nizable subsets ofT . The very bad news is that they are only qualitatively timed,
which is certainly insufficient for most practical aims.

Another alternative could be to definerational subsets ofT . One possible
definition could be as follows: a subset is rational if it can be described by a regular
expression with singletons (elements ofT) as atoms. The big disadvantage of this
definition is that such languages are countable, hence nothing like “wait between
1 and 5 minutes and then makea" can be expressed (this description corresponds
to an uncountable language{ta | t ∈ [1; 5]}). On the other hand a singleton can
include uncomputable lapses of time, so there is no hope to insure decidability of
basic questions.

For this reason let us consider another Kleene algebra, namely all the sets that
can be described by rational expressions using elements ofΣ and integer-bounded
intervals of reals as atoms. A typical expression would be

(a[1; 2)b)∗ + 3∗a

This class of languages already allows for some quantitative timing (specifica-
tion of delays between consecutive events). In [15] a class of automata equivalent
to this class of expression was described. They are mainly finite automata, each

state of which is labeled by an interval bounding the staying time in this state.
As shown in [15], this class of languages has nice and simple theoretical proper-
ties, but restricting to possibility to specify delay only between consecutive events
limits drastically their expressive power. In particular, no parallel composition is
possible.

Let me summarize:

Result 3. It is possible and not difficult to define natural classes of languages
(recognizable and rational) in timed monoids. It is possible to find simple charac-
terizations of these languages. Unfortunately, these classes happen to be rather
restrictive and insufficient to express non-trivial timing properties.

Natural constructions lead to unsatisfactory language classes (from the practi-
cal standpoint). Maybe this is a reason why classes of languages defined ad hoc
ways are so popular. We recall that the most known class of timed languages cor-
responds to those accepted by timed automata [2] that are automata augmented
with several special continuous variables (clocks) used to measure time intervals
between (not necessarily adjacent) events. Several subclasses of such automata
have already been considered, in particular deterministic timed automata, event-
clock and event-recording automata [3], hierarchical event-clock automata [19].
Automata of each of these classes have their own theoretical and practical advan-
tages and disadvantages. However I believe there is no strong evidence that one
of these classes isthe natural class of timed “regular” languages. It would be
extremely interesting to give an answer to one of the following open questions.

Open question 3. Give a simple and natural algebraic characterization of a
known class of timed languages – confirming that it is the correct class of lan-
guages.

For me the most probable candidates to such a “proof of excellence” are lan-
guages recognized by timed automata (because of the elegance of the automata)
or by event-recording automata (because of their logical properties and in spite of
the heaviness of their definition).

Open question 4.Define a new natural class of timed languages with good theo-
retical properties and rich enough to describe non-trivial timed behaviors.

Adding topology and handling imprecision. The topological approach can
help solve the last two open problems, it has also a more practical motivation.

But let me start the discussion with the following reasoning. When defining
timed monoids we took into account (inΣ∗) the sequential discrete character of
events. As for time, we represented its additive, “shiftable” nature in the additive

monoidR+. What is missing from our models is the continuous nature of time.
There is no possibility to say that TESa0.99b anda1b are close to each other.

Moreover, in most approaches the continuous nature of time creates strange
artifacts. For example many mathematical properties of timed automata, related,
for example, to discretization, drastically depend on the type of inequalities used
in the transition guards of the automata. Notice that practically there is not much
difference between a lapse of time in the interval (5,7) or in [5,7), while theoreti-
cally automata with these guards behave very differently.

I am aware of several attempts to deal with this problem. A. Puri [22] consid-
ered an alternative semantics of timed automata allowing infinitesimal deviations
from the precise behavior. This approach leading to a larger language is justified
when the automaton models the uncontrolled environment, and hence we should
admit (non-small) consequences of small deviations from the ideal behavior. In
another cycle of papers T. Henzinger et al. (see [18, 20]) are considering an-
other semantics of timed automata, leading to a smaller language via taking into
account only timed words accepted by the automaton together with their neigh-
borhood. This is reasonable when we want to implement a controller. Recently
this implementability issue has been explored with respect to discretely clocked
controllers [13].

