ARTIST 2 Report

AIR File Format Specification
and remarks about CRL2

Revision 1.0.1
defining
File Version 2.1.2

Henrik Theiling
© AbsInt Angewandte Informatik GmbH

25. August 2006

Inhaltsverzeichnis

1

Intr ion

[2

Control Flow Graphs|

[2.1.1 Safe CFG Approximation|
212 Skeleton| o o

...................................
[22.1 Static Analysis| oo L

[3.1.1 Specification Name|.

[3.1.2 Implementation Name|.

321 Morphology|. o
................................

[3.3.5 'Ireatmentof Separators| L L
3.3.6 Singularvs.Plurall,

INHALTSVERZEICHNIS

Kapitel 1

Introduction

This document defines the file format of AIR files, which are used to represent
control flow graphs for real-time systems analyses, and their analysis results. Alt-
hough this is the major design goal, it may also be used for other purposes.

AIR abbreviates "ARTIST 2 Interchange Format’. AIR format is the proposed ex-
change format of the tools of the groups participating in the ARTIST 2 project. The
format is based on CRL2, which is the successor of CRL. These formats were ori-
ginally developed in cooperation by Saarland University and AbsInt Angewandte
Informatik GmbH over several years of work.

The idea behind AIR is that an interface is to be defined on the file format level, in
contrast to CRL2, whose interface definition only covers the C++ library interface.
Although internally in AbsInt tools, a specification of the C++ library interface is
preferred over a file format specification, simply because all tools use the library
and thus the storage on disk is secondary, for ARTIST 2, different work groups
might want to implement own libraries, so there is a demand for a file format
specification.

Since CRL2 was not primarily meant to be a file format, much work had to be done
before this document could be written. Apart from the mere documentation the file
format had to be defined and implemented. In order to get a stable interface on file
level CRL2 had to be extended. For example, version numbers and specification
IDs had to be added to meet the strict criteria of real-time systems analysis. Thus,
this document can be viewed as the first step of the final documentation phase in
a larger effort towards an exchange file format.

From the release of this specification on, CRL2’s file format interface will be a dia-
lect of the AIR file format. CRL2 as well as dialects of other work groups are allo-
wed to feature extensions as long as they are not vital for the operation of the tools.
E.g., AbsInt tools will only use plain AIR file format during normal operation, the
extension of CRL2 mainly implemented for debugging or diagnosis purposes. In
the same way, extensions of other dialects shall never be vital to the operation of
the corresponding tools.

This document is still ongoing work. The current revision starts by defining the
underlying file syntax and morphology. Subsequent revisions will add a precise
definition of the control flow structure and its representation in AIR structure and
its attributes.

KAPITEL 1. INTRODUCTION

Kapitel 2

Control Flow Graphs

There may be several different views on a control flow graph, depending on how
the analysis of the corresponding program works.

In general, for static analyses, some abstraction is applied to the real world pro-
gram. In the same way, the control flow graph is structured in an abstract way
even in its basic components, since, e.g. a microprocessor does not necessarily ha-
ve a low-level concept of routines, although be means of a stack or link register, an
abstract routine structure may well be used. For analyses to work, an abstraction
must be found that is close enough to the real world, but abstract enough to apply
comfortable analysis methods to the program.

Of course, there may be several good abstractions of the control flow graph, maybe
different in details, but maybe even in its basic structure.

This chapter presents in detail what a control flow graph specified in AIR describes
and what the AIR abstraction of a control flow graph is. This includes the overall,
basic structure as well as constraints about the structure, and the presentation of
special constructions found in programs together with its AIR representation. In
theory, a different structure may well be stored using the overall AIR file syntax,
but only the abstraction described in this specification is defined to be a valid AIR
abstraction of the CFG.

This chapter is currently work in progress and will be extended in the future.

2.1 Definitions

2.1.1 Safe CFG Approximation

A safe approximation of a control flow graph (CFG) does not miss any feasible
paths of the actual program it approximated. I. e., a safe CFG approximation is an
upper bound of the set of nodes and edges of the actual CFG.

For brevity, we may use the term safe CFG. It should still always be clear to the
reader and user that AIR represents an approximation of the actual CFG.

7

8 KAPITEL 2. CONTROL FLOW GRAPHS

2.1.2 Skeleton

The Skeleton is AIR without any attributes, data, meta information, or declaration.
It consists only of the AIR CFG items: graph, routines, blocks, edges, instructions
and operations.

2.1.3 Core

The Core is the Skeleton extended by be minimal set of attributes needed to repre-
sent a safe CFG.

