
Controllers:
Robustness and Synthesis

Prof. Jean-François Raskin
CFV - Université Libre de Bruxelles

ARTIST 2 - Cluster on
Verification and Testing

System

An introduction to hybrid automta 9

Fig. 4. Hybrid automata for the burner and the thermometer

3. Jump({l11, l
2
1}, σ, {l12, l

2
2}) = Jump((l11, σ, l12)) ∧ Jump((l21 , σ, l22)) if σ ∈

Σ1 ∩ Σ2;
Conditions 1 and 2 express that discrete changes that are local to one
automaton have the enabling condition and the effect described by the
jump predicate of that automaton and the variables which are not shared
remain unchanged. Condition 3 expresses that discrete changes shared
by the two automata have as enabling condition the conjunction of the
enabling conditions of each discrete change. Their effect is the conjunction
of the effects of each discrete change.

10 J.-F. Raskin

In our example, we obtain the complete system by composing the three
automata. It is easy to show that the product operation that we have defined
is commutative and associative, so we can write Sys = Tank⊗Burner⊗Thermo.
Fig. 5 shows the hybrid automaton obtained by composing the automaton for
the tank and the automaton for the thermometer. We have omitted transitions
that are incompatible with the invariant of their starting location. That is,
edges e = (l, σ, l′) such that [[Jump(e) ∧ Inv(l)]]= ∅ are not depicted.

Fig. 5. Product of tank and thermometer

3 Properties of Hybrid Systems

Properties assign values to trajectories of hybrid systems. In this introduc-
tion, we restrict ourselves to properties that classify trajectories as good or
bad according to whether or not they stay or not in a given set of (good)
states. Those properties are called safety properties [AS85], and, are the most
important class of properties when considering safety critical systems.

Let us go back to our running example. Now that we have a complete model
of our system, we would like to design a controller that enforces some desired
behaviors. The controller will be an additional hybrid automaton that, when
composed with the automata modeling our system, must enforce the following
properties on the trajectories of the entire system:

Timed/Hybrid automata

Math. model

satisfies ?

!(low ≤ x ≤ high)

Model Based Development

Make a model of the environment
Env

Make clear the control objective
(avoid) Bad

Make a model of your control strategy
Controller

Verify that
Does Env || Controller

avoid Bad ?

Model Based Development

❶ ❷

❸

❹

Make a model of the environment
Env

Make clear the control objective
(avoid) Bad

Make a model of your control strategy
Controller

Verify that
Does Env || Controller

avoid Bad ?

Model Based Development

❶ ❷

❸

❹Good but after ?

Make a model of the environment
Env

Make clear the control objective
(avoid) Bad

Make a model of your control strategy
Controller

Verify that
Does Env || Controller

avoid Bad ?

Model Based Development

❶ ❷

❸

❹Good but after ?

We want correct
implementations !

From correct models
to correct implementations

Should we verify code ?

-- This may be too difficult (too much details)

Translate models into code ?

-- There are tools for that (Simulink)

From correct models
to correct implementations

Should we verify code ?

-- This may be too difficult (too much details)

Translate models into code ?

-- There are tools for that (Simulink)

... and preserve good properties ?

-- Good question...

From correct models
to correct implementations

Should we verify code ?

-- This may be too difficult (too much details)

Translate models into code ?

-- There are tools for that (Simulink)

... and preserve good properties ?

-- Good question...

Unfortunately, timed automata
are (in general) not implementable :

Zenoness: 0, 0.5, 0.75, 0.875, ...

No minimal bound between two
transitions: 0,0.5,1,1.75,2,2.875,3,...

And more: instantaneity, real-valued clocks...
(robustness)

From correct models
to correct implementations

Should we verify code ?

-- This may be too difficult (too much details)

Translate models into code ?

-- There are tools for that (Simulink)

... and preserve good properties ?

-- Good question...

Unfortunately, timed automata
are (in general) not implementable :

Zenoness: 0, 0.5, 0.75, 0.875, ...

No minimal bound between two
transitions: 0,0.5,1,1.75,2,2.875,3,...

And more: instantaneity, real-valued clocks...
(robustness) What if my control strategy is

“correct” for one of those
reasons ?