In spite of all these results, the general understanding of topological aspects is
quite incomplete. According to the bottom up approach suggested in this article,
I propose to explore the following open questions.

Open question 5.Define natural topologies on the timed monoids.

An interesting approach to this problem (in a more general setting) based on
Skorohod topology has been proposed in [12]. I suppose that the best solution to
this problem would not be a unique topology, but a class of these and a methodol-
ogy to choose a suitable one. In particular, the topology can depend on commu-
tation (independence) between some events (like in Mazurkiewicz traces). This
is important because ifa and b commute, then the TES 1a0.01b1 is close to
1b0.01a1. If a andb are dependent, then it is very important which of them
happens before the other, and hence the same two TES differ a lot.

I believe that the previous open problem by itself is not so hard, and in order
not to be sterile it should find one or two of the following applications.

Open question 6.Define classes of “topological regular languages” over mono-
ids with topology. Characterize these classes for timed monoids.

If by some miracle these classes are nice enough and rich enough, this would
give a solution to the Open problem 4. Otherwise, there is still some hope to solve
the next problem

Open question 7.Use topologies on timed monoids to clarify abovementionned
aspects of languages of timed automata (tolerance to noise, implementability etc.)

The topological issues are highly relevant not only for timed automata, but
also for hybrid automata, in a smaller measure to pushdown automata, and in
general to automata augmented by (infinite-state) variables. An interesting idea
suggested in [10] consists in developing a general theory of automata with data.
This important problem goes beyond the subject of my article.

4 Lifting the classical theory

In the previous part of this paper we discussed how to improve on existing, or
find new foundations to the theory of timed languages. In this part we discuss
some problems related to the properties of these languages. In order to proceed
we need to choose a class of such languages, and in a slight contradiction to what
preceded, I will speak about the languages defined by Alur-Dill timed automata,
which admit a nice definition, have nice properties, a rather elaborated algorith-
mics, and numerous applications. And even if, as explained above, I am not fully
satisfied with this definition, it is close to the perfect solution, and it is interesting
to work in this paradigm until a better one is found. In the rest of the paper I will
call such languages timed regular languages.

I will adopt the same approach as above: to try to “lift” the classical theory of
regular languages to timed regular ones.

4.1 What is known

My picture of an empty skyscraper is of course a caricature. Many things are
known about timed languages since Alur’s thesis [1] and other works of the same
period. Let me recall some of the basic facts (an accessible reference is [2]).

• Timed automata and timed regular languages are rich enough to represent
faithfully many real-life examples (real-time programs, scheduling prob-
lems, circuits . . .)

• Membership and Empty Language problems are decidable (using a finite
bisimulation).

• Inclusion and Universal Language problems are undecidable.

• Timed regular languages closed under∪,∩ and morphism (renaming)

• Timed regular languages are not closed under complementation.

• The determinization of timed automata is in general impossible.

• Model-checking algorithms for timed temporal logics, such as TCTL, exist
and are implemented in verification tools like K and U

4.2 Some well-posed questions

Most of the classic problems that admit a simple “yes or no” answer have already
been solved (as mentioned above). I am aware of several such questions that are
still open:

Shuffle A shuffle (xtt y) of two elementsx andy of a monoidM consists of all
the productsx1y1 . . . xnyn, such thatx1 . . . xn = x andy1 . . . yn = y. This
operation can be naturally lifted to subsets ofM. A shuffle of two regular
languages (inΣ∗) is also regular.

Open question 8 (Shuffle). Is the shuffle of timed regular languages always
regular?