2.2 Principles

This section describes the Principles by which AIR works. All structures in AIR
obey these principles.

Only if it can be proven that upcoming concepts cannot be represented in AIR wrt.
the Principles, this section shall be changed in future versions of the AIR specifica-
tion.

1. AIR describes the control flow at instruction semantics level.
2. AIR structure in designed for static analysis.
3. Actual machine instructions and AIR instructions can be mapped one-to-one.

4. The Core constitutes a safe CFG approximation.

2.21 Static Analysis

Being designed for static analyses means that theoretical structural concepts of the
program are enforced. The most important structural concept that is often not a cle-
ar concept in machine code is a routine. Still, for the sake of analysability, any actual
structures in the machine program have to be mapped into conceptual structures.

The following is the principle theoretical structure of a program:
1. a program contains routines,
2. routines contain basic blocks,
3. basic blocks contain instructions,
4. instructions contain operations,
5

. there are edges between blocks, which are called intraprocedural edges, and
there are distinct edges from blocks to routines, which are called interproce-
dural edges.

It is important to note that a call instruction in the machine code might be a good
hint for an interprocedural edge and a jump might be a good hint for an intrapro-
cedural edge, but in the conceptual view, a call to a routine may be implemented
by both instructions, and even by other means, and in the same way, an intrapro-
cedural edge may be implemented with a call.

2.2. PRINCIPLES 9

Conceptually, a routine is a piece of code that can be reused from different sites
in the program: there is a means of returning to the caller of a routine and routine
calls can potentially be nested making recursive routines possible. On the other
hand, the intuitive view on routines includes code snippets that are only invoked
once, or are named in a particular way, or never return. For a formal definition,
it is, therefore, easier to impose constraints on intraprocedural edges instead of
defining a ‘routine’.

For an intraprocedural edge e the following condition holds:

1. e never returns, i.e., if e is traversed twice, no information about the first
traversal of the edge is used in the program.

Intuitionally, this means that in particular no stack structure is used inside
routines, but only between routines, to determine control flow (e.g., for re-
turn addresses).

Any intraprocedural edge could thus be implemented by an interprocedural ed-
ges, since these do not adhere to the above constraint: in a degenerated graph,
each routine may consist of only one basic block and the whole control structure
is coded in the call graph. This degeneration is far from a good abstraction, howe-
ver, since analyses typically perform either with less accuracy for interprocedural
edges, or have a much higher overhead in handling them, so whenever the cons-
traints are not violated, intraprocedural edges are preferred.

10

KAPITEL 2. CONTROL FLOW GRAPHS

Kapitel 3

AIR File Grammar

The AIR format is a format compatible with CRL2, the format used by AbsInt An-
gewandte Informatik. AIR is a subset of CRL2. All AbsInt tools use only this sub-
set for exchange of information. The additional syntax CRL2 supports is/was very
seldom used so far, and is either designed for usages currently not implemented
by the tools, or for debugging purposes. A the end of this chapter, the remaining
syntax will be briefly described.

3.1 File Header

3.1.1 Specification Name

It is planned to keep AIR and CRL2 in sync in the future, to ensure interoperability
of all tools that use this file format. Changes incompatible with this document will
therefore need collaborative work and an update to this document.

Although we plan to keep this document in sync, no-one can guarantee different
implementation to keep in sync. Because the file format is used for safety critical
analyses, we will have to ensure that incompatible formats are rejected by unawa-
re readers. We therefore introduce a specification name, which will indicate which
specification a certain implementation is compatible with.

This specification will use the following specification name, which all implemen-
tations of this specification must use:

'f375656e-a4le-4623-aac9-b5dbb261c4bd’

The length of the name ensures with a high probability that a randomly generated
new name is not equal to any other specification name. New names should be
generated with the following Unix command or something equivalent in other
environments:

uuidgen
For other OSes, there are UUID generators on the Internet, too. You should gene-

rate a (good) random UUID when starting a new implementation.

When a syntax incompatible from this specification is used, a different specifica-
tion name must be used. This is to ensure that implementations not aware of the
used format reject the input file, instead of possibly accepting it with unspecified
behaviour, which is totally unacceptable behaviour in safely-critical environments.

11

12 KAPITEL 3. AIR FILE GRAMMAR

Reader implementations must reject files with specification names they are una-
ware of.

Reader implementations should reject files that contain file syntax that is not part
of the declared specification, e.g., it should not accept private extensions when a
pure AIR specification was declared.

