
1

Hybrid Approach to System-Level
Performance Analysis

Simon Künzli
Bologna, May 22, 2006

contains joint work with Francesco Poletti,
Luca Benini, and Lothar Thiele

Design Space Exploration

• need for fast
performance
evaluation methods

• interest in non-
functional properties,
e.g. timing behavior,
memory requirement

2

Formal Methods

• possibilities to answer
questions limited by
method

• restricted by
underlying models

• good coverage (worst
case)

• fast
• coarse

Simulation

• can answer virtually
any questions about
performance

• can model arbitrary
complex systems

• average case (single
instance)

• time-consuming
• detailed

[Synopsis System Studio]
[Mentor Graphics Seamless]
[Coware ConvergenSC]
MPSIM [Benini et al.]

Design Evaluation

SymTA/S [Richter et al.]
Holistic Approaches [Pop et al.]
MPA [Thiele et al.]

RISCRISCRISC

• Use hybrid approach for analysis

Compose existing performance analysis
models

Combination

DSPDSP

LookUpLookUp

CipherCipher

Formal
Performance
ModelPerformance

Model for
Simulation

3

Combination II

T1 T2 T3 T4

simulation formal
analysis simulation

S/F-converter F/S-converter

• Interface definition between analysis
domains

• Applicability shown using case study for
multi-processor system

Goals

• Generated trace should be:
– consistent with specification curves
– representative for short term characteristics

(bursts)
– representative for long term characteristics

(average case)

• These properties should be observed
anywhere in the generated trace

4

2t0

2t0

Problems for generation

t0

t0

ONON OFF

ON OFF

violates the
specification

1
2
3
4

Proposed trace generation algorithm handles
these problems and generates valid traces.

/* generate event at time t */
generateEvent(t);
while (!stopGeneration) {

while (t < swt) {
if (state == 0) {

if (canIGenerateNow(t))
generate = true;

}
else{

if (!canIStillWait(t))
generate = true;

}
if (generate) {

generateEvent(t);
updateHistoryWithEvent(t);

}
t = t + timeStep;
generate = false;

}
swt = getNextSwitchingTime(t);
state = (state + 1) mod 2;

}

/* initialize variables */
t = 0;
generate = false;
state = 0;
swt = getNextSwitchingTime(t);

5

Goals (revised)

• Generated trace should be:
– consistent with specification curves
– representative for short term characteristics

(bursts)
– representative for long term characteristics

(average case)
• These properties should be observed

anywhere in the generated trace

New quality indicator to measure these properties

Quality indicator (I)

1. Select all trace snippets Ti of length τ in
trace T.

2. Compute the upper and lower curve
from each trace snippet Ti.

Trace T …

Ti

Ti

6

Quality Indicator (II)

3. Set , if and
, for all

and , otherwise.

= ?

specification derived from trace

Quality Indicator (III)

4. Compute
where denotes the number of
considered trace snippets .

TiTiTi

7

Quality Indicator (IV)

5. Set

Measure for self-similarity of trace
The larger I, the “better” the trace T
represents the specification curves

τττ

How to determine Switching time?

• Deterministic algorithm leads to optimal indicator
value (optimal under certain conditions)
– Problem: randomized traces preferable for analysis

• Randomized version of deterministic algorithm
uniform distribution of switching times

• Weibull distribution [Anastasi’98],[Barford’98]
used as control runs

8

Examples for Generated Traces

Experiments

9

Comparison

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13
Parameter settings

N
or

m
al

iz
ed

 In
di

ca
to

r V
al

ue
s

I

Specification 1

Specification 2

10

Case Study

0.27Real-Time
Calculus

3

292Hybrid2

508Simulation1

Evaluation
Time [s]

Evaluation
Method

Experiment

save evaluation time
• less simulation runs needed for good coverage
• single simulation run is faster

shorter development times for evaluation models
• use available models

suitable for design space exploration

Conclusion

• Definition of interfaces needed for hybrid
performance models

• Applicability shown using example

• Automated tool chain at hand for hybrid
approach