A positive answer to this problem, interesting in itself, would also simplify
known algebraic characterizations of the class of timed regular languages

The straightforward approach of switching between two timed automata
does not work because the flow of time in the inactive automaton should be
stopped, which is impossible since the clocks in Alur-Dill model never stop.
However, in some cases the shuffle is regular : 5tt 3 is merely 8, and

5att 3b = {satb| 5 ≤ s∧ s+ t = 8} ∪ {sbta| 3 ≤ s∧ s+ t = 8},

which is timed regular.

Decidability problems Several decidability problems have been stated and par-
tially solved in [27]. A typical one is

Open question 9 (Decidability à la [27]). Is it possible, given a timed
automatonA, to decide whether it is equivalent to a deterministic one?

This problem is trivially decidable in the non-timed case: every automaton
is equivalent to a deterministic one. In the timed case S. Tripakis has proved
in [27] that there is no algorithm that for any automatondecideswhether it is
determinizable,and if this is the casecomputesan equivalent deterministic
automaton. The decidability of the determinizability question alone is still
open.

4.3 Some ill-posed problems

In this section we consider more interesting and stimulating problems that consist
in lifting to timed languages important results of the theory of finite automata and
regular languages that cannot be lifted directly.

Does Kleene’s theorem hold?As mentioned above, the class of rational timed
languages (=described by rational expressions) is much smaller then the
class of timed regular languages (=accepted by timed automata). Hence, no
direct analog of Kleene’s theorem can hold. Nonetheless, I was involved in
two and am aware of four or five versions of Kleene’s theorem for timed
languages [4, 5, 8, 9, 6].

In order to explain how it can be possible I will recall the main result of [5].
A formalism introduced in that paper is similar to rational expressions. It
contains atoms for all actionsa ∈ Σ, a special symbolτ for an arbitrary time
lapse, all the usual operations of Kleene algebra (+, ·,∗), the time restriction
operator (〈L〉I) that selects only those elements of a languageL that have a
duration in the integer-bounded intervalI . For example, the expression〈

(〈aτ〉[1,2])
∗a
〉

[2000,2005]

denotes the timed language consisting of all the sequences ofa spaced by 1
to 2 time units and with a total duration between 2000 and 2005. In order
to match the expressive power of timed automata two more operations are
needed:∧ for language intersection anda→ b for renaming actions.

The analog of Kleene’s theorem stated in [4, 5] is the following:

Result 4. The formalism described above has the same expressive power as
timed automata.

The reader is referred to articles [5, 8, 9, 6] for proof details, alternative
formalisms and their comparison.

Just in case, I formulate

Open question 10 (Kleene’s theorem).Find better regular expressions-
like formalisms equivalent to timed automata.

Are timed regular languages captured by a logic?A well-known result of Bü-
chi-Elgot-Trakhtenbrot (see e.g. [11]) states that a language is regular if
and only if it can be defined by a formula of the monadic second order
logic. No such characterization of timed regular languages is possible just

because these languages are not closed under complementation. Nonethe-
less, several nice results on equivalence of certain logics and certain classes
of timed automata have been obtained. Ten years ago Wilke [29] introduced
a logicLd and described its fragment equivalent to timed automata.

A more recent result [19] establishes an equivalence between a so-called
State-clock Logic and hierarchical event-clock automata (their languages
are closed under complementation). Along the same lines [16] gives a log-
ical characterization of event-clock automata.

Open question 11 (Logical characterization).Find better (simpler) logi-
cal formalisms equivalent to timed automata.

Does Myhill-Nerode theorem hold? How to minimize timed automata? As
explained above (Result 2), recognizable timed languages are only lan-
guages with qualitative timing. This class is much smaller than the class
of timed regular languages, hence the direct analog of Myhill-Nerode theo-
rem fails.

In a recent work [21] Myhill-Nerode theorem is reformulated in terms of
rewriting, and in this form it is ported to languages of deterministic timed
automata. The approach suggested in that paper can potentially clarify foun-
dational questions of our Section 3. Probably this work gives a partial an-
swer to:

Open question 12 (Myhill-Nerode theorem).Obtain a characterization
of timed regular languages (or deterministic timed regular languages) in
terms of existence of a “finite representation” of a congruence relation.