3.1.2 Implementation Name

Because we programmers are humans, implementations of this specification may
be broken or not fully compliant. To enable detection of such implementations,
each implementation will have its own library name. As before, the implementati-
on name is an UUID. New implementations should be registered in this specifica-
tion. Currently, there is only one implementation:

Implementation Name
AbsInt CRL2 Library '18399358-21ba-45b1-8339-33592c28f594"

Readers may issue a note about unknown implementation names. However, they
must not reject a file because of this.

3.1.3 Version

A specification is usually not fixed. When changes occur, reader must be aware of
the changes, so the file format must contain a version number.

The version number will be split into four 31-bit unsigned integers:

Generation Code This is a fixed number and currently always 2. Only if a whole
new file format is specified, this version digit may be incremented. This code
can, therefore, be regarded as a constant.

Reader implementations must reject files with generation codes they cannot
ensure to handle correctly.

The generation code will never be decremented.

Safety Code Whenever format changes occur that might be read in the wrong way
unnoticed by an implementation, the safety code must be incremented. This
is not called ‘'major’ version code, since even small changes may cause wrong
behaviour of readers, so the important thing is the possibility of unnoticed
misinterpretation here. The safety code introduces an artificial difference of
the file that can clearly be detected.

Reader implementations must reject files with safety codes they cannot en-
sure to handle correctly.

The safety code will never be decremented.

Change Code Any change to the file format not indicated by the safety code will
be indicated by incrementing the change code. These are typically changes
that either go unnoticed by old implementations without the possibility of
misinterpretation, or those that immediately break syntactic compatibility so
that an old reader implementation will reject the file implicitly by failure.
Syntax extensions typically trigger this type of change.

Reader implementations should issue an informational note when encoun-
tering an unknown change code, but they should not refuse to read the file
for this reason.

3.2. FILE GRAMMAR 13

The change code will never be decremented.

Implementation Version and Sub Version This integer is (part of) the version of
the implementation that produced the file. The meaning of this code is im-
plementation specific and can only be handled correctly in conjunction with
the implementation name.

Implementors should only change the implementation version when signi-
ficant changes occur and the sub version on each successful library linking.
The library sub version must change for each public release so that other
users can cleanly distinguish library versions.

Reader implementations that are unable to interpret the implementation ver-
sion correctly (e.g. because they did not recognise the implementation name)
must not print notices about unknown implementation versions. They must
read the file without additional messages and assume a correct input file.
This rule exists since it is expected to be impossible to keep track of all exi-
sting versions.

Reader implementations that are able to interpret the implementation versi-
on may print notices about old or broken library versions. If they are indeed
able to identify broken library versions, reader implementations must refuse
to read the input file for safety reasons.

The implementation version must never be decremented.

The generation code, safety code, change code, and implementation version may
be cited in publications, in that order, with periods in between and preferably with
a prefixed "version’. Such a version string always starts with the generation code
and may be truncated at any point. E.g. version 2.1.2.1001000 or version 2.1.2 or
version 2.1 or version 2.

Please note that the safety code, the change code and the implementation version
are unrelated integers. In particular, there is no major version number on whose
increment a minor version number is reset to a smaller value (e.g. 2.1.9 is never
followed by 2.2.1, but only by 2.2.9 or 2.1.10).

If the generation code changes, anything may happen to the other numbers, since
this indicates a whole different file format.

This revision of the specification defines file format 2.1.2.

3.2 File Grammar

Throughout the file, the amount and nature of white space (but not the presence
vs. absence) is insignificant except inside strings (delimited with double quotes)
and identifiers (delimited with single quotes). White space is defined to be one of
the following ASCII characters given in octal notation: 000, 010, 011, 012, 013, 014,
015, 040.

C and C++ style comments are recognised and ignored. Please refer to a good
C/C++ documentation about their syntax.

The following grammar uses different notations for terminal symbol and non-
terminal symbols:

<non-terminal> A non-terminal whose syntax is given in a separate rule in the
below grammar.

14 KAPITEL 3. AIR FILE GRAMMAR

[variable terminal] A terminal symbol with a variable value. The morphology of
such a terminal will be defined in the next section.

constant _terminal A constant terminal symbol that has exactly the given ver-
batim sequence of characters in the file.

This is a keyword, whose overall morphology is an [lc-name].

Non-alphanumeric syntax element to be used exactly as given.

<parameter> Parameter of a higher order syntax rule.

The AIR syntax is defined in such a way that never an [lc-name] will be concurrent
with a keyword, so a reader implementation can always scan a [lc-name] when
a keyword is used, and then use an additional keyword siever step to computed a
keyword token from an [lc-name].