☝

A solution: Almost ASAP semantics
Alternative semantics for timed automata

Enabled transitions of the controller become urgent
after Δ time units;

Events from the environment are received by the
controller within Δ time units;

Truth values of guards are elarged by f(Δ)

❶

❷

❸

A solution: Almost ASAP semantics
Alternative semantics for timed automata

Enabled transitions of the controller become urgent
after Δ time units;

Events from the environment are received by the
controller within Δ time units;

Truth values of guards are elarged by f(Δ)

❶

❷

❸

AASAP semantics is
implementable

Prototypes of tools to verify
AASAP semantics and generate
provably correct code have been

implemented

✔ ✔

System

An introduction to hybrid automta 9

Fig. 4. Hybrid automata for the burner and the thermometer

3. Jump({l11, l
2
1}, σ, {l12, l

2
2}) = Jump((l11, σ, l12)) ∧ Jump((l21 , σ, l22)) if σ ∈

Σ1 ∩ Σ2;
Conditions 1 and 2 express that discrete changes that are local to one
automaton have the enabling condition and the effect described by the
jump predicate of that automaton and the variables which are not shared
remain unchanged. Condition 3 expresses that discrete changes shared
by the two automata have as enabling condition the conjunction of the
enabling conditions of each discrete change. Their effect is the conjunction
of the effects of each discrete change.

10 J.-F. Raskin

In our example, we obtain the complete system by composing the three
automata. It is easy to show that the product operation that we have defined
is commutative and associative, so we can write Sys = Tank⊗Burner⊗Thermo.
Fig. 5 shows the hybrid automaton obtained by composing the automaton for
the tank and the automaton for the thermometer. We have omitted transitions
that are incompatible with the invariant of their starting location. That is,
edges e = (l, σ, l′) such that [[Jump(e) ∧ Inv(l)]]= ∅ are not depicted.

Fig. 5. Product of tank and thermometer

3 Properties of Hybrid Systems

Properties assign values to trajectories of hybrid systems. In this introduc-
tion, we restrict ourselves to properties that classify trajectories as good or
bad according to whether or not they stay or not in a given set of (good)
states. Those properties are called safety properties [AS85], and, are the most
important class of properties when considering safety critical systems.

Let us go back to our running example. Now that we have a complete model
of our system, we would like to design a controller that enforces some desired
behaviors. The controller will be an additional hybrid automaton that, when
composed with the automata modeling our system, must enforce the following
properties on the trajectories of the entire system:

Hybrid automata

Math. model

satisfies ?

!(low ≤ x ≤ high)

Model Based Development

??

Synthesis

Finite precision = imperfect information The temperature
is in (C-1,C+1)

Classical algorithms for synthesis:
perfect information hypothesis

Finite precision = imperfect information The temperature
is in (C-1,C+1)

Classical algorithms for synthesis:
perfect information hypothesis

For robust controllers: we must drop
the perfect information hypothesis!

We propose new algorithms to
synthesize observation based
strategies:

we avoid determinization !

Finite precision = imperfect information The temperature
is in (C-1,C+1)

Classical algorithms for synthesis:
perfect information hypothesis

For robust controllers: we must drop
the perfect information hypothesis!

We propose new algorithms to
synthesize observation based
strategies:

we avoid determinization !

Many other applications of the idea are
forseen: e.g. improved algorithms for
the automata based approach to model-
checking.

Recent publications
● Khrishnendu Charterjee, Laurent Doyen, Thomas A. Henzinger and Jean-Francois Raskin.

Algorithms for Omega-regular games of Incomplete Information. To appear in
CSL'06, Lecture Notes in Computer Science, 2006. (16 pages)

● Martin De Wulf, Laurent Doyen, Thomas A. Henzinger and Jean-Francois Raskin. Antichains: a
New Algorithm to Solve Universality of FA. In CAV'06, Lecture Notes in Computer
Science, 4144, Springer-Verlag, pp. 17-30, 2006.

● Martin De Wulf, Laurent Doyen, and Jean-Francois Raskin. A Lattice Theory for Solving
Games of Imperfect Information. In HSCC'06, Lecture Notes in Computer Science, 3927,
pp. 153-168, Springer-Verlag, 2006.

● Martin De Wulf, Laurent Doyen, Jean-François Raskin. Systematic Implementations of
Timed Models. In FM'05, Lecture Notes in Computer Science 3582, pp. 139--156, Springer-
Verlag, 2005.

● Martin De Wulf, Laurent Doyen, Jean-François Raskin. Almost ASAP Semantics: from
Timed Models to Timed Implementations.In Formal Aspect of Computing, 17(3):319--341,
Springer-Verlag, 2005.

● Martin De Wulf, Laurent Doyen, Nicolas Markey, and Jean-François Raskin. Robustness and
Implementability of Timed Automata. In FORMATS'04, Lecture Notes in Computer
Science, 3253, pp. 118-133, Springer Verlag, 2004.

● Martin De Wulf, Laurent Doyen, Jean-François Raskin. Almost ASAP Semantics: From
Timed Models to Timed Implementations. In HSCC'04, Lecture Notes in Computer
Science, 2993, pp 296-310, 2004.

● Tech. Rep. 2006.76: Laurent Doyen (ULB), Jean-François Raskin (ULB), Improved Algorithms
for the Automata-Based Approach to Model-Checking. Submitted. 2006.