In the untimed case Myhill-Nerode theorem has its practical aspect, namely
the minimization procedure. Much interesting work has been done on sim-
plification of timed automata, but little of it can be seen as minimization,
that is construction of a canonical small automaton related to a given (de-
terministic) timed automaton. This is done for a specially designed class of
automata in [24]. In [28] an interesting minimal object is constructed for a
timed automaton by taking a time-abstracting bisimulation.

I formulate the minimization problem in a very generic way:

Open question 13 (Minimization). Define a canonical object representing
a (deterministic) timed automaton.

A related question is how to determinize timed automata? The simple an-
swer is well-known: In general determinization is impossible. However the

main method used in [26] to build observers consists in constructing for a
given timed automaton an equivalent deterministic timed transition system.
I fail to formulate a general open problem here, but I think that this kind of
construction can be important in the context of canonical representation of
timed automata.

Pumping Lemma& Co I refer the reader to [7] where it is stated that direct
analogs to the Pumping Lemma fail for timed regular languages, and some
alternative versions of this lemma holding in the timed case are proved.
Again, the open problem is quite generic:

Open question 14.Develop simple techniques allowing to prove that a
given timed languageis not regular.

5 Some final remarks

The standpoint chosen in this paper, namely a bottom-up (from foundation to
theory, from theory to applications) language-theoretic approach inspired by the
theory of regular languages, permitted to identify a series of important questions. I
believe that getting answers to them would substantially improve our understand-
ing of the area, and would be useful for applications.

Nonetheless, other approaches to this research area are also possible, in par-
ticular the top-down application-oriented one, and the view of timed systems as
a source of amazing mathematical puzzles. These popular approaches are com-
pletely justified (and sometimes used by my own self) and lead to other open
problems not addressed here.

And the last remark. Here I have only considered timed languages and au-
tomata, and never other timed models (such as timed Petri nets or timed process
algebras). I believe that some of the problems presented are also valid for such
models, but it is beyond the scope of this work.

6 Acknowledgements

Many people contributed to this work. It would never appear without long discus-
sions and a ten years long collaboration with Oded Maler. I am also thankful to
him for valuable comments on the manuscript. I was certainly influenced and en-
lightened by Paul Caspi, Stavros Tripakis, Sergio Yovine, Joseph Sifakis, Căt̆alin
Dima and Peter Niebert. During the preparation of the FORMATS’2003 invited
talk Rajeev Alur, Paul Caspi, Thomas A. Henzinger, Oded Maler, Joël Ouaknine,
P.S. Thiagarajan, and Stavros Tripakis answered my call for open problems, and

I have used their ideas sometimes directly, sometimes as a source of inspiration.
Last but not least, a kind invitation to this Concurrency Column and an efficient
and patient editor’s work of Luca Aceto are thankfully acknowledged.

References

[1] R. Alur. Techniques for Automatic Verification of Real-Time Systems. PhD thesis,
Stanford University, 1991.

[2] R. Alur and D. Dill. A theory of timed automata.Theoretical Computer Science,
126:183–235, 1994.

[3] R. Alur, L. Fix, and T. A. Henzinger. Event-clock automata: a determinizable class
of timed automata.Theoretical Computer Science, 211:253–273, 1999.

[4] E. Asarin, P. Caspi, and O. Maler. A Kleene theorem for timed automata. InPro-
ceedings of LICS’97, pages 160–171, 1997.

[5] E. Asarin, P. Caspi, and O. Maler. Timed regular expressions.Journal of the ACM,
49(2):172–206, 2002.

[6] E. Asarin and C. Dima. Balanced timed regular expressions. InProceedings of
MTCS’2002, volume 68 ofENTCS, 2002. issue 5.