Note to Implementors: Reader implementations must except [lc-name] tokens
that happen to be a keyword when the grammar requires an [lc-name]. For exam-
ple, although crl is a keyword, is is also an [lc-name], and thus a valid name of
an attribute. Implementors using flex and bison are likely to have to pay special at-
tention to this. Typically, a bison rule is needed that accepts all keywords as names
and also the generic name to implement [lc-name], because flex implements both
the scanner and the keyword siever at once.

3.2.1 Morphology

This section defines the morphology of all variable terminal tokens.

The set of variable tokens is divided into two sets: the simple tokens, and the cons-
trained tokens. Constrained tokens are simple tokens with additional constraints.
Therefore, this section first gives the syntax of the simple tokens and then lists
the constrained tokens, giving the simple token they are together with their cons-
traints.

To start defining the morphology of tokens, we first define some character classes
used later.

Character Classes

Character classes are given either as octal digits, or as singly quoted ASCII cha-
racters, or as ranges of those with lower and upper bound separated by a hyphen.
Further, classes may be referred to and included in another class by usinge the
word ‘class” and the class name in single quotes after that.

class space’ := 000, 010, 011, 012, 013, 014, 015, 040
class 'lowcase’ := ’a’-’z’,200-377

class ‘'upcase’” = 'A’-'Z’

class ‘digits1-9” = '1"-'9’

class ’digits0-9” = 0"-'9’

class "digits0-7 -7

class "digitsO-f’ 0-'9,’a’-"f’,’A’ -'F

class ‘in-name’ := class ‘upcase’, class 'lowcase’, class ‘digits0-9’, 0137

3.2. FILE GRAMMAR 15

Simple Tokens

Simple tokens are defined by regular expressions using the characters and cha-
racter classes from the previous section. Further, characters may be given in octal
notation or as quoted ASCII characters.

Regular expression operators include parentheses for grouping, the or operator ’|’,
the iteration operators *’ (arbitrary iteration including 0 times) and '+’ (arbitrary
iteration but at least once), and the marker optionality "?’.

The following list is ordered by priority from top to bottom: whenever a token
matches an entry higher up in the list, it is not a token of an entry below that
higher entry. E.g. a [potential binary] is not a [potential octal].

[lc-name] := class 'lowcase’ (class 'in-name”)*
uc-name] := class "upcase (class ‘in-name’)*
ub-name] := 137 (class "in-name’)*

potential binary] = 0" ('b" | 'B’) (class 'in-name’)*

potential hexadecimal] ‘0" ('x” | 'X’) (class “in-name’)*
potential octal] 0" (class ‘in-name’)*
potential decimal] = class 'digits1-9’ (class 'in-name”)*,

‘08, 09’
Note that ‘08" and "09’, despite their leading 0, are defined to be decimal integers,
simply because there is no possibility of misinterpretation. This syntax typically
occurs with aligned date/time strings, e.g. 7gmt(2006-08-24-08-16-09) . He-
re the month, hours and seconds are valid decimal integers.

— — ————

Numeric values are parsed ignoring all underbar characters (ASCII 137), thus the
[potential decimal] 1.000_000 is indeed an integer denoting one million. Reader
implementions should avoid printing underbars in numbers, however.

Quoted Character Sequences: AIR has doubly quoted C style character se-
quences denoted by [string]. Please refer to a C standard for their syntax, since
we base our definition on the C standard.

Further, there are singly quoted character sequences denoted by [identifier] with a
very similar syntax.

[string]s begin with a double quote character (octal 042), and are also terminated
with 042. [identifier]s begin with 047 and are terminated with 047. In between,
characters occur either literally, or escaped with a backslash (134). Any number of
characters, 0 included, is possible.

The following characters may appear literally: 040, 041, 043 - 046, 048 - 0133, 0135
- 0176.

All other characters must be escaped. Escape sequences consist of the escape cha-
racter 134 plus more characters. The sequences\a ,\b ,\f ,\n ,\r ,\t ,\v and \\
have the same meaning as in the C standard. The sequence \" represents 047, \"
represents 042, and \e represents character 033. Characters escaped in octal notati-
on have the same syntax as in C. Characters escaped in hexadecimal must use the
prefix \x .

All characters in a quoted character sequence must be in the range 001 - 0377,
whether escaped or literal, i.e., the character code must use maximally 8 bits, and
the character codes are interpreted as ISO-8859-1 (which is a subset of Unicode).
Full Unicode character range is currently not part in this specification, but may be
added in future versions if there is need for it.

