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Fig. 4. Hybrid automata for the burner and the thermometer

3. Jump({l11, l
2
1}, σ, {l12, l

2
2}) = Jump((l11, σ, l12)) ∧ Jump((l21 , σ, l22)) if σ ∈

Σ1 ∩ Σ2;
Conditions 1 and 2 express that discrete changes that are local to one
automaton have the enabling condition and the effect described by the
jump predicate of that automaton and the variables which are not shared
remain unchanged. Condition 3 expresses that discrete changes shared
by the two automata have as enabling condition the conjunction of the
enabling conditions of each discrete change. Their effect is the conjunction
of the effects of each discrete change.
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In our example, we obtain the complete system by composing the three
automata. It is easy to show that the product operation that we have defined
is commutative and associative, so we can write Sys = Tank⊗Burner⊗Thermo.
Fig. 5 shows the hybrid automaton obtained by composing the automaton for
the tank and the automaton for the thermometer. We have omitted transitions
that are incompatible with the invariant of their starting location. That is,
edges e = (l, σ, l′) such that [[Jump(e) ∧ Inv(l)]]= ∅ are not depicted.

Fig. 5. Product of tank and thermometer

3 Properties of Hybrid Systems

Properties assign values to trajectories of hybrid systems. In this introduc-
tion, we restrict ourselves to properties that classify trajectories as good or
bad according to whether or not they stay or not in a given set of (good)
states. Those properties are called safety properties [AS85], and, are the most
important class of properties when considering safety critical systems.

Let us go back to our running example. Now that we have a complete model
of our system, we would like to design a controller that enforces some desired
behaviors. The controller will be an additional hybrid automaton that, when
composed with the automata modeling our system, must enforce the following
properties on the trajectories of the entire system:

Timed/Hybrid automata

Math. model

satisfies ?

!(low ≤ x ≤ high)

Model Based Development



Make a model of the environment
Env

Make clear the control objective
(avoid) Bad

Make a model of your control strategy
Controller

Verify that
Does Env || Controller 

avoid Bad ?
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❹Good but after ?

We want correct 
implementations !



From correct models 
to correct implementations

Should we verify code ?

-- This may be too difficult (too much details)

Translate models into code ?

-- There are tools for that (Simulink)
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And more: instantaneity, real-valued clocks... 
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From correct models 
to correct implementations

Should we verify code ?

-- This may be too difficult (too much details)

Translate models into code ?

-- There are tools for that (Simulink)

... and preserve good properties ?

-- Good question...

Unfortunately, timed automata 
are (in general) not implementable :

Zenoness: 0, 0.5, 0.75, 0.875, ...

No minimal bound between two 
transitions: 0,0.5,1,1.75,2,2.875,3,...

And more: instantaneity, real-valued clocks... 
(robustness) What if my control strategy is 

“correct” for one of those 
reasons ?

☝



A solution: Almost ASAP semantics
Alternative semantics for timed automata

Enabled transitions of the controller become urgent 
after Δ time units;

Events from the environment are received by the 
controller within Δ time units;

Truth values of guards are elarged by f(Δ)
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A solution: Almost ASAP semantics
Alternative semantics for timed automata

Enabled transitions of the controller become urgent 
after Δ time units;

Events from the environment are received by the 
controller within Δ time units;

Truth values of guards are elarged by f(Δ)

❶

❷

❸

AASAP semantics is 
implementable

Prototypes of tools to verify 
AASAP semantics and generate 
provably correct code have been 

implemented

✔ ✔
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Σ1 ∩ Σ2;
Conditions 1 and 2 express that discrete changes that are local to one
automaton have the enabling condition and the effect described by the
jump predicate of that automaton and the variables which are not shared
remain unchanged. Condition 3 expresses that discrete changes shared
by the two automata have as enabling condition the conjunction of the
enabling conditions of each discrete change. Their effect is the conjunction
of the effects of each discrete change.
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In our example, we obtain the complete system by composing the three
automata. It is easy to show that the product operation that we have defined
is commutative and associative, so we can write Sys = Tank⊗Burner⊗Thermo.
Fig. 5 shows the hybrid automaton obtained by composing the automaton for
the tank and the automaton for the thermometer. We have omitted transitions
that are incompatible with the invariant of their starting location. That is,
edges e = (l, σ, l′) such that [[Jump(e) ∧ Inv(l)]]= ∅ are not depicted.

Fig. 5. Product of tank and thermometer

3 Properties of Hybrid Systems

Properties assign values to trajectories of hybrid systems. In this introduc-
tion, we restrict ourselves to properties that classify trajectories as good or
bad according to whether or not they stay or not in a given set of (good)
states. Those properties are called safety properties [AS85], and, are the most
important class of properties when considering safety critical systems.

Let us go back to our running example. Now that we have a complete model
of our system, we would like to design a controller that enforces some desired
behaviors. The controller will be an additional hybrid automaton that, when
composed with the automata modeling our system, must enforce the following
properties on the trajectories of the entire system:

Hybrid automata

Math. model
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!(low ≤ x ≤ high)
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is in (C-1,C+1)

Classical algorithms for synthesis:
perfect information hypothesis
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Finite precision = imperfect information The temperature 
is in (C-1,C+1)

Classical algorithms for synthesis:
perfect information hypothesis

For robust controllers: we must drop 
the perfect information hypothesis!

We propose new algorithms to 
synthesize observation based 
strategies: 

we avoid determinization !

Many other applications of the idea are 
forseen: e.g. improved algorithms for 
the automata based approach to model-
checking.
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