[7] D. Beauquier. Pumping lemmas for timed automata. InProceedings of FoSSaCS’98,
volume 1378 ofLNCS, pages 81–94, 1998.

[8] P. Bouyer and A. Petit. Decomposition and composition of timed automata. In
Proceedings of ICALP’99, volume 1644 ofLNCS, pages 210–219, 1999.

[9] P. Bouyer and A. Petit. A Kleene/Büchi-like theorem for clock languages.Journal
of Automata, Languages and Combinatorics, 7(2):167–186, 2002.

[10] P. Bouyer, A. Petit, and D. Thérien. An algebraic approach to data languages and
timed languages.Information and Computation, 182(2):137–162, 2003.

[11] J. Büchi. Weak second order logic and finite automata.Z. Math. Logik, Grundlag.
Math., 5:66–62, 1960.

[12] P. Caspi and A. Benveniste. Toward an approximation theory for computerised con-
trol. In Proceedings of EMSOFT’2002, volume 2491 ofLNCS, pages 294–304,
2002.

[13] F. Cassez, T. A. Henzinger, and J.-F. Raskin. A comparison of control problems for
timed and hybrid systems. InProceedings of HSCC’2002, volume 2289 ofLNCS,
pages 134–148, 2002.

[14] C. Dima.An algebraic theory of real-time formal languages. PhD thesis, Université
Joseph Fourier, Grenoble, France, 2001.

[15] C. Dima. Real-time automata.Journal of Automata, Languages and Combinatorics,
6:3–23, 2001.

[16] D. D’Souza. A logical characterisation of event clock automata.Intl. Journal of
Foundations of Computer Science, 14:625–639, 2003.

[17] S. Eilenberg. Automata, Languages, and Machines, volume A. Academic Press,
1974.

[18] V. Gupta, T. A. Henzinger, and R. Jagadeesan. Robust timed automata. InProceed-
ings of HART Workshop, volume 1201 ofLNCS, pages 331–345, 1997.

[19] T. Henzinger, J.-F. Raskin, and P.-Y. Schobbens. The regular real-time languages.
In Proceedings of ICALP’98, volume 1443 ofLNCS, pages 580–591, 1998.

[20] T. A. Henzinger and J.-F. Raskin. Robust undecidability of timed and hybrid sys-
tems. InProceedings of HSCC’2000, volume 1790 ofLNCS, pages 145–159, 2000.

[21] O. Maler and A. Pnueli. On recognizable timed languages. InProceedings of FoS-
SaCS’2004, volume 2987 ofLNCS, pages 348–362, 2004.

[22] A. Puri. Dynamical properties of timed automata.Discrete Event Dynamic Systems,
10(1/2):87–113, 2000.

[23] A. Rabinovich. Automata over continuous time.Theoretical Computer Science,
300:331–363, 2003.

[24] J. G. Springintveld and F. W. Vaandrager. Minimizable timed automata. InPro-
ceedings of FTRTFT’96, volume 1135 ofLNCS, pages 130–147. Springer-Verlag,
1996.

[25] B. Trakhtenbrot. Origins and metamorphoses of the trinity: Logics, nets, automata.
In Proceedings of LICS’95, pages 506–507, San Diego, 1995. IEEE Computer So-
ciety.

[26] S. Tripakis. Fault diagnosis for timed automata. InProceedings of FTRTFT’2002,
volume 2469 ofLNCS, pages 205–224, 2002.

[27] S. Tripakis. Folk theorems on the determinization and minimization of timed au-
tomata. InProceedings of FORMATS’2003, volume 2791 ofLNCS, pages 182–188,
2004.

[28] S. Tripakis and S. Yovine. Analysis of timed systems based on time-abstracting
bisimulations.Formal Methods in System Design, 18:25–68, 2001.

[29] T. Wilke. Specifying timed state sequences in powerful decidable logics and timed
automata. InProceedings of FTRTFT’94, volume 863 ofLNCS, pages 694–715,
1994.