16 KAPITEL 3. AIR FILE GRAMMAR

Note: In contrast to C, we do not allow characters > 0177in quoted character
sequences. We also forbid the character 0, and also quotes in any quoted character
sequence, no matter whether doubly or singly quoted. Further, escape sequences
\u and \U are not defined in this version of the specification.

Reader implementations may be more generous and allow single quotes in
[strings] and double quotes in [identifiers]. They must not allow any character
> 0177in quoted character sequences, since the interpretation adds complexity
wrt. different character sets (e.g. ISO-8859-1 vs. UTE-8) not currently defined in
AIR. To allow for future extensions and compatibility, AIR files must be 7-bit clean.

So writer implementations must not print 8-bit characters, but must adhere to the
definitions made here (of course they do, but we stress it here).

The above paragraphs should be interpreted to explicitly disallow abusing the 8-
bit strings to store UTF-8 Unicode strings, since this would be misinterpreted by
unaware readers. If you need Unicode, an extension of this specification is needed.

Caution: Since the C standard has confusing rules for escaped hexadecimal and
octal characters, implementors should pay special attention to them. The confusion
typically arises from the following definitions: Inside a quoted string or character,
after a backslash, there must be maximally three octal digits. Thus, the doubly quo-
ted string "\0100" has length two, and consists of the characters 010 and 060.

On the other hand, characters given in hexadecimal notation may consist of arbitra-
rily many hexadecimal digits. Thus the doubly quoted string "\x000010" consists
of only one character 020.

For this reason, reader implementations must implement this behaviour correctly
(of course they do, but we stress it here). Further, writer implementations should
avoid printing octal digits after a character escaped in octal notation in strings and
identifiers. Further, writers should give exactly three digits when quoting in octal
notation, and two when printing in hexadecimal notation (the latter because we
only currently allow 8-bit characters).

For example, writers should encode a string of characters 010 and 060 as
"\010\060" when quoting in octal notation, thus quoting both characters with
three octal digits.

In the same way, hexadecimal digits after hexadecimally escaped characters must
be avoided, because that would unintentionally extend the hexadecimal character
escape sequence. The encoding of the string consisting of 010 and 060 in hexadeci-
mal quotation should be "\x08\x30"

Constrained Tokens

Constrained tokens are basically identical to simple tokens, but add constraints,
typically due to conversion from string to a different data type. Sometimes diffe-
rent alternatives are allowed for a constrained token. Constrained tokens may be
based on other constrained tokens and add additional constraints.

3.2. FILE GRAMMAR 17

Constrained Token Derived from Constraint
[unsigned] [potential binary] The token string can be parsed as a
or [potential octal] number (see a C manual for details).

or [potential decimal]
or [potential hexadecimal]

[n-bit unsigned] [unsigned] interpreted as an unsigned integer,
the result fits into n bits.
This only specifies the minimum
number of bits. Implementations may
use more bits.

[UUID identifier] [identifier] exactly length 36, only hexadecimal
digits, all in lower case, except for
9th, 14th, 19th, and 24th characters,
which must be dashes (055).

The grammar will be written using parameterized non-terminals in order to keep
in small.

3.2.2 Syntax

The syntax is written with higher order rules to keep it small, i.e., with non-
terminals accepting parameters used in their right hand sides for definition.

Default values or additional constraints or clarifications are given right after the
corresponding rules. This hopefully makes it easier for implementors, since the
information is gathered where it is needed.

<header> <body>

<header> u= crl

<file>

specification ‘ <specification name>
implementation ‘ <implementation name>

version

<generation code>

<safety code>

<change code>
<implementation version>
<implementation subversion>

<specification name> == [UUID identifier]

<implementation name> == [UUID identifier]

<generation code> [31-bit unsigned]

<safety code> [31-bit unsigned]

<change code> [31-bit unsigned]

<implementation version> = [31-bit unsigned]

18 KAPITEL 3. AIR FILE GRAMMAR

<implementation subversion> = [31-bit unsigned]

<body>

<body-element>*

<list(<attr-decls>)>

| |global | <global>
| |routine | <routine>
|

|

<body-element>

data | <data>
meta | <meta>

<list(<element>)> = <element>
| <list(<element>)> <element>

<comma-list(<element>)> 1= <element>
| <comma-list(<element>)> E <element>

<lc-id-def > = [lc-name]
[lc-name]s must only be used once in an <Ic-id-def> in an AIR

file, i.e., they define unique identifiers for items in the file.

<global> <simple-item([lc-name], <global-special >)>

<global-special >

<routine> = <lc-id-def> <attr-list(<lc-name-ctxt>)>?
| <lc-id-def > <attr-list(<lc-name-ctxt>)>?
<list(<context-def >)>?
<list(<block>)>?
<block> = <lc-id-def> <block-special >

<attr-list(<lc-name-ctxt>)>? E
| <lc-id-def > <block-special >
<attr-list(<lc-name-ctxt>)>?
<list(<edge>)>?
<list(<instruction>)>?

<block-special > = <block-type>)?

This defines the attribute type . It is a special attribute and must
not be used as a normal, generic attribute of blocks. If the block
type is missing, it is implicitly defined to be normal .

3.2. FILE GRAMMAR

<block-type>

<edge>

normal

return
external
impasse

u= <simple-item(<lc-name-ctxt>,<edge-special>)>

<edge-special > m= ([(| <edge-type> |) |)? [lc-name]

<edge-type>

<instr>

<instr-special >

This defines the attributes type , source , and target . These
are special attributes and must not be used as normal, generic
attributes of edges. If the edge type is missing, it is implicitly
defined to be normal . The [lc-name] must be a block identifier
of the target of the edge. For call edges, it may also be a routine
identifier, in which case the edge points to the start block of that
routine. The source is implicitly defined by the nesting structure:
the edge’s source in the block its definition is found in.

normal

return

impasse

<item(<lc-name-ctxt>,<op>,<instr-special>)>

<addr-and-width>?

This defines the attributes address and width . These are speci-
al attributes and must not be used as normal, generic attributes
of instructions. Both attributes may be undefined, indicated by
either a missing <addr-and-width> or by question marks (see the
corresponding rule).

<addr-and-width> u= ([64-bit unsigned] |)

<op>

E ([64-bit unsigned] |)

The first integer defines the address, the second one the width.
Both may be ? to indicate that the corresponding value is unde-
fined.

u= <simple-item(<lc-name-ctxt>,<op-special>)>

19

20 KAPITEL 3. AIR FILE GRAMMAR

<op-special> u= [string]

This defines the attribute mnemonic. This is a special attribute
and must not be used as normal, generic attribute of operations.
The mnemonic is not optional and must be given.

<data>

<item([lc-name], <bytes>,<data-special>)>

<data-special > n=

<bytes> <simple-item([lc-name], <bytes-special>)>

<bytes-special> u= <addr-and-width>?

This defines the attributes address and width . These are speci-
al attributes and must not be used as normal, generic attributes
of bytes. Both attributes may be undefined, indicated by either
a missing <addr-and-width> or by question marks (see the corre-
sponding rule).

<meta> <item([lc-name], <info>,<meta-special>)>
<meta-special > n=

<info>

<simple-item([lc-name], <info-special>)>
<info-special > n=

<simple-item(<key>,<sp>)> u= <lc-id-def> <sp> <attr-list(<key>)>? E

This defining item <Ic-id-def> must be unique in the AIR file.
The <sp> parameter parameterises this rule and provides speci-
al syntax for certain item attributes. It is basically syntactic sugar
to make the AIR file easier to read for humans, but also to high-
light some important attributes belonging to the CFG core, like
targets and sources of edges.

<item(<key>,<sub>,<sp>)> u= <lc-id-def> <sp> <attr-list(<key>)>? E
| <lc-id-def> <sp> <attr-list(<key>)>?

<list(<sub>)>

This defining item <lc-id-def > must be unique in the AIR file.
In contrast to a simple item, the normal item may have sub-
structures enclosed in curly braces. The parameter <sub> defi-
nes which sub-structures are contained.

<attr-list(<key>)> n= E <comma-list(<attr(<key>)>)>

<attr(<key>)> n= <key> (E <value>)?

If <value> is not given, it defaults to the unsigned integer 1.

3.2. FILE GRAMMAR

<lc-name-ctxt> = [le-name]
| [c-name] [context-ref]
<context-ref > = [lc-name]

|

The [lc-name] in pointed brackets defines the context in which
this attribute is defined. It must identify a context of the corre-
sponding routine, not one of another routine. (This type of attri-
bute keys is only allowed for routines, blocks, instructions, ope-
rations, and edges.) If the context-ref is * , the so-marked attribu-
te is the default attribute in contexts not specifically listed.

<context-def> = <lc-id-def> [| <context-seq>?[; |

This defines a name for a regular expression matching call strings
of the program under examination. The name must be a unique
identifier in the AIR file. The non-terminals of the regular expres-
sions are routine calls.

<comma-list(<context-simple>)>

<context-seq>

<context-simple> = <context-match>
| <context-minimum>

<context-repeat>

<context-seq>
([lc-name] |) ([le-name] |)

This matches a call in the program. The first [lc-name] must be
a block identifier or the wildcard ? (which matches anything).

The second [lc-name] must be a routine identifier or a wildcard
?.

<context-match>

<context-minimum> u= <context-simple> | *

| <context-simple> | *-
| <context-simple> |+

| <context-simple> | { | [32-bit unsigned] D

* and *- are equivalent to {0, }.
+ is equivalent to {1, }.

<context-repeat> u= <context-simple>
| <context-simple> [32-bit unsigned] D
[32-bit unsigned]

? is equivalent to {0,1 }.

22 KAPITEL 3. AIR FILE GRAMMAR

<value-numeric>
<value-range>
<value-date>
<wvalue-item>
<wvalue-vector-value>
<value-map-symbol-value>
<value-map-item-value>
<value-functor>

<value>

<value-numeric> <value-unsigned>

<value-signed>

<value-float>
<wvalue-unsigned> u= [64-bit unsigned]
<value-signed> = <64-bit signed>

<<n>-bit signed>

[(<n>-1)-bit unsigned]

[<n>-bit unsigned]

Minimally <n>-bits are required to represent the resulting si-
gned integer of this rule; more are not needed (but allowed). The
second alternative of the rhs may suggest more bits, but this is
only to guarantee the smallest signed integer is parsed correctly.

foa

<value-float>

<value-range>

El <value-numeric>

| <wvalue-numeric>
| <value-numeric> El <value-numeric>

Missing numbers denote that no constraint on the corresponding
bound is defined.

<value-date> <wvalue-date-posix>

| <wvalue-date-human>

[64-bit unsigned]

The integer counts the seconds since January 1st, 1970, 0:00 GMT,
also called the POSIX time.

<value-date-humal> n=
[unsigned] [unsigned] E un31gned
[

[unsigned] [unsigned] unsigned]

<value-date-posix>

3.2. FILE GRAMMAR

Time is in "year-month-day-hour-minute-second” format in the
GMT time zone. The year must not be abbreviated (e.g. with a
two-digit number), but must be the year since CE. The year must
not be less than 1970, the and should be below 2037. The unsi-
gned numbers and their minimal bit widths are constrained in
such a way that a valid date/time is defined. Note again that on-
ly the GMT time zone is allowed.

<value-item> n= [lc-name]

Item’s <lc-id-def >s are unique throughout the AIR file. This value
establishes a reference to an item via such a unique item name.

<vector-list>?

<comma-list(<vector-element>)>

<value-vector>

<wvector-list>

<value>
| [64-bit unsigned] E <value>

<vector-element >

Vectors with gaps (sparse vectors) may be defined by preceding a
vector element value with an index. Indexing starts with O for the
first vector entry. Vectors must only be filled in ascending order
and no element must be doubly defined.

<value-map-symbol-value> = <symbol-map>?
<symbol-map> u= <comma-list(<symbol-map-entry>)>

<symbol-map-entry>

<symbol-map-key> (E <value>)?

<symbol-map-key> = [lc-name]
| [identifier]
| [string]
| [64-bit unsigned]
| <64-bit signed>

If the value is missing, it is implicitly defined to be unsigned 1
(i.e., a boolean true value). Keys syntactically integers are con-
verted to strings by printing them in their shortest decimal form.
Thus’17’ is the same key as 0x11 . Each key must only be given
once per map. In the current version of AIR, only [lc-name] and
[unsigned] are ever used as keys and users should keep up that
tradition for simplicity reasons.

<value-map-item-value> = <item-map>?

<comma-list(<item-map-entry>)>

<item-map>

<item-map-entry> n= <item-map-key> (E <value>)?

[le-name]

<item-map-key>

23

24 KAPITEL 3. AIR FILE GRAMMAR

If the value is missing, it is implicitly defined to be unsigned 1
(i.e., a boolean ‘true’ value). Keys refer to one of the uniquely
identified items in the AIR file. Each key must only be given once
per map.
<value-functor> = <functor-c>

| <functor-mathematica>

| <functor-lisp>

| <functor-prefix>

| <functor-infix>

| <functor-circumfix>

| <functor-suffix>

Functors are basically vectors with an additional one or two func-
tor identifiers. They implement a nice syntax for representing
function applications or other functor invocations to represent
terms in complex expressions. Note that AIR syntax poses no re-
strictions on the number or arguments of a functor depending on
the kind (e.g. infix functors may well have more than two argu-
ments).

<functor-c>

[identifier] <vector-list>?

<functor-mathematica> := [identifier] E <vector-list>? E

[identifier]
| [identifier] D <wvector-list>

[identifier] <value-vector>

<functor-infix> n= <wvalue-vector> [identifier] <value-vector>

The two lists are appended to form the arguments of the infix
functor. The split point of the argument list does not carry any
information and writers may choose it arbitrarily.

<functor-lisp>

<functor-prefix>

<functor-circumfix> = [identifier] <value-vector> [identifier]

<value-vector> [identifier]
attributes <item-key> <attr-decl-list>

<functor-suffix>

<attr-decls>

3.2. FILE GRAMMAR

<item-key>

<attr-decl-list>
<attr-decl>

<type>

<type-simple>

<type-range>

<type-list>

routine

instruction
operation
data
bytes
meta
info

<comma-list(<attr-decl>)>
[lc-name] E <type>

<type-simple>
<type-range>
<type-list>
<type-tuple>

scalar
symbol
identifier

string

enum

numeric
integer

unsigned
gmt
address

vector

nested
range |
any | [type |

any | [string |
simple | [numeric |

simple identifier

|

<type-numeric> E] <type-numeric>

<type> E

25

26 KAPITEL 3. AIR FILE GRAMMAR
<type-tuple> n= <comma-list(<type>)>? m

3.3 Extensions in CRL?2

This section lists some extensions the CRL2 format has additional to this speci-
fication. Note that whenever such an extension is used, the specification code is
automatically changed by the CRL2 library. And in accordance with this specifi-
cation, files that contain such extensions must not use the AIR specification name,
but only the following specification name for CRL2 extended format:

d25fd505-3f27-4b2e-9867-65d2e6calb5e

3.3.1 Stable Format

This special extension produces syntactically bad files according to this specificati-
on since the version stamp is not printed in full detail. Files in stable format must
not be exchanged, since without the versioning the file format is not considered no
be safe. (However, because the file header format is a little different, it is expected
to break other reader implementations anyway, so a clean detection of unability to
read the file is very likely.)

The purpose of the stable format is obviously not running analyses. In order to
provide a means of easy scripted comparison of CRL2 files, mainly in testing and
quality assurance processes, the CRL2 library implements this special ‘stable” for-
mat. Some differences to this specification include:

e Suppression of automatically generated comments containing time or versi-
on stamps.

e Suppression of detailed version information. The header is reduced to
crl version 2 stable;

o All lists are printed line-wise.

o All lists items are terminated with the list separator instead of separating the
items with it. This ensures that each line of the list contains the list separator
(particularly the last line).

e White space is minimized and changes to indenting and white space usage
are minimised between library versions.

e Most other formatting options are ignored in stable mode (e.g. explicit syn-
tax).
3.3.2 Explicit Syntax

This affects the printing of attributes. Instead of printing the attributes in a nested
way, each attribute entry is specified by an explicit 'reference’. E.g.:

Instead of:

a={ x=1, y=[6,7] }

3.3. EXTENSIONS IN CRL2 27

In explicit mode, the library prints:
a.x=1, a.y[0]=6, a.y[1]=7

This format is often easier to read for humans.

3.3.3 Special Attributes

In contrast to this specification, the CRL2 library reads special attributes in the ar-
gument list, too, equivalently to the special syntax defined above. E.g. the source
and target attributes may contain source and target of edges. This is in accor-
dance with the library interface, which also allows access to the special attributes
via the standard symbol-based access mechanism.

Special attributes, however, are never written in the normal attribute list, so this
feature is an extension of the reader/parser module of CRL2.

3.3.4 Modification

The CRL2 library supports reading modification files additional to a given main
file. In the modification file, items can be added or modified.

This feature was never used although we expected it to be used. The CRL2 library
will never write this format, but only read it.

3.3.5 Treatment of Separators

The CRL2 library allows separators of lists to be used after the last element, too,
and also allows empty list elements. This is to enable reading of stable format files.

3.3.6 Singular vs. Plural

For most English language keywords, the CRL2 library allows both the singular
and the plural forms.

	Table of Contents
	Introduction
	Control Flow Graphs
	Definitions
	Safe CFG Approximation
	Skeleton
	Core

	Principles
	Static Analysis

	AIR File Grammar
	File Header
	Specification Name
	Implementation Name
	Version

	File Grammar
	Morphology
	Syntax

	Extensions in CRL2
	Stable Format
	Explicit Syntax
	Special Attributes
	Modification
	Treatment of Separators
	Singular vs. Plural